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Transcranial direct current stimulation (tDCS) is a promising adjuvant

treatment for persistent auditory verbal hallucinations (AVH) in Schizophrenia

(SZ). Nonetheless, there is considerable inter-patient variability in the

treatment response of AVH to tDCS in SZ. Machine-learned models have

the potential to predict clinical response to tDCS in SZ. This study aims to

examine the feasibility of identifying SZ patients with persistent AVH (SZ-

AVH) who will respond to tDCS based on resting-state functional connectivity

(rs-FC). Thirty-four SZ-AVH patients underwent resting-state functional MRI

at baseline followed by add-on, twice-daily, 20-min sessions with tDCS

(conventional/high-definition) for 5 days. A machine learning model was

developed to identify tDCS treatment responders based on the rs-FC

pattern, using the left superior temporal gyrus (LSTG) as the seed region.

Functional connectivity between LSTG and brain regions involved in auditory

and sensorimotor processing emerged as the important predictors of the

tDCS treatment response. L1-regularized logistic regression model had an

overall accuracy of 72.5% in classifying responders vs. non-responders. This

model outperformed the state-of-the-art convolutional neural networks

(CNN) model—both without (59.41%) and with pre-training (68.82%). It

also outperformed the L1-logistic regression model trained with baseline
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demographic features and clinical scores of SZ patients. This study reports

the first evidence that rs-fMRI-derived brain connectivity pattern can predict

the clinical response of persistent AVH to add-on tDCS in SZ patients with

72.5% accuracy.

KEYWORDS

transcranial direct current stimulation (tDCS), Schizophrenia, auditory verbal
hallucinations, resting-state functional connectivity, machine learning, treatment
response

Introduction

Schizophrenia (SZ) is one of the top 10 disabling disorders,
afflicting 1% of the world’s population (1). Antipsychotic
medications constitute the mainstream treatment for SZ.
Nonetheless, about 30% of the patients have treatment-resistant
symptoms, despite two or more antipsychotic treatments (other
than clozapine) (2). In such patients with treatment-resistant SZ,
clozapine is recommended as the drug-of-choice (3); however,
only about 30–60% of these treatment-resistant patients respond
to clozapine (4, 5). Several alternative avenues like brain
stimulation are being evaluated to treat this challenging clinical
condition in SZ. Several brain stimulation techniques like
Electroconvulsive Therapy (ECT) (6, 7), Transcranial Magnetic
Stimulation (TMS) (8, 9) and transcranial Direct Current
Stimulation (tDCS) (10, 11) offer promising adjuvant options
to treat persistent symptoms in SZ. Meta-analyses of brain
stimulation studies for treating persistent symptoms in SZ have
supported their clinical utility (7, 8, 10, 11).

Nonetheless, striking inter-individual variation in the
clinical response is common across all these brain stimulation
techniques. Hence, there has been recent interest in applying
data-driven, machine learning (ML) approaches to produce
models that can accurately predict each patient’s response
to brain stimulation treatments to enable better treatment
decisions (12–17). ML approaches are data-driven strategies that
make fewer assumptions than classical statistical methods and
focus on prediction instead of hypothesis testing; they identify
relevant patterns for the prediction task and often allow the
incorporation of expert knowledge (18).

Abbreviations: SZ, Schizophrenia; tDCS, Transcranial direct current
stimulation; AVH, auditory verbal hallucinations; rs-FC, resting-state
functional connectivity; LSTG, left superior temporal gyrus; CNN,
convolutional neural networks; ECT, Electroconvulsive Therapy;
TMS, Transcranial Magnetic Stimulation; ML, machine learning; EEG,
Electroencephalography; BOLD, blood-oxygen-level-dependent;
LASSO, least absolute shrinkage and selection operator; SVM, Support
Vector Machine; MDD, Major depressive disorder; HD-tDCS, High
definition Transcranial direct current stimulation; DLPFC, dorsolateral
prefrontal cortex; TPJ, temporoparietal junction; RCT, Randomized
Controlled Trial; MRI, Magnetic resonance imaging; AC-PC, Anterior
commissure and posterior commissure; CGI, clinical global impression
scores.

Earlier ML studies in SZ produced models that could
accurately predict response to ECT using pre-treatment resting-
state functional Magnetic Resonance Imaging (fMRI) (16),
resting-state electroencephalography (EEG) (15), or multi-
modal MRI data (14). Likewise, in Major Depressive Disorder
(MDD), other ML analyses produced tools that could predict
clinical response to neuromodulation treatment using baseline
parameters like (i) EEG power spectra (12), (ii) baseline
blood-oxygen-level-dependent (BOLD) activity (13), or (iii)
phenotypic (clinical), demographic, and neuropsychological
data (17). Structural MRI-derived models have also been
shown to predict treatment response following tDCS-paired
cognitive training in healthy older adults (19). These ML studies
used several different classification methods, including support
vector machine (SVM), extreme learning machine, linear
discriminant analysis, least absolute shrinkage and selection
operator (LASSO), gradient boosting algorithm, and random
forest classifier. These supervised methods identify patterns that
can effectively distinguish categories (like responders vs. non-
responders) and determine which treatment may be best for an
individual patient (18).

While several ML techniques may predict which patients
will benefit from ECT and TMS, very few consider identifying
patients who respond to tDCS. Most of these studies
have used ML to predict which MDD patients will benefit
from tDCS; we are unaware of any ML studies describing
learned models that predict clinical response to tDCS in
SZ patients. Note that tDCS is increasingly reported as
effective for treating positive (20, 21) and negative (10, 22)
SZ symptoms. As with other neuromodulation treatment
scenarios, considerable inter-individual variability in clinical
responses to tDCS in SZ is a major challenge. This has
motivated our research to understand which moderator
variables may potentially influence response to tDCS in
SZ; this may help to predict treatment effects and to
determine neurostimulation treatment parameters that can
achieve stable and durable (and thus clinically relevant)
results (22).

Clinically translatable differentiation of tDCS responders
from non-responders will help clinicians identify the
appropriate treatment for individual patients. Toward this
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effect, we propose utilizing ML approaches to produce a
model for predicting tDCS outcomes for SZ patients with
persistent auditory verbal hallucinations (AVH) based on
baseline resting-state functional connectivity (rs-FC) brain
imaging data. Motivating this ML approach, as noted earlier,
is the wide variability in patient biology which means different
patients require different neuromodulation protocols to
produce clinically meaningful therapeutic effects (23) thereby
necessitating a precision medicine approach (24). In this
context, rs-FC measures, which reflect statistically relevant
BOLD temporal connections among spatially distinct regions
within the human brain, present information that might
help predict a specific patient’s response to neuromodulation
therapies. ML algorithms can produce models that can
find patterns in intrinsic brain activity to develop rs-FC-
based models that distinguish treatment responders from
non-responders in psychiatric disorders (25, 26). As machine-
learned analyses can combine many features to predict an
outcome of clinical importance, they are suitable for the
translational goal of producing models to accurately predict
whether an individual patient will benefit from tDCS (25, 26).

In SZ, tDCS-induced reduction in AVH has been shown
to be associated with pathophysiologically relevant changes in
the rs-FC within the AVH-brain network (27). Hence, in this
study, we examined the feasibility of identifying SZ patients
with persistent AVH (SZ-AVH) who will respond to tDCS
treatment based on resting-state functional MRI (rs-fMRI)
acquired before treatment. Our study analyzes the baseline
rs-FC data of 39 SZ-AVH who received add-on treatment
with conventional tDCS (N = 31) or High-Definition tDCS
(N = 8). Conventional tDCS delivers very-low-intensity direct
current (typically ∼2 mA) to underlying cortical regions by
the placement of relatively large bio-conductive electrodes on
the scalp (28). High Definition tDCS (HD-tDCS) uses much
smaller electrodes (12 mm) arranged in a concentric 4 × 1 ring
configuration to achieve a more precise stimulation effect in
terms of focality (29) and polarity effects (30). The clinical data
of tDCS/HD-tDCS effects in these patients (37 of 39 patients)
were published earlier (31–33); however, the brain imaging data
of these patients have not been reported. In this study, using
state-of-the-art ML algorithms, we developed a model using the
pre-treatment rs-FC data that can predict the clinical outcome
(i.e., response vs. non-response) to add-on tDCS treatment.

Materials and methods

Patient description

This study included 39 SZ patients with AVH (SZ-AVH)
fulfilling DSM-IV criteria (34), right-handed, within the age
range of 18–48 years, accessing clinical services at the National
Institute of Mental Health And Neurosciences (NIMHANS),

Bengaluru, India. Details regarding illness onset, course,
and treatment response were collected from the patient and
at least one first-degree relative (primary caregiver). The
patients were recruited if they had refractory AVH, i.e., the
persistence of AVH without remission despite treatment with
at least one antipsychotic medication at an adequate dose for a
minimum period of 3 months. The patients were maintained
on the same medications throughout the study period. Also,
patients were screened for the following exclusion criteria:
psychiatric emergency, substance dependence, neurological
disease, uncontrolled medical condition, pregnancy/post-
partum status, and contraindication for tDCS (e.g., local lesion,
metal in the head). All patients had given informed written
consent as approved by the Institute Ethics Committee. The
Research Ethics Board at the University of Alberta approved the
secondary analysis of archived, de-identified data. We included
patients that had completed the tDCS treatment course for
whom the pre-tDCS MRI data was available. As we had to
discard five subjects due to the poor scan quality, the final study
sample comprised of 34 SZ patients (Figure 1).

Clinical assessments

Mini International Neuropsychiatric Interview Plus
(M.I.N.I.-Plus) was administered to ascertain the diagnosis of
SZ (35). SZ symptoms were assessed by Scale for Assessment

FIGURE 1

Study flow chart.
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of Positive Symptoms (SAPS) (36) and Scale for Assessment
of Negative Symptoms (SANS) (37). AVH was assessed by
the Auditory Hallucination subscale of the Psychosis Rating
Scale (PSYRATS-AH) (38). The primary outcome measure was
change in the severity of AVH. Treatment responders were
defined by at least a 25% reduction in the total PSYRATS-AH
score after tDCS (conventional/high-definition); otherwise,
patients were classified as non-responders.

Transcranial direct current stimulation
procedures

Thirty-nine SZ patients received either 10-sessions of
conventional tDCS (32) or HD-tDCS (31) for 5 days as
per previous descriptions further detailed in Supplementary
material. Both involved cathodal stimulation of the left
temporoparietal junction (L-TPJ) with a 2 mA current for
20 min. All of these patients tolerated the stimulation well and
none reported any notable side-effects.

Image acquisition

Imaging studies were done on the first day before initiating
the tDCS. Neuroimaging data were acquired from one of the
two 3.0 Tesla MRI scanners. Acquisition parameters are given
below (For scanner-wise distribution of study sample, refer to
Supplementary Table 1).

• MRI Scanner-1: Brain imaging data of 27 SZ patients
(conventional tDCS) were acquired using the Magnetom
Skyra 3T system (Siemens Healthineers, Erlangen,
Germany) with the following parameters: Structural MRI:
T1-weighted three-dimensional MRI was performed
(TR = 8.1 ms, TE = 3.7 msec, nutation angle = 8◦,
FOV = 256 mm, slice thickness = 1-mm without inter-
slice gap, NEX = 1, matrix = 256 × 256) yielding 165
sagittal slices. Resting-State fMRI: BOLD sensitive echo-
planar imaging was obtained using a 32-channel coil
yielding dynamic scans (153 scans for seven subjects
and 303 scans for twenty subjects). The scan parameters
were: TR = 2,000 ms; TE = 30 msec; flip angle = 78◦

degree; slice thickness = 3-mm; Slice order: Descending;
Slice number = 37; Gap = 0.75 mm; Matrix = 64 × 64,
FOV = 192 × 192, voxel = 3.0-mm, isotropic.

• MRI Scanner-2: Brain imaging data for 12 SZ patients
(11 HD-tDCS; 1 conventional tDCS) were acquired using
the Ingenia CX 3T system (Philips Healthcare, Best,
Netherlands) with the following parameters: Structural
MRI: T1-weighted three-dimensional MRI (TR = 6.5 msec,
TE = 2.9 msec, nutation angle = 9◦, FOV = 256 mm,
slice thickness = 1-mm without inter-slice gap, NEX = 1,

matrix = 256 × 256) yielding 192 slices. Resting-state
fMRI:—BOLD-sensitive echo-planar imaging (TR = 2,200
ms, TE = 28 ms, flip angle = 80◦, slice thickness = 3-mm,
slice order = ascending, slice number = 44, gap = 0.3 mm,
matrix = 64 × 62, FOV = 211 × 211, voxel = 3.3-mm,
isotropic) was obtained with a 32-channel coil yielding
275 dynamic scans.

Image processing

Both structural and functional neuroimaging data were
processed using the CONN toolbox (version 18b).1 The image
processing steps involved AC-PC correction, realignment,
slice-time correction, detection of outlier scans (ART-based;
thresholded at the 99th percentile), brain tissue segmentation
into gray matter/white matter/CSF, normalization to MNI space,
and smoothing (4-mm Gaussian kernel). After pre-processing,
visual quality control (QC) for MNI boundary registration was
performed for both structural and functional images. Wherever
the registration was poor—e.g., if brain areas fell outside the
MNI boundary or significant overlap between gross anatomy
was absent—registration was re-attempted, and the instance was
discarded if the boundary mismatch persisted.

In accordance with the recommended CONN-data
processing pipeline (39), first-level covariates for each subject’s
rs-fMRI data included head motion time-series (composite
motion threshold ≥ 2 mm) and ART-based “scrubbed”
artifact of global signal fluctuations (scan-to-scan global signal
z-value threshold ≥9). This was followed by aCompCor-based
denoising where linear regression of these confounding effects
was performed to obtain CSF and white matter masked blood
oxygen level-dependent (BOLD) time-series. Visual QC was
done for the effect of denoising. The resulting BOLD signal
was band-pass filtered (0.008–0.09 Hz), de-spiked and linear
detrended. For the clinical and pediatric population, up to 30%
scrubbing has been found to be permissible (40), so subjects
with ≥30% dynamics censored were excluded from further
analyses. Out of 39 subjects’ data, two subjects’ data had to
be discarded due to incorrigible boundary registration issues
and three subjects’ data were dropped because their rs-fMRI
had ≥30% invalid scans. The final study sample comprised
of 34 SZ patients.

Machine learning

Features were extracted using seed-based functional
connectivity with the left superior temporal gyrus (LSTG) as
the seed region (i.e., for computing the correlations between

1 https://web.conn-toolbox.org/
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this region and other brain regions) using a 15 mm radius
sphere around the MNI coordinate (–48, 0, 0) (41). The
choice of LSTG seed region is driven by two factors: (a) this
region’s role in auditory hallucination pathophysiology as
supported by neuroimaging evidence (41), and (b) it being
a close approximation of the site of cathodal direct current
stimulation (see Supplementary material). Additionally, this
chosen seed region is inclusive of brain areas like Insula—a
brain area implicated in salience—a feature crucial to the
pathophysiology of AVH, and thus likely to capture aberrant
connectivity patterns contributing to the experience of AVH.

We computed the Pearson correlation between the mean
time-series of seed region with individual time-series from
all other voxels in the brain. The correlation values were
then normalized using Fisher Z-transformation. This procedure
yielded a scalar feature value for each voxel of the brain,
generating a 3D feature matrix of size 91 × 109 × 91
for the single LSTG seed-point. We extracted feature values
from voxels belonging to apriori selected regions of the brain
[as determined by Harvard cortical and subcortical atlases]2

based on their neurobiological basis in the pathogenesis of
auditory hallucinations (42–45). These regions are listed in
Supplementary Table 1 with supporting references. We used
an L1 regularized logistic regression algorithm to train our
classifier with the default hyperparameters that are provided
by Scikit-Learn3, then evaluated the performance of the
model using five shuffled iterations of 10-fold balanced (for
class) cross-validation based on accuracy, specificity, sensitivity,
and precision. 10-fold cross-validation is a standard machine
learning technique where we randomly divide our observations
into 10 groups, or folds, of approximately equal size and class
distribution. The first fold is treated as a test set, and the model is
trained on the remaining 9 folds while making sure that no data-
leakage has occurred. As a state-of-art comparative method, we
also tried the convolutional neural network (CNN) algorithm on
whole-brain LSTG-connectivity first with, then without, transfer
learning (46–48). In order to directly compare the performance
of our models using paired t-test, we used the same metrics and
cross-validation folds for training and testing, as the proposed
L1 regularized logistic model.

CNNs have become a state-of-the-art method for solving
various prediction tasks in computer vision (48–50). However,
CNNs are often ineffective when trained on smaller datasets (51,
52). The generalization ability of the CNNs strongly depends
on the size of the training data and the CNN architecture’s
complexity. If we train a CNN model using smaller training
data with randomized weights initialization, the model might
have high variance and very high error on a test set. This
situation is prevalent in clinical problems; for example, in

2 http://www.cma.mgh.harvard.edu/fsl_atlas.html

3 https://scikit-learn.org/stable/modules/generated/sklearn.linear_
model.LogisticRegression.html

our case, we have data from only 34 tDCS-treated patients
for training and evaluating the model. This is why we used
the transfer learning method, anticipating it would help to
handle this problem. Transfer learning is often used to learn
a model for a “target” domain when we have a limited
number of training instances for that domain, but have many
training instances for a related “source domain.” We have
borrowed the transfer learning idea from deep learning-based
computer vision applications (53), which is now widely applied
in various domains. Researchers have pre-trained models with
natural photographs or medical images for applications such
as respiratory disease classification (54), early-stage skin cancer
(55), early glaucoma diagnosis (56), brain image (MRI and CT)
segmentation (57), cancer classification (58), acute intracranial
hemorrhage (59), musculoskeletal abnormality detection (60),
and cell segmentation (61). This motivated us to use the transfer
learning method of first pre-training our CNN models on a
disjoint dataset, and then subsequently continued to train them
on our target dataset of 34 tDCS subjects. This often produces
a better representation of fMRI features in lower layers of CNN,
which then would yield better initialization of model parameters
for training on the target task (62).

For pre-training, we used a disjoint dataset of resting-state
fMRI images from several cohorts, including healthy controls,
SZ, obsessive-compulsive disorder (OCD), and unaffected first-
degree relatives of SZ patients (FDR-SZ). The clinical global
impression scores (CGI) (63) of subjects during the time of
fMRI acquisition were used as labels for the pre-training task:
we assigned the 186 healthy controls and 62 FDR-SZ with CGI
score = 0 the label of 0, and assigned the 44 SZ and 149 OCD
patients who were at least moderately ill (CGI score >3) the label
of 1. This yielded a total of 441 instances: 248 and 193 for classes
0 and 1, respectively. We oversampled instances in the minority
class based on sex and age to balance the classes, producing 496
samples for pre-training. We chose CGI as the label for this
pre-training task to capture global changes in fMRI signals that
are associated with psychiatric illnesses in general. The choice
of CGI index is motivated by its ability to indicate clinically
meaningful subject status across psychiatric diagnoses and is
related to our target task of predicting the treatment response.
CGI score has been previously used to predict therapeutic
outcome of cognitive intervention in sample of youth with
heterogeneous psychiatric diagnoses (64). However, note that
CGI was used only for the pre-training task in a disjoint dataset,
as a way to “initialize” the parameters—and so this does not
directly influence the analyses of treatment effects in the study
cohort. (In general, the sample complexity only involves the
specific target data). Imaging and clinical assessments for these
cohorts, as well as the study subjects, were conducted in the same
medical center (NIMHANS). Note that this pre-training process
did not use any subjects from the target dataset.

Figure 2 shows our CNN architecture where each
convolution layer has 4 parameters depicted in order—kernel
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FIGURE 2

Convolutional Neural Network Models for prognosis prediction.

size, padding, input channel numbers and the number of filters.
This is followed by a max-pooling layer with 2 parameters—
kernel size and stride. After the feature extraction layers, we
linearized the extracted features and then passed to a fully
connected layer with 1 parameter—the number of output
units. The model takes the LSTG seed-point-based 3D Pearson
correlation matrix as a fixed input size of 91 × 109 × 91
for each subject.

After pre-training with 496 instances, we froze the
parameters in the first four layers of the feature extraction,
replaced the remaining decision layers, and then continued to
train on the target dataset and target label. We report results
for our CNN models—both with and without pre-training
(Table 2). For each CNN model, we used cross-entropy as a
loss function and used Adam optimizer with a learning rate
0.0001. To reduce the risk of overfitting, 50% of layers were
dropped out during the training time. Also, we used a maximum
of 1,000 epochs to train our models, with early-stopping criteria
for 100 epochs—i.e., we calculated the validation error after each
training epoch, and if the error was found to be not decreasing
for a span of 100 epochs, then the training state was reverted
back by 100 epochs. Models were implemented in PyTorch

(v1.0.1) (65), and trained on a computer with Intel(R) Xeon(R)
Platinum 8168 CPU, 32GB RAM and a 32GB Tesla V100-
SXM2 GPU.

Results

The study sample had an even split of 17 responders (change
in PSYRATS-AH score ≥ 25%) and 17 non-responders (change
in PSYRATS-AH score < 25%), thereby yielding a chance-
level prediction performance of 50%. Table 1 shows that the
two groups did not differ on age, gender ratio, duration of
untreated illness, total duration of illness, or baseline severity
of AVH. The responder group had significantly higher baseline
psychopathology (SAPS and SANS) scores compared to the
non-responder group.

The proposed L1-regularized logistic regression model,
over the LSTG connectivity features with voxels in brain
regions implicated in AVH pathophysiology, yielded superior
performance (accuracy = 72.5%) when compared to the classic
CNN model (accuracy = 59.41%; paired t-test, p = 0.003)
but was not significantly greater compared to the pre-trained
CNN model (accuracy = 68.82%; paired t-test, p = 0.470)
(Table 2). However, the CNN models, which incorporated LSTG
connectivity with whole-brain voxels showed a more stable
(lower variance in cross-validation) performance (Table 2).
Further, the L1 logistic regression algorithm with neuroimaging
features outperformed the L1 logistic regression algorithm
developed using only the baseline demographic and clinical
features (age, sex, years of education, duration of untreated
illness, total duration of illness, Olanzapine equivalent, and
baseline psychopathology scores) that provided an accuracy
of 66.2% ± 3.9% (refer to Supplementary Table 2 for
additional details).

We used Shapley additive explanation values (SHAP) (66)
to estimate the relative importance of features contributed by
individual brain regions. Figure 3 lists the important regions.
To identify these regions, we initially selected the 1,000 voxels
that had the top SHAP values. We then computed the percentage
contribution of each region—how many voxels from the selected
1,000 voxels belong to each region.

Discussion

The present study used ML to produce a tool to predict
improvement in persistent AVH with add-on tDCS therapy
in SZ patients. Based on resting-state fMRI data, we used
baseline (Pre-tDCS) rs-FC associated with LSTG to predict
treatment response to add-on tDCS using a L1-regularized
logistic regression, as well as more complex CNN. Two versions
of CNN models were developed—one without any pre-training
and another pre-trained on an independent dataset. In general,
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TABLE 1 Demographic table for responders (n = 17) and non-responders (n = 17).

Characteristic Responder
(M ± SD)

Non-responders
(M ± SD)

Statistic P

Age 30.06 ± 7.89 32.23 ± 7.47 t = –0.80 0.429

Sex (Male: Female) 7:10 12:5 χ2 = 1.90 0.167

Years of education# 14.11 ± 1.71 13.70 ± 1.67 t = 0.68 0.496

Duration of untreated illness (months)# 12.88 ± 23.86 9.35 ± 15.14 t = 0.49 0.620

Total duration of illness (months)# 105.88 ± 88.39 106.23 ± 71.16 t = –0.01 0.990

Olanzapine equivalent# 15.68 ± 8.98 22.70 ± 16.67 t = –1.53 0.136

Pre SAPS# 44.47 ± 19.66 31.06 ± 12.36 t = 2.38 0.023

Pre SANS# 38.35 ± 20.89 16.94 ± 12.58 t = 3.61 0.001*

Pre MADRS# 13.47 ± 7.01 10.25 ± 5.67 t = 1.44 0.159

Pre PSYRATS-AH 31.0 ± 4.74 29.82 ± 5.84 t = 0.62 0.536

Post PSYRATS-AH 16.17 ± 6.09 26.76 ± 6.10 t = –4.90 <0.001*

%Improvement$ 47.7 ± 17.0 10.4 ± 8.0

#Values of these variables were missing for the same one subject; we imputed those values using mean value imputation.
*Significance thresholded at 0.05 (two-tailed).
$[Pre RCT Score–Post RCT score/Pre RCT Score] or [Post RCT score–Post Open-label Score/Post RCT Score].

TABLE 2 Performance of models using 5 × 10-fold Cross-validation—Mean (standard error).

Accuracy Precision Sensitivity Specificity True
positive

True
negative

False
positive

False
negative

L1 regularized—Logistic
regression

72.5 (3.8) 74.5 (4.1) 78.0 (4.9) 67.0 (5.4) 13.0 (0.6) 11.2 (0.3) 5.8 (0.3) 4.0 (0.6)

CNN 59.41 (1.93) 59.43 (1.90) 58.82 (4.07) 60.0 (3.07) 10.0 (0.69) 10.2 (0.52) 6.8 (0.52) 7.0 (0.69)

Pre-trained CNN 68.82 (1.05) 69.63 (1.90) 68.24 (4.27) 69.41 (3.86) 11.6 (0.72) 11.8 (0.65) 5.2 (0.65) 5.4 (0.72)

Bold indicates the best performing model.

FIGURE 3

Percentage contributions of brain regions based on voxels with top 1000 SHAP values.

we observed that simpler logistic regression using a set of a priori
target ROIs yielded superior results with an accuracy of 72.5%,
precision of 74.5%, sensitivity of 78.0%, and specificity of 67.0%.

However, we observed CNN models to be more stable with
lower variance in prediction performance. This suggests the
usefulness of simple pathophysiology-driven models (in this
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context, focus on LSTG as it is the site of auditory processing)
for prognostic predictions in psychiatry.

The study findings show that a model that uses the rs-
FC of LSTG with the following set of regions—postcentral
gyrus, right inferior frontal gyrus, left middle temporal gyrus,
left supramarginal gyrus—can accurately predict treatment
response to add-on tDCS therapy for AVH. The most significant
contribution in tDCS response prediction is from rs-FC within
left STG and between left and right STG. This finding concurs
with existing neuromodulation research in SZ-AVH. Higher
cerebral blood flow to left STG is reported to distinguish
SZ-AVH TMS responders from TMS non-responders (67).
Tonically increased cerebral blood flow to left STG has been
observed to persist in SZ-AVH patients even after treatment
with TMS and reduction in AVH severity (68). Contextually,
note an auditory processing study—where participants were
required to detect voice embedded within short bursts of white
noise—revealed that increasing excitability of left STG (with
anodal tDCS) causes a significant increase in “false alarms” in
healthy controls (69). As we administered cathodal tDCS/HD-
tDCS to the area corresponding to left STG, it is possible that the
application of cathodal tDCS led to a suppression of pre-tDCS
hyperactivity of left STG; and this pre-tDCS activity level—
indicated by rs-FC of left STG seed with left STG—contributed
to the prediction of tDCS treatment response. Lastly, though
left STG activation is more prominent during the occurrence
of AVH—possibly suggesting that AVH could reflect internal
speech originating in the left temporal lobe (70)—activation of
its right homolog during AVH is also common (71).

Pre-tDCS rs-FC of LSTG seed with bilateral insular
cortex, especially the left insular cortex, made the second
highest contribution to predicting tDCS treatment response.
The role of the insula in AVH pathophysiology has been
well established in the literature (42, 72). AVH symptom-
capture studies have reported increased cerebral activation
in bilateral insula during the occurrence of AVH in SZ
patients (73–75). Intrinsic connectivity (Degree Centrality)
within the right insula, which is reflective of self-related
processing deficits, appears to be significantly reduced in
SZ-AVH compared to tinnitus patients and healthy controls
(76). SZ-AVH patients were shown to have higher fractional
Amplitude of Low-Frequency Fluctuations (fALFF) in insula
than SZ patients without AVH (77). Interestingly, left fronto-
temporoparietal tDCS was shown to reduce rs-FC of left
TPJ with left anterior insula; notably, the magnitude of
reduction of this TPJ-insula connectivity was correlated
with the reduction in AVH severity after tDCS in SZ
patients (27).

Other regions contributing to the tDCS response prediction
model include bilateral precentral and postcentral gyri; both
these regions show activation (73) and higher activation
likelihood estimate during the occurrence of AVH (43, 44).
The precentral gyrus is the site of the primary motor

cortex responsible for controlling voluntary movements, and
the supplementary motor cortex is responsible for planning
voluntary motor actions (78). Contextually, it is noteworthy that
both overt and covert speech (i.e., thinking) are amongst the
most complex of motor acts (79). A weak efference copy of the
intended overt and covert speech leads to corollary discharge
dysfunction with resultant AVH in SZ (80). Moreover, after add-
on treatment with fronto-temporoparietal tDCS, the strength of
efference copy is shown to improve in SZ-AVH (81); this may
mediate the therapeutic effects of tDCS (82). Thus, the relevance
of the precentral gyrus in predicting the clinical response of
AVH to tDCS may be understood in the context of the link
between the precentral gyrus and efference copy.

The postcentral gyrus, the site of the primary somatosensory
cortex (83), is responsible for integrating somatosensory
stimuli and memory formation since it also houses the
secondary somatosensory cortex (83). Note that the secondary
somatosensory cortex subserves source-monitoring (84), and
deficient source-monitoring underlies the pathogenesis of AVH
(85). Add-on fronto-temporo-parietal tDCS ameliorates source-
monitoring deficit in SZ patients with persistent AVH (86).
Besides, the somatosensory cortex receives somatic sensations
from the body, including sensory consequences of self-
initiated actions (83). Thus, alongside the precentral gyrus, the
somatosensory cortex is crucial to the execution of corollary
discharge phenomena, thereby integral to the neurocircuitry
of AVH (in addition to other brain areas involved in speech
generation, perception, and integration).

This study observed a lesser contribution from pre-tDCS
rs-FC of LSTG with right inferior frontal gyrus (IFG) to tDCS
response prediction. Right IFG has been implicated in AVH
pathophysiology in SZ patients (41, 75); moreover, rs-FC of right
IFG with left TPJ decreased following treatment with left fronto-
temporoparietal tDCS in SZ (although without correlating with
a reduction in AVH severity) (27). Perhaps the role of the right
IFG is integral to AVH pathophysiology in SZ and possibly
contributory to tDCS treatment response; this warrants a closer
examination by future studies. The left middle temporal gyrus
and left supramarginal gyrus made a smaller contribution to the
tDCS response prediction model. These regions have also been
implicated in AVH symptom-capture in fMRI studies (73) as
well as activation likelihood estimation studies (43, 44), besides
being close to the cathodal stimulation site of left TPJ (31, 32).

Note that, at baseline, tDCS responder and tDCS
non-responder groups did not differ on AVH severity.
However, tDCS responders had significantly more severe
positive and negative symptoms than tDCS non-responders.
Heterogeneity within the dataset [due to different tDCS
techniques (conventional and HD-tDCS) and MRI data
acquisition from 2 scanners] may be potential limitations (refer
to Supplementary Table 1).

We have pooled neuroimaging and clinical data from two
different modalities of the tDCS technique: conventional tDCS
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and HD-tDCS. We chose to do this because both of these
methods: (a) work on the same principle, i.e., application
of polarity-dependent weak intensity direct current to shift
resting membrane potential, (b) had comparable stimulation
protocol: cathodal stimulation of left TPJ, 2 mA current
strength, 10-session spread over 5 days, and (c) targeted the
same dysfunctional circuits/connectivity patterns in the brain,
i.e., those implicated in auditory verbal hallucination. Though
HD-tDCS is believed to overcome the pattern of diffused the
electric field observed in conventional tDCS; it should be
noted this belief is based on mathematical modeling and is
yet to be substantiated by neuroimaging, neurophysiological
and behavioral studies. Furthermore, it is still unclear from
the existing proof of concept studies whether this difference
in electric field distribution between these two techniques
yields any discernible difference in the clinical and behavioral
outcomes. Though treatment response prediction to HD-
tDCS and conventional tDCS certainly deserves a nuanced,
discernible approach, however, doing so was beyond the scope
of the present study. The findings of this study demonstrate
that baseline connectivity patterns of brain areas crucial to the
experience of hallucination can predict response to therapeutic
direct current stimulation techniques—both conventional tDCS
and HD-tDCS, albeit the methodological differences in the
respective stimulation protocol. Future studies should compare
neuroimaging, neurophysiological, behavioral, and clinical
measures across these two neurostimulation protocols to
establish whether AVH treatment response significantly differs
between these two.

Regarding the other potential limitation due to data from
two different scanners, we believe that such methodological
differences in data are anticipated with the advent of data
pooling across research communities and multi-site studies
in progress. Indeed, the success of our predictive models,
despite the heterogeneity in brain stimulation technique
and scanner type, indicates a promising and generalizable
prognostic approach across various tDCS methodologies.
Another limitation is that the study design didn’t have a placebo
arm and hence doesn’t delineate add-on tDCS effects from
the potential placebo effect. Future studies can utilize machine
learning approaches to take a more nuanced approach toward
the classification of treatment responses by further profiling
placebo response from add-on tDCS treatment response.

Recent reports comparing treatment response variability in
brain stimulation techniques (TMS and tDCS) have suggested
a lack of variability in treatment response between sham
and true groups to be a deterrent for precision medicine
for brain stimulation methods (87). As the report was
trans-diagnostic, and not substantiated by neurobiological
evidence, we request caution in drawing conclusions. Whether
“statistically insignificance” is always a proxy for “clinical
significance” in the context of treatment response can be
debated. For example, differences in the antipsychotic treatment

response profile between a non-responder and a partial
responder to antipsychotic treatment may not be statistically
significant. However, this distinction is clinically meaningful
enough to enlist about 20–30% of SZ patients as “treatment-
resistant AVH.” In our extensive experience with tDCS
(spanning a decade), we have noted distinct neurobiological
differences in tDCS treatment response profiles (82) which we
are continuing to investigate. The present study is one such
meaningful attempt that underscores neurobiological features
can predict tDCS treatment response. We acknowledge we
are nowhere near a bench to bedside approach, that would
enlist a substantial sample size, and intuitive algorithm(s)
employing readily accessible features like demographics, clinical
history, etc. alongside neurobiological features extracted from
affordable investigation modalities like EEG and fNIRS. This
proof-of-concept study aimed at demonstrating the feasibility
of rs-fMRI measures in predicting tDCS treatment response
encourages such research.

As noted earlier (88), effective optimization of stimulation
protocols for non-invasive brain stimulation techniques
requires accurately identifying which patients will respond to
the treatment. One such endeavor is a recent study proposing
electric-field modeling as a suitable method for characterizing
clinical response to tDCS (89). Our attempt likewise seeks to
elucidate observed variability in clinical response to tDCS. The
focus of this study was to examine the effect of add-on tDCS
on AVH. Hence, we chose those schizophrenia patients with
persistent AVH without remission despite treatment with at
least one antipsychotic medication at an adequate dose for a
minimum period of 3 months along lines of selection criteria
of an earlier study (90). Treatment-resistant schizophrenia
is defined as non-response to treatment trials with at least
two different antipsychotics of adequate dose and duration.
Thus, our choice of one adequate trial with antipsychotic
rather than two made more patients to qualify for this study;
hence our study findings are not generalizable to patients with
treatment-resistant schizophrenia.

Lastly, we are aware that studies similar to ours have worked
with sample sizes far larger than ours (≥ 45 subjects) (13, 14,
16). Given that small sample sizes often produce poor results—
especially when training neural network models with lots of
parameters—we used “transfer learning”: here we first trained
a CNN model on another large dataset (N = 441); we then
“transferred” this learned model to our domain, by then training
that model on data from our target domain. Though sample
size estimation for ML approaches can be tricky and is highly
influenced by the model complexity, dataset and the prediction
task in general, the standard accepted approach is to train on
pilot data and empirically examine the model performance. Our
empirical results demonstrate that our models have successfully
found patterns in the imaging features that can effectively
predict treatment response (outcome label). Of course, it is
always useful to explore how well this learned model will
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generalize, by exploring its performance on other datasets, on
different cohorts.

To the best of our knowledge, this is the first functional
neuroimaging study to use ML to produce a model that can
identify which SZ-AVH patients will or will not respond to tDCS
therapy. Wide variation in methodological parameters of tDCS-
fMRI integration studies—including the time of scan relative
to tDCS (pre, post, concurrent), tDCS parameters (intensity,
duration, number of sessions, montage, etc.), study design and
control condition, and fMRI method (BOLD, ASL, resting)—
warrant replication and application of computational models
to explain sources of variability (91). Perhaps future replication
in a larger sample will pave the way for neurobiologically
informed and pathophysiologically relevant profiling of tDCS
responders and non-responders based on targeted symptoms,
which in turn has the potential to advance individualized tDCS
therapy and contribute to precision medicine involving brain
stimulation techniques.
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