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Abstract: We explored the interrelationship between a tissue-specific alternative splicing factor
muscleblind-like 1 (MBNL1) and peroxisome proliferator-activated receptor-γ coactivator 1-α
(PGC-1α), B-cell lymphoma 2 (Bcl-2) or Bcl-2-associated X protein (Bax) in C2C12 myotubes and mouse
skeletal muscle to investigate a possible physiological role of MBNL1 in mitochondrial-associated
apoptosis of skeletal muscle. Expression level of PGC-1α and mitochondrial membrane potential
evaluated by the fluorescence ratio of JC-1 aggregate to monomer in C2C12 myotubes were suppressed
by knockdown of MBNL1. Conversely, the ratio of Bax to Bcl-2 as well as the apoptotic index in
C2C12 myotubes was increased by MBNL1 knockdown. In plantaris muscle, on the other hand,
not only the minimum muscle fiber diameter but also the expression level of MBNL1 and PGC-1α in
of 100-week-old mice were significantly lower than that of 10-week-old mice. Furthermore, the ratio
of Bax to Bcl-2 in mouse plantaris muscle was increased by aging. These results suggest that MBNL1
may play a key role in aging-associated muscle atrophy accompanied with mitochondrial dysfunction
and apoptosis via mediating PGC-1α expression in skeletal muscle.
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1. Introduction

Skeletal muscle atrophy, which is defined as a loss of muscle mass, is induced by inactivity [1–3],
disease [4–6], or aging [7–9]. Aging-associated muscle atrophy (so-called sarcopenia), is accompanied
by muscle weakness, resulting in impaired muscle function including reduced force generation [10]
and aerobic capacity [8]. Several hypotheses have been proposed as a cause of age-associated skeletal
muscle atrophy, such as proteostasis disruption [11], mitochondrial dysfunction [12], and apoptosis [13].
Activation of apoptosis as well as the upregulation of mitochondrial apoptosis-regulatory proteins
including B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) has been reported in aged
skeletal muscle [14]. However, the molecular mechanisms involved in aging-associated mitochondrial
apoptosis have not been fully elucidated.

Several characteristics of sarcopenia are consistent with the muscular symptoms of myotonic
dystrophy type 1 (DM1), including insulin resistance, satellite cell senescence, and mitochondrial
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dysfunction [15]. DM1 is caused by a CTG trinucleotide expansion in the 3′ untranslated regions (UTR)
of DM1 protein kinase (DMPK) gene on chromosome 19 [16–18]. Although the molecular mechanisms by
which this expanded repeat produces the pathophysiology of DM1 are not unraveled, muscleblind-like
1 (MBNL1), an RNA-binding protein, is proposed as a key molecule in DM1 pathogenesis [19]. In fact,
MBNL1-null mice result in skeletal muscle myotonia and histopathology that are characteristic of
DM1 [20]. Since MBNL1 is a tissue-specific regulator of developmentally programmed alternative
splicing [21], MBNL1 may play a key role in the development of age-associated muscle weakness.

Mitochondrial dysfunction is postulated to be linked with aging-associated impairment of skeletal
muscle [22]. Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) is a principal
regulator of mammalian mitochondrial biogenesis [23]. Expression level of PGC-1α in skeletal muscle
decreases with aging [13], and the upregulation of PGC-1α in mouse skeletal muscle attenuates
aging-associated mitochondrial dysfunction and sarcopenia [24].

PGC-1α also plays a role in the regulation of apoptosis. Absence of PGC-1α upregulates Bax
expression and increases the ratio of Bax to Bcl-2 [25]. Mitochondrial-associated apoptosis is promoted
by pro-apoptotic Bax and is suppressed by anti-apoptotic Bcl-2 [9,26–28]. In fact, it has been reported
that the increase in ratio of Bax to Bcl-2 in skeletal muscle induces mitochondrial apoptosis [9,14,26].
Therefore, PGC-1α may be a key molecule in age-associated mitochondrial dysfunction as well as
apoptosis. However, the molecular mechanism of aging-associated downregulation of PGC-1α in
skeletal muscle remains unclear.

In the present study, we investigated the interrelationship between MBNL1 and PGC-1α, Bax,
Bcl-2, or mitochondrial membrane potential in C2C12 myotubes and mouse skeletal muscle. We also
explored the putative of MBNL1 in mitochondrial-associated apoptosis in skeletal muscle.

2. Results

2.1. Cell Culture Experiments

2.1.1. Effect of MBNL1 Knockdown on Differentiation in C2C12 Cells

Firstly, we investigated the effects of MBNL1 knockdown on differentiation in C2C12 cells.
Both mRNA and protein expression level of MBNL1 in C2C12 myotubes was decreased by knockdown
of MBNL1 (siMBNL1). There was a significant difference in mRNA and protein expression level of
MBNL1 between targeting and scrambled small interfering RNA (siRNA) for MBNL1 (−70% in mRNA:
p < 0.05, −76% in protein: p < 0.05; Figure 1A,B,D). On the other hand, the effects of knockdown of
MBNL1 had no impact on mRNA expression level of MBNL2, which is an isoform of MBNL (Figure 1C).
The knockdown of MBNL1 showed a decreased content of muscle protein (−11%: p < 0.05; Figure 1E).
However this did not affect the mRNA expression level of either myogenin or Creatine kinase (CK)
protein, these molecules are generally accepted as a differentiation marker [29] (Figure 1A,C,F,G).
Figure 2 shows the effects of MBNL1 knockdown on the morphology of C2C12 myotubes. MBNL1
knockdown also had no effect on myotube diameter and number of nuclei in a myotube.
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Figure 1. Effects of muscleblind-like 1 (MBNL1) knockdown on differentiation of C2C12 myotubes. 
(A) Representative expression patterns of MBNL1, Creatine kinase (CK), and loading control Ponceau 
S staining. mRNA expression level of MBNL1 (B) and MBNL2 (C). (D) Protein expression level of 
MBNL1. (E) Muscle protein content in 5 days after differentiation. The expression level of myogenin 
mRNA (F) and CK protein (G). siScramble: scrambled nontargeting small interfering RNA (siRNA), 
siMBNL1: targeting siRNA for MBNL1. Values are means ± standard error of the mean (SEM); n = 6 
per group. *: p < 0.05. 

 

Figure 2. Effects of MBNL1 knockdown on the morphology of C2C12 myotubes. (A) Typical images 
of C2C12 myotubes. The ellipse in black in the image of MBNL1 indicates the enlarged area that is 

Figure 1. Effects of muscleblind-like 1 (MBNL1) knockdown on differentiation of C2C12 myotubes.
(A) Representative expression patterns of MBNL1, Creatine kinase (CK), and loading control Ponceau
S staining. mRNA expression level of MBNL1 (B) and MBNL2 (C). (D) Protein expression level of
MBNL1. (E) Muscle protein content in 5 days after differentiation. The expression level of myogenin
mRNA (F) and CK protein (G). siScramble: scrambled nontargeting small interfering RNA (siRNA),
siMBNL1: targeting siRNA for MBNL1. Values are means ± standard error of the mean (SEM); n = 6
per group. *: p < 0.05.
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Figure 2. Effects of MBNL1 knockdown on the morphology of C2C12 myotubes. (A) Typical images of
C2C12 myotubes. The ellipse in black in the image of MBNL1 indicates the enlarged area that is shown
in panel B. (B) Enlarged image of the ellipse in black in the image (siMBNL1) in panel A. (C) The number
of nuclei per myotube. (D) The frequency distributions of myotube diameter. (E) The average of
myotube diameter. siScramble: scrambled nontargeting siRNA, siMBNL1: targeting siRNA for MBNL1.
Values are means ± SEM; n = 6 per group.
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2.1.2. Effects of MBNL1 Knockdown on Gene Expression in C2C12 Myotubes

Next, we examined the genes fluctuated by MBNL1 knockdown in C2C12 myotubes using
RNA sequencing (RNA-Seq). According to the cut-off point (false discovery rate (FDR) < 0.05
and |log2FC| > 1), 81 differentially expressed genes (DEGs) were identified between targeting and
scrambled siRNA for MBNL1. Of these genes, 54 were upregulated and 27 were downregulated.
DEGs associated with the membrane or plasma membrane were affected by MBNL1 knockdown
(Figure 3). Table 1 shows the rate of variability of MBNL1 knockdown-associated downregulated
genes. Interestingly, the expression level of Bpifc, Ifitm6, Wwc1, Cyp11a1, and Ppargc1a decreased by
over 75%, compared to scrambled siRNA controls.
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Figure 3. Effects of MBNL1 knockdown on the differentially expressed genes identification and Gene
Ontology (GO) annotation in C2C12 myotubes. Heatmap (A) and GO annotation (B) of the differentially
expressed genes (DEGs).

Table 1. MBNL1 knockdown-associated downregulated genes with the rate of variability in
C2C12 myotube.

ENSEMBL ID Genes log2 (Fold Change) FDR Values

ENSMUSG00000050108 Bpifc −2.64 0.01
ENSMUSG00000059108 Ifitm6 −2.49 0.03
ENSMUSG00000018849 Wwc1 −2.21 0.03
ENSMUSG00000032323 Cyp11a1 −1.95 0.03
ENSMUSG00000029167 Ppargc1a −1.85 0.02
ENSMUSG00000027763 Mbnl1 −1.79 0.03
ENSMUSG00000038068 Rnf144b −1.65 0.02
ENSMUSG00000002831 Plin4 −1.61 0.03
ENSMUSG00000069873 4930438A08Rik −1.56 0.01
ENSMUSG00000014030 Pax5 −1.40 0.03
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Table 1. Cont.

ENSEMBL ID Genes log2 (Fold Change) FDR Values

ENSMUSG00000078612 1700024P16Rik −1.35 0.02
ENSMUSG00000027859 Ngf −1.26 0.03
ENSMUSG00000062997 Rpl35 −1.20 0.05
ENSMUSG00000074151 Nlrc5 −1.18 0.01
ENSMUSG00000062168 Ppef1 −1.14 0.01
ENSMUSG00000061132 Blnk −1.13 0.03
ENSMUSG00000074796 Slc4a11 −1.12 0.02
ENSMUSG00000005360 Slc1a3 −1.11 0.01
ENSMUSG00000032515 Csrnp1 −1.10 0.02
ENSMUSG00000004655 Aqp1 −1.09 0.01
ENSMUSG00000047842 Diras2 −1.09 0.04
ENSMUSG00000063450 Syne2 −1.08 0.01
ENSMUSG00000054793 Cadm4 −1.08 0.02
ENSMUSG00000047261 Gap43 −1.06 0.01
ENSMUSG00000025931 Paqr8 −1.05 0.02
ENSMUSG00000030494 Rhpn2 −1.02 0.04
ENSMUSG00000048388 Fam171b −1.01 0.01

2.1.3. Effect of MBNL1 Knockdown on the Expression Level of PGC-1α, Bax, and Bcl-2 in
C2C12 Myotubes

Among the identified downregulated genes associated with downregulation of MBNL1, we
focused on the Ppargc1a gene, which encodes the PGC-1α protein. PGC-1α is considered to be a master
regulator of mitochondrial biogenesis [30]. RT-PCR analysis revealed that MBNL1 knockdown caused
~68% of decrease in the mRNA expression level of PGC-1α compared with scrambled siRNA (p < 0.05,
Figure 4B). These findings not only validate the RNA-Seq data but are further substantiated at the protein
level. Indeed, Western blot analysis showed that the expression level of PGC-1α was decreased by 23%
following MBNL1 knockdown (p < 0.05, Figure 4A,C). Another interesting result was the increased
expression level exhibited by Bax (pro-apoptotic protein), following MBNL1 knockdown (p < 0.05,
Figure 4A,D). On the other hand, the expression level of the Bcl-2 (an anti-apoptotic protein) was also
examined and found to be stably expressed following MBNL1 knockdown (Figure 4A,E). From these
findings, one is able to calculate a Bax/Bcl-2 ratio, which serves as an index for mitochondria-mediated
apoptosis. When the ratio was applied, we found that the knockdown of MBNL1 significantly increased
mitochondria-mediated apoptosis compared to control conditions (p < 0.05, Figure 4F).
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Figure 4. Effects of MBNL1 knockdown on the expression level of peroxisome proliferator-activated
receptor-γ coactivator 1-α (PGC-1α), B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) in
C2C12 myotubes. (A) Representative expression patterns of PGC-1α, Bax, Bcl-2, and loading control
Ponceau S staining. (B,C) mRNA and protein expression level of PGC-1α. The expression level of Bax
and Bcl-2 proteins (D,E) and the ratio of Bax to Bcl-2 (F). Abbreviations are the same as in Figure 1.
Values are means ± SEM; n = 6 per group. *: p < 0.05.

2.1.4. Effect of MBNL1 Knockdown on Mitochondrial Membrane Potential and Apoptosis in
C2C12 Myotubes

In the present study we evaluated mitochondrial function in C2C12-derived myotubes by analyzing
the changes in the potential of the mitochondrial membrane. This was achieved using the fluorescent
probe JC-1 (Figure 5A).

In healthy cells with high ∆ΨM (important parameter of mitochondrial function), JC-1 forms
complexes known as JC-1 aggregates with intense red fluorescence. Conversely, in cells with low ∆ΨM,
JC-1 remains in the monomeric form, which exhibits green fluorescence. Consequently, mitochondrial
depolarization (a process that occurs in apoptosis [31]) is indicated by a decrease in the red/green
fluorescence intensity ratio. Analysis of the data revealed that the fluorescence ratio of JC-1 was
significantly decreased following the knockdown of MBNL1 (p < 0.05, Figure 5A,B). In order to
substantiate these findings, we also examined the apoptotic index by counterstaining nuclei with
Hoechst 33342 (Figure 5C). This enabled us to calculate a ratio between apoptotic nuclei (bright
fluorescent chromatin, which is highly condensed or fragmented) to normal nuclei (blue chromatin
with organized structure). Quantification of this data showed an increased apoptotic index in
MBNL1-downregulated conditions compared to controls (p < 0.05, Figure 5D).
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Figure 5. Effects of MBNL1 knockdown on mitochondrial membrane potential and apoptosis in C2C12
myotubes. Typical images of C2C12 myotubes stained by JC-1 (A) and Hoechst 33342 (C). (B) The
red/green fluorescence intensity ratio of JC-1. (D) Apoptotic index, the ratio of apoptotic nuclei to
normal nuclei. Abbreviations are the same as in Figure 1. Values are means ± SEM; n = 6 per group.
*: p < 0.05.

2.2. Animal Experiments

2.2.1. Wet Weight and Fiber Size of Plantaris Muscles of Young and Old Mice

We next turned our attention to animal studies to deepen our understanding of MBNL1. Initially,
a comparison of young versus old mice was made. Body weight, absolute muscle wet weight,
and muscle weight relative to body weight in young and old mice are shown in Figure 6A–C. The body
weight of old mice was significantly higher than that of young mice (p < 0.05, Figure 6A). However,
the absolute muscle wet weight of plantaris muscles showed no significant change between young
and old mice (Figure 6B). In addition, when the muscle weight relative to body weight was examined
(Figure 6C), we found a lower muscle weight in aged mice compared to their young counterparts
(p < 0.05). Figure 6D shows typical images from hematoxylin-eosin-stained plantaris muscles of young
and old mice. The fiber size of plantaris muscle in old mice was significantly smaller than that of
young mice (p < 0.05, Figure 6E,F).
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Figure 6. Body weight (A), absolute plantaris muscle wet weight (B), and muscle weight relative to
body weight (C) in young and old mice. (D) Typical images from hematoxylin-eosin-stained plantaris
muscles of young and old mice. The frequency distribution (E) and the mean value (F) of minimum
muscle fiber diameter of plantaris. Values are means ± SEM; young: 10 weeks old, n = 5; old: 100 weeks
old, n = 7. *: p < 0.05.

2.2.2. Expression Level of MBNL1, PGC-1α, and Apoptosis Regulatory Proteins in Plantaris Muscles of
Young and Old Mices

To investigate a physiological role of MBNL1 in aging-associated muscle atrophy, we compared
the expression level of MBNL1, PGC-1, Bax, and Bcl-2 in plantaris muscles of young and old mice.
Expression levels of MBNL1 mRNA and protein in plantaris muscles of old mice were significantly
lower than that of young mice (p < 0.05, Figure 7A–C). Although there was no significant difference at
the mRNA level for PGC-1α (Figure 7D), at the protein level, muscle isolated from old mice showed
a significantly lower expression of PGC-1α compared to that of young mice (p < 0.05, Figure 7A,E).
The expression level of Bax protein in plantaris muscle of old mice was found to be significantly
higher than that of young mice (p < 0.05, Figure 7A,F). Since there was no significant difference in
the expression level of Bcl-2 protein in plantaris muscles between young and old mice (Figure 7A,G),
the Bax/Bcl-2 ratio was increased by aging (p < 0.05, Figure 7H).
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(A) Representative expression patterns of MBNL1, PGC-1α, Bax, Bcl-2, and loading control Ponceau S
staining. mRNA and protein expression level of MBNL1 (B,C) and PGC-1α (D,E). The expression level
of Bax (F) and Bcl-2 (G) proteins and the ratio of Bax to Bcl-2 (H). Values are means ± SEM; young:
10 weeks old, n = 5; old: 100 weeks old, n = 7. *: p < 0.05.

3. Discussion

The present study showed that MBNL1 knockdown depressed both mRNA and protein expression
levels of PGC-1α. MBNL1 knockdown also showed a decrease in the fluorescence ratio obtained for
JC-1 (aggregate to monomer in C2C12 myotubes) with the increased ratio of Bax to Bcl-2. Lower
expression levels of MBNL1 (mRNA and protein) and PGC-1α (protein) and smaller muscle fiber size
in plantaris muscles of old mice were observed compared to young mice. The ratio of Bax to Bcl-2 in
mouse plantaris muscle was also increased by aging.

In this study, the expression levels of MBNL1 mRNA and protein in C2C12 myotubes were
decreased by ~70% and ~76%, respectively, following siMBNL1 treatment. On the other hand,
no effects of siMBNL1 treatment on mRNA expression level of MBNL2 was observed. However,
MBNL1 knockdown seems to have no impact on the number of nuclei per myotube, myotube diameter,
and the expression level of myogenin mRNA and CK protein—these molecules are generally accepted
as a differentiation marker [29]. Therefore, MBNL1 has no role in myogenic differentiation. In this study,
on the other hand, the total protein content in C2C12 myotubes was decreased by MBNL1 knockdown.
In general, total protein content increases, accompanying myotube growth and differentiation [32–34].
Therefore, the decrease of total protein content induced by MBNL1 knockdown might indicate a
decrease in the cytoplasmic protein contents in myotubes without any structural changes. However,
we have no clear explanation regarding this issue at present.

In the present study, RNA-Seq analysis showed that the downregulation of MBNL1 yielded
81 DEGs, 54 of which were upregulated and 27 downregulated. Among the downregulated genes,
we focused on the Ppargc1a gene, encoding the PGC-1α protein. The present study also showed that
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knockdown of MBNL1 is accompanied by a downregulation of PGC-1α at the mRNA level (~68%
reduction) and the protein level (~23% reduction). There is no evidence that MBNL1 directly mediates
the expression level of PGC-1α. Therefore, MBNL1 may play a role in the regulation of PGC-1α
expression. Additional experiments are needed to elucidate this issue.

Since PGC-1α plays a key role in mitochondrial function and apoptosis in skeletal muscle [35],
we investigated the effects of MBNL1 knockdown on mitochondrial membrane potential and apoptosis.
MBNL1 knockdown suppressed the ratio of JC-1 aggregate to monomer fluorescence, indicating the loss
of mitochondrial membrane potential. Since a decrease in mitochondrial membrane potential means
mitochondrial dysfunction [36], MBNL1 has a potential role in maintaining mitochondrial function.
In addition, the aforementioned decreased expression of PGC-1α following MBNL1 knockdown
suggests a mechanism employed by MBNL1 in order to maintain mitochondrial integrity. To the best
of our knowledge, this is the first report showing the physiological role of MBNL1 in the regulation of
mitochondrial function.

It has been reported that the loss of total protein in C2C12 myotubes caused by H2O2-associated
apoptosis [37]. Therefore, MBNL1 knockdown-associated decrease in total protein content in C2C12
myotubes might be attributed to apoptosis.

In the present study, the expression level of Bax, the ratio of Bax to Bcl-2, as well as the apoptotic
index was increased by MBNL1 knockdown. It has been reported that the ratio of Bax to Bcl-2 is a
valid indicator for developing apoptosis in various cells [38,39]. These results indicate that the reduced
expression of MBNL1 induces apoptosis. Aging-associated increase Bax expression, and the ration
of Bax to Bcl-2 was also observed in mouse skeletal muscle [25]. MBNL1 may have a protective role
against mitochondrial-mediated apoptosis by regulating the expression of PGC-1α in skeletal muscle.

In this study, muscle wet weight relative to body weight, muscle fiber size, and the expression
level of both MBNL1 and PGC-1α in plantaris muscle of old mice were lower than those of young
mice. A previous study [40] showed higher expression of MBNL1 in old mice (28 months old)
compared to the expression level of adult mice (9 months old). On the other hand, in the present study,
MBNL1 expression level in young (2 months old) and old mice (22 months old) were investigated.
Two-month-old young mice are in the developing stage of fiber size [41] and the number of satellite
cells [42] in skeletal muscle, and there may be some different properties of skeletal muscle compared to
9-month-old adult mice. Further, in the previous report, the expression level of MBNL1 in quadriceps
femoris muscles of Balb-c mice were investigated. In this study, on the other hand, MBNL1 expression
level in plantaris muscle of C57BL/6J mice was investigated. Differences in mouse strains and/or muscle
types may influence the expression level of MBNL1 with aging.

Conversely, the expression level of Bax protein and the ratio of Bax to Bcl-2 in plantaris muscle
were significantly increased by aging. These results are consistent with the data obtained from our
C2C12 experiments and by those previously reported [9,13,14,26]. Although the present study did not
investigate the association between MBNL1 and PGC-1α in mouse plantaris muscle, the results from
C2C12 experiment strongly suggest that aging-associated down-regulation of MBNL1 decreases the
expression level of PGC-1α, then mitochondrial function is suppressed in aged skeletal muscle.

In conclusion, MBNL1 may play a key role in aging-associated muscle atrophy, a process
accompanied with mitochondrial dysfunction and apoptosis.

4. Materials and Methods

4.1. Cell Culture Experiments

Cell culture experiments were carried using mouse myoblast-derived C2C12 cells following the
methods previously described [43]. C2C12 cells were cultured on 6-well culture plates with type I
collagen-coated surface (Corning Incorporated, Corning, NY, USA). Cells were grown in 2 mL of
growth medium consisting of Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher, Scientific,
Waltham, MA, USA) supplemented with 10% heat-inactivated fetal bovine serum containing high
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glucose (4.5 g/L glucose, 4.0 mM L-glutamine without sodium pyruvate) for proliferation under a
humidified atmosphere with 95% air and 5% CO2. At ~90% confluence, the medium was changed to the
same amount of differentiation medium consisting of DMEM supplemented with 2% heat-inactivated
horse serum containing low glucose (1.0 g/L glucose, 4.0 mM L-glutamine with 110 mg/L sodium
pyruvate) to induce differentiation. The differentiation medium was changed every 2 days and the
culture was maintained for 5 days.

Three days after the initiation of differentiation, we transfected RNA oligos into differentiating
myotubes using Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific) as
per the manufacturer’s instructions. Details for the transfection of siRNA were previously
described [44]. Briefly, lipofectamine/siRNA complexes were added to the differentiation medium,
and myotubes were incubated for 24 h. The final concentration of siRNA was set at 10 nM.
Transfection medium was changed with freshly prepared differentiation medium following
24 h of the transfection. After 48 h from the transfection, myotubes were harvested for
mitochondrial membrane potential assays, RNA-Seq, RT-PCR, or immunoblot analyses. Below
are the siRNA oligonucleotides designed against mouse MBNL1 (siMBNL1: sense/antisense):
5′-GCAAUUUAGCAUGUUGGAATT-3′/5′-UUCCAACAUGCUAAAUUGCTT-3′. Cells in control
cohorts were transfected with scrambled non-targeting control siRNA (siScramble), obtained from
Takara Bio (Takara Bio, Otsu, Japan).

In this study, the number of the sample refers to the number of wells in each experimental
condition. All analyses on each sample were carried out in duplicate.

4.2. Animal Experiments

All experimental procedures were carried out in accordance with the Guide for the Care and Use
of Laboratory Animals as adopted and promulgated by the National Institutes of Health (Bethesda,
MD, USA) and were approved by the Animal Use Committee of Toyohashi SOZO University (2007001).
All treatments for animals were performed under anesthesia with intraperitoneal (i.p.) injection of
sodium pentobarbital, and all efforts were made to prevent discomfort and suffering. Male C57BL/6J
mice at 10 weeks (young; n = 5) and 100 weeks (old; n = 7) of age were used in this experiment.
In hindlimb skeletal muscle of ~100-week-old C57BL/6J mice, apoptotic rate, which is the relative
percentage of terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end
labeling (TUNEL)-positive myonuclei per total myonuclei, might be ~10% [45]. Mice in each group
were housed in same-sized cages. All mice were housed in a vivarium room with a 12h/12h light–dark
cycle with temperature and humidity maintained at ~23 ◦C and ~50%, respectively. Solid food and
water were provided ad libitum. Plantaris muscles from each group were dissected from left hindlimbs
of young and old mice. Muscles were trimmed of excess fat and connective tissues, weighed, frozen in
liquid nitrogen, and stored at −80 ◦C.

4.3. Immunoblot Analyses

The protein expression level of MBNL1, muscle-type creatine kinase (CK), PGC-1α, Bax, and
Bcl-2 were evaluated by standard immunoblot analyses, as described previously [3,43]. The cells in
each well were rinsed twice with 1 mL of ice-cold phosphate-buffered saline. The cells were then
collected in 0.3ml of cell lysis reagent (CelLytic TM-M, Sigma-Aldrich, St. Louis, MO, USA) with 1%
(v/v) Protease/Phosphatase Inhibitor Cocktail (#5872, Cell Signaling Technology Inc., Danvers, MA,
USA). Proximal portions of the frozen left plantaris muscles were homogenized in an isolation buffer of
tissue lysis reagent (CelLytic-MT, Sigma-Aldrich) with 1% (v/v) Protease/Phosphatase Inhibitor Cocktail
(#5872, Cell Signaling Technology) with a glass homogenizer. The homogenates were centrifuged
at 15,000× g (4 ◦C for 15 min), and the supernatant was collected. A part of the supernatant was
solubilized in SDS sample buffer (30% v/v glycerol, 10% v/v 2-mercaptoethanol, 2.3% w/v SDS, 62.5 mM
Tris-HCl, 0.05% w/v bromophenol blue, pH 6.8) at a concentration of 0.5 mg of protein ml-1 and was
incubated at 95 ◦C for 5 min. SDS-PAGE was carried out on 10% polyacrylamide containing 0.5% SDS
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at a constant current of 20 mA for 120 min, as described previously [3]. Equal amounts of protein (5 µg)
were loaded on each gel. Molecular weight markers (#161-0374, Bio-Rad, Hercules, CA, USA) were
applied to both sides of 14 lanes as the internal controls for the transfer process and electrophoresis.

Following SDS-PAGE, proteins were transferred to polyvinylidene fluoride membrane (0.2 µm
pore size, Bio-Rad) at a constant voltage of 100 V for 60 min at 4 ◦C. The membranes were stained by
Ponceau S solution (Sigma-Aldrich) to show equal loading, and blocked for 1 h at room temperature
in a blocking buffer: 5% (w/v) skim milk with 0.1% Tween 20 in Tris-buffered saline (TBS) at pH 7.5.
The membranes were then incubated for 2 h with polyclonal antibodies for MBNL1 (ab45899, Abcam,
Cambridge, UK), CK (ab198235, Abcam), PGC-1α (sc-13067, Santa Cruz Biotechnology, Dallas,
TX, USA), Bax (#2772S, Cell Signaling Technology), and Bcl-2 (#3498S, Cell Signaling Technology),
and then reacted with secondary antibodies (goat anti-rabbit immunoglobulin G (IgG) horseradish
peroxidase-linked antibody, Cell Signaling Technology). After the final wash, protein bands were
visualized by chemiluminescence (ECL Select Western blotting kit; GE Healthcare, Chicago, IL, USA),
and signal density was measured by Light-Capture (AE-6971) using CS Analyzer version 2.08b (ATTO
Corporation, Tokyo, Japan). Each sample was investigated in duplicate to at least ensure that results
were not influenced by loading errors. The densities of Ponceau S staining were carried out as the
internal controls for the transfer process and electrophoresis. Standard curves were constructed during
the preliminary experiments to ensure linearity.

4.4. RT-PCR Analyses

RT-PCR analyses were carried out to access the mRNA expression level of MBNL1, myogenin,
and PGC-1α in C2C12 myotubes and plantaris muscles, as described previously [1]. Briefly, total RNA
was extracted from the C2C12 myotubes and distal portions of the muscles using the miRNeasy
Mini kit (Qiagen, Hiden, Germany), according to the manufacturer’s protocol. The RNA sample was
reverse-transcribed to complementary DNA (cDNA) using PrimeScript RT Master Mix (Takara Bio,
Otsu, Japan). RT-PCR was then performed on the cDNA (Thermal Cycler Dice Real Time System
IIMRQ, Takara Bio) using Takara SYBR Premix Ex Taq II (Takara Bio). The real-time cycle conditions
were 95 ◦C for 30 s, followed by 40 cycles at 95 ◦C for 5 s and at 60 ◦C for 30 s for mRNA.

The relative fold change of expression was calculated by the comparative threshold cycle
(CT) method using Takara Thermal Cycler Dice Real Time System Software Ver. 4.00 (Takara
Bio). To normalize for the amount of total RNA present in each reaction, we used β-actin as
internal standard. Primers were designed using the Takara Bio Perfect Real Time Support System
(Takara Bio). The following primers were used: MBNL1, 5′-GGACAGCTTGTAGTTTGCCAGGA-3′

(forward) and 5′-GCAGATTTGGCCCAATGGAG-3′ (reverse); myogenin, 5′-CAGTGAATG
CAACTCCCACAG-3′ (forward) and 5′- TGGACGTAAGGGAGTGCAGA-3′ (reverse); PGC-1α,
5′-TGATGTGAATGACTTGGATACAGACA-3′ (forward) and 5′-GCTCATTGTTGTACTGGTTG
GATATG-3′ (reverse); β-actin, 5′-CATCCGTAAAGACCTCTATGCCAAC-3′ (forward) and
5′-ATGGAGCCACCGATCCACA-3′ (reverse).

4.5. RNA-Seq

Total RNA was extracted from C2C12 myotubes treated by MBNL1 siRNA or scrambled siRNA
using the miRNeasy Mini kit. The preparation of the cDNA library and the RNA sequencing was
performed by Bioengineering Lab (Atsugi, Japan). The cDNA originating from the RNA fragments
were paired and sequenced using NextSeq 500 (Illumina, San Diego, CA, USA).

Tophat2 (ver. 2.1.0) was used to map the sequencing reads to the mouse genome. The sequencing
reads were counted using featureCounts (ver. 1.5.0-p3). DESeq2 was used to perform the analysis of
differentially expressed genes (DEG). The cutoffs of the DEG approach were chosen as false positive
rate (FDR) < 0.05 and |log2 (fold change)| > 1. Gene Ontology (GO) enrichment analysis was performed
for DEGs in the gene co-expression network with DAVID (Database for Annotation, Visualization and
Integration Discovery, http://david.abcc.ncifcrf.gov/).

http://david.abcc.ncifcrf.gov/
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All of the RNA-Seq data obtained in this study were deposited in the DNA Data Bank of
Japan (DDBJ) Sequence Read Archive (DRA), and they are accessible through DRA accession
number DRA010689.

4.6. Morphological Analyses of Myotubes

Myotube diameter was evaluated following the methods previously described [43]. Briefly,
six fields were chosen randomly, and 150 myotubes were measured using Image J. The average
diameter per myotube was calculated as the mean of three short-axis measurements taken along the
length of the myotube. To evaluate differentiation level of myotubes, we also investigated the number
of nuclei per myotube [44,46].

4.7. Morphological Analyses of Plantaris Muscles

Frozen plantaris muscles were cut cross-sectionally into halves. Serial transverse cryosections
(8 µm thick) of the midbelly region of the proximal side were sliced at −20 ◦C and mounted on glass
slides. The slides were air-dried and stained by using hematoxylin–eosin. The images of muscle
sections were incorporated into a personal computer by using a microscope (BZ-X710, KEYENCE,
Osaka, Japan). Minimum diameter of individual fibers [47] in plantaris muscles were measured using
Image J. At least 100 randomly selected myofibers were measured.

4.8. Mitochondrial Membrane Potential and Apoptotic Index

Mitochondrial membrane potential in C2C12 myotubes were assessed using JC-1 mitochondrial
membrane potential assay kit (Cayman Chemical Company, Ann Arbor, MI, USA), according to the
manufacturer’s instructions. Briefly, JC-1 solution (100 µL/mL culture medium) was added to the
culture medium and was then mixed gently. The cells were then incubated in a CO2 incubator at 37 ◦C
for 15 min. Images were then viewed and scanned by a fluorescence microscope (BZ-X710, KEYENCE,
Osaka, Japan), at 470 nm excitation and 525 nm emission for green, and at 560 nm excitation and
630 nm emission for red. Red emission of the dye represented a potential-dependent aggregation of
JC-1 in the mitochondria. Conversely, green fluorescence appearing in the cytosol after mitochondrial
membrane depolarization represented the monomeric form of JC-1. More than 100 areas were selected
from each group. The average intensity of red and green fluorescence was measured using Image
J software (National Institutes of Health, Bethesda, MD, USA). The ratio of JC-1 aggregate (red) to
monomer (green) intensity was then calculated.

To evaluate the contribution of apoptosis to MBNL1-associated changes in C2C12 differentiation,
we stained cells with Hoechst 33342 to identify apoptotic nuclei. Briefly, a final concentration of
50 µg/mL Hoechst 33342 stain (Thermo Fisher Scientific, Waltham, MA, USA) was added to the culture
medium. After 10 min of incubation, the medium was removed, and cells were rinsed in phosphate
buffer solution. Analysis was performed immediately under fluorescence microscopy. The nuclei of
healthy cells are generally spherical, and the DNA is evenly distributed. During apoptosis, the DNA
becomes condensed, but this process does not occur during necrosis. Nuclear condensation can
therefore be used to distinguish apoptotic cells from healthy cells or necrotic cells. Hoechst 33342 binds
to DNA, and can be used to observe nuclear condensation [48]. To quantify the extent of apoptosis,
we calculated an apoptotic index (the ration of condensed nuclei to normal nuclei) from six images of
randomly selected fields of view for each treatment, as previously reported [49–51]. The apoptotic
index is expressed as the proportion of apoptotic nuclei (brightly fluorescent, condensed compared to
normal) relative to the total number of nuclei. These values are expressed as percentages.

4.9. Statistical Analyses

All values were expressed as means ± standard error of the mean (SEM). Statistical significance
was analyzed using an unpaired Student’s t-test following the F-test for equal variances. The differences
between groups were considered statistically significant at p < 0.05.
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