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Predicting eye movement patterns from fMRI
responses to natural scenes

Thomas P. O'Connell® ! & Marvin M. Chun'2

Eye tracking has long been used to measure overt spatial attention, and computational
models of spatial attention reliably predict eye movements to natural images. However,
researchers lack techniques to noninvasively access spatial representations in the human
brain that guide eye movements. Here, we use functional magnetic resonance imaging (fMRI)
to predict eye movement patterns from reconstructed spatial representations evoked by
natural scenes. First, we reconstruct fixation maps to directly predict eye movement patterns
from fMRI activity. Next, we use a model-based decoding pipeline that aligns fMRI activity to
deep convolutional neural network activity to reconstruct spatial priority maps and predict
eye movements in a zero-shot fashion. We predict human eye movement patterns from fMRI
responses to natural scenes, provide evidence that visual representations of scenes and
objects map onto neural representations that predict eye movements, and find a novel three-
way link between brain activity, deep neural network models, and behavior.
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he richness and complexity of the world inundates the

human visual system with rich sensory information. To

focus resources, selective attention directs perceptual and
cognitive processing towards important regions in spacel2. Eye
tracking has long provided affordable, reliable measurements of
overt spatial attention, and numerous computational models
describe the representations and computations necessary to guide
spatial attention (for reviews, see>~). Central to most spatial
attention models is a spatial priority map, a representation that
tags regions in space for allocation of attention®-8. Such spatial
priority maps accurately predict human eye movement
patterns>4,

Recently, spatial attention models using deep convolutional
neural networks (CNNs) have yielded state-of-the-art prediction
of human eye movement patterns (for a review see ref. °). CNNs
are goal-directed hierarchical computer vision models with
human-level performance in categorizing natural images of
objects®10 and scenes!!!2. The top ten models on the MIT Sal-
iency Benchmark (http://saliency.mit.edu/results_mit300.html),
which ranks spatial attention models according to their success in
predicting eye movement patterns, all rely on some kind of deep
neural network architecture.

Additionally, the past few years have seen increased focus on
zero-shot learning, a growing branch of machine learning!? and
functional neuroimaging!4-1¢ that strives to build models that
can generalize to predict novel information on the first exposure.
For example, a zero-shot object decoder!® accurately predicts a
pattern of fMRI activity evoked by an image of a duck, even
though no activity patterns associated with ducks were included
during training. Such zero-shot generalization demonstrates that
a decoding model has learned something inherent about the
underlying neural code, rather than a one-to-one mapping
between inputs and outputs.

Despite this rich predictive modeling literature, there are cur-
rently no techniques to predict eye movement patterns to natural
scenes from brain activity measurements in humans, either
directly or in a zero-shot fashion. To address this, participants
viewed brief presentations of natural scene images while under-
going fMRI scanning and then separately viewed the same images
while their eye movements were recorded. First, we reconstruct
behavioral fixation maps to show that eye movement patterns can
be predicted directly from activity patterns in visual brain areas.
Second, we translate between fMRI and CNN activity patterns to
reconstruct model-based spatial priority maps that predict eye
movement patterns in a zero-shot fashion. We use this model-
based approach to characterize the representations in visual brain
regions that map onto eye movements.

To our knowledge, this work is the first demonstration that eye
movement patterns can be predicted from fMRI activity in visual
brain areas in response to natural scenes. Consistent with func-
tional anatomy, model-based reconstructions of early/late CNN
layers from early/late visual brain areas, respectively, yielded the
best predictions. Decoding models that align fMRI activity to
CNN activity from scene- and object-categorization networks also
performed best, suggesting that visual representations underlying
scene and object recognition in the brain generalize to guide eye
movements. Overall, the findings demonstrate a three-way link
between visual processing in the brain, eye movement behavior,
and deep neural network models.

Results

Overview. We aimed to predict eye movement patterns to natural
scenes from visually-evoked fMRI activity. We pursued this in
two ways. Our first approach used conventional decoding tech-
niques to reconstruct fixation maps from fMRI activity patterns

to directly predict eye movements (Fig. 1a). Our second approach
was to align fMRI activity to a CNN-based spatial attention
model to predict eye movements in a zero-shot fashion (Fig. 1b,
).

To these ends, we conducted an fMRI experiment in which
eleven participants viewed brief presentations (250 ms) of natural
scene images and completed an old/new detection task.
Participants were instructed to fixate on a central fixation dot
throughout the experiment, and the short presentation time of
250 ms was chosen to ensure that participants did not have time
to initiate a saccade while the image was being presented.
Significant sensitivity (d’) in the detection task was observed
across participants (M =2.04, SEM =0.216, t;,=943, P=
2.71 x 1079), indicating participants were attentive to the stimuli
throughout the experiment. The following day, participants
viewed the same images while their eye movements were
monitored with an eye tracking camera. Eye movements were
recorded in a separate session to ensure that spatial representa-
tions evoked in the fMRI experiment were not contaminated by
co-occurring eye movements. All analyses were run in multiple
functionally localized regions of interest (ROIs).

Direct reconstruction of fixation maps. First, we reconstructed
fixation maps evoked in the behavioral experiment directly from
patterns of fMRI activity. Fixation maps at the full native image
resolution (600 x 800 px) were calculated from fixations made
300 ms to 2000 ms after stimulus onset, and a two-dimensional
Gaussian kernel (SD =20 px, determined via cross-validation)
was used to smooth the fixation maps. Principal component
analysis (PCA) was used to encode each fixation map as a set of
components that load onto eigen-fixation-maps. The dimen-
sionality of the fMRI activity was also reduced using separate
PCAs. For both fixation maps and fMRI activity, the PCA
transformation was learned on training data defined using leave-
one-run-out (LORQO) cross-validation, and the learned transfor-
mation was applied to both training and testing fixation maps.
Partial least squares regression (PLSR) was used to learn a linear
transformation between fMRI components and fixation map
components in a LORO cross-validated manner. This learned
transformation was then applied to fMRI components from the
left-out run to decode fixation map components for each trial in
that run. Finally, the decoded fixation map components were
multiplied by the transpose of the PCA transformation matrix to
reconstruct fixation maps. This pipeline was applied separately
for each participant and ROL

Reconstructed fixation maps predict eye movement patterns.
Reconstructed fixation maps were evaluated by predicting eye
movement patterns within individual participants and from an
independent external validation data set. For all eye movement
prediction analyses, we used behavioral fixation patterns made
300 ms to 2000 ms after stimulus onset. To assess the goodness of
fit between reconstructed fixation maps and eye movement pat-
terns, we used the Normalized Scanpath Salience (NSS) metric,
defined as the average value in normalized reconstructions at
fixated locations!”. Prior to calculation of NSS, reconstructions
are normalized to have zero mean and unit standard deviation.
Thus, NSS indicates, in standard deviations, how well a recon-
struction predicts fixated locations within an image. Due to the
normalization, significant prediction produces positive values and
null prediction produces values close to zero. NSS has some
advantages over other techniques to assess the fit between pre-
dicted and actual eye movement patterns, including balanced
treatment of false-positives and false-negatives, and sensitivity to

monotonic transformations!$.
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Fig. 1 Spatial reconstructions from fMRI activity predict eye movement patterns. a Fixation maps directly reconstructed from fMRI activity predict eye
movement patterns. Example fixation maps and reconstructed fixation maps are shown. Positive NSS values indicate that reconstructed fixation maps
predict eye movement patterns. In the Within-individual analysis, reconstructed fixation maps from one individual were compared to that same individual's
eye movement patterns. Error bars represent standard error of the mean across participants (n =11). In the internal validation analysis, reconstructions
were averaged across participants in a leave-one-subject-out cross-validated fashion and used to predict eye movements in the left-out participant. Error
bars represent standard error of the mean across participants (n=11). In the external validation analysis, group-average reconstructions from all
participants in the main experiment predicted eye movements from participants in an independent external validation data set'®. Error bars represent
standard error of the mean across participant in the external validation data set (n = 22). Significance was determined for all analyses using permutation
testing. b Model-based spatial priority maps reconstructed from fMRI activity predict eye movement patterns. Example computational spatial priority maps
and model-based reconstructions are shown. For all analyses, significance was determined using permutation testing. ¢ Smoothed and center-bias
corrected model-based reconstructions predict eye movements. The reconstructions were spatially smoothed using a 2D Gaussian kernel (SD = 24 px),
and center-bias correction was conducted by pointwise multiplying reconstructions with a centered 2D Gaussian kernel (600 x 600 px, SD = 600 px,
resized to image resolution). Example computational spatial priority maps and model-based reconstructions are shown. Significance was determined using
permutation testing. *P <1x 1072, **P < 4.55 x 10-3 (Bonferroni-corrected threshold), ***P <1x 1073

For all analyses, we assessed significance for NSS using
permutation testing. Within each ROI, reconstructions were
shuffled with respect to image labels 1,000 times. Permuted
reconstructions were used to predict fixation patterns to derive
empirical null distributions of NSS values for each ROL P is the
percentage of permutations in the null distribution with an NSS
greater than the true NSS.

First, we validated the reconstructions within individual
participants. NSS was calculated between each participant’s
reconstructions and their own eye movement patterns. We found

significant prediction of eye movement patterns within-individual
participants using reconstructions from V1 (M = 0.0794, SEM =
0.0306, P<1x1073), V2 (M=0.122, SEM =0.0486, P<1x
1073), V3(M = 0.0966, SEM = 0.0332, P< 1 x 1073), and hV4(M
=0.0662, SEM = 0.0297), (Fig. la).

For internal validation, group-average reconstructions were
computed in a leave-one-subject-out (LOSO) cross-validated
manner. NSS was calculated between the group-average recon-
structions and the left-out participant’s eye movements to assess
how well group-average reconstructions predicted an unseen
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individual’s fixation patterns. We found significant prediction of
eye movement patterns in left-out participants using group-level
reconstructed fixation maps from V1 (M = 0.162, SEM = 0.0174,
P<1x107%), V2 (M=0.0.282, SEM = 0.0234, P<1x107%), V3
(M =0.236, SEM =0.0201, P<1x107%), and hV4 (M =0.129,
SEM = 0.0171, P =1 x 10-3), (Fig. 1a).

As a stronger test of generalizability, we used reconstructed
fixation maps averaged across all participants in the fMRI
experiment to predict eye movements made by an independent
set of 22 participants'®. We evaluated how well the group-level
reconstructions predict eye movement patterns in novel indivi-
duals by calculating NSS for each of the 22 participants in the
external validation data set. Consistent with the within-
participant and internal validation analyses, we found that eye
movements in this independent set of participants were predicted
by group-average fixation map reconstructions from V1 (M=
0.185, SEM =0.0156, P<1x1073), V2 (M =0.365, SEM =
0.0186, P<1x1073), V3 (M=0.230, SEM =0.0150, P<1x
10-3), and V4 (M = 0.127, SEM = 0.0114, P< 1 x 10-3), (Fig. 1a).
Example group-average fixation map reconstructions can be seen
in Fig. 2.

Spatial attention model definition. Next, we used a computa-
tional spatial attention model (saliency model) to reconstruct
model-based spatial priority maps from fMRI activity. Our core
scene-based model was VGG16-Places365, a goal-directed CNN
with a deep architecture!® trained for scene categorization! 12,
This architecture consists of 18 spatially-selective layers that
compute alternating convolution and non-linear max-pooling
operations (Fig. 3a). Representations within these layers are
organized along the two spatial dimensions of the image and a
feature-based dimension capturing channels (filters, kernels) that
through learning have become tuned to different visual features
that support scene categorization. These representations can be

thought of as a stack of two-dimensional feature maps, each of
which shows where a different visual feature is present in an
image (Fig. 3b). The spatially-selective layers feed into two
spatially-invariant fully-connected layers, which in turn provide
input to a softmax layer that computes a probability distribution
over a set of 365 scene category labels.

Our spatial attention model takes unit activity from the five
pooling layers, averages across the feature-based channel dimen-
sion, resizes the resultant maps to the image resolution (600 x
800 px), and normalizes values across pixels to zero mean and
unit standard deviation (Fig. 3c). Layer-specific activity maps are
averaged across layers to produce an overall spatial priority map
for each image (base model, Fig. 3d). This approach of linearly
combining unit activity sampled from across the hierarchy in a
CNN was inspired by the DeepGaze I1?. To ensure prediction of
eye movement from model-based reconstructions is zero-shot, we
did not use any eye movement data to train the spatial attention
model (but we report a separate model that incorporates eye
movement data in Supplementary Methods, Supplementary
Figure 1).

Spatial attention models commonly include spatial smoothing
and center-bias correction. Smoothing was accomplished by
blurring the final spatial priority map with a 2D Gaussian kernel
(SD=24px, determined via leave-one-subject-out cross-
validation on the internal validation data set). Center-bias
correction was accomplished by pointwise multiplying the final
spatial priority map with a 2D 600 x 600 px Gaussian kernel
(SD =600, chosen to match MIT center model) resized to the
image resolution of 600 x 800 px. (Fig. 3e).

Spatial priority maps computed by our base model predict
image-specific eye movement patterns in two independent data
sets (Fig. 3f). NSS values were greater than null distributions
generated by permuting image IDs relative to spatial priority
maps for both our internal validation data set of 11 participants
(M=1.14, SEM =0.0249, P<1x103) and our external

Fixations

Stimuli

Fixation

maps

\"al
(]
c
o
©
2

2 V2
c
o
o
[
o
©
1S

_g V3
T
X
[T

hv4

Z-score Z-score Z-score

Z-score

Fig. 2 Fixation maps reconstructed directly from fMRI activity in early-visual ROIs. Example stimuli, fixation maps, and reconstructed fixation maps from
early-visual ROls. Each column corresponds to an image that was shown to participants during the fMRI experiment. Fixation maps were averaged across
all participants in the external validation data set (n =22) and fixation map reconstructions were averaged across all participants in the main experiment

(n=11)
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Fig. 3 Computational model of spatial attention. a A hierarchical CNN trained for scene categorization parametrized each image from pixel-space into a
computational feature-space'®-12. b Unit activity was extracted from the five pooling layers to sample activity from across the CNN hierarchy. ¢ We

averaged across the channel dimension in each layer, resized the resultant activity map to the full image resolution (600 x 800 px), and normalized each
map across spatial locations to have zero mean and unit standard deviation. This process produced a single activity map for each layer. d We averaged
activity maps across layers and renormalized the resultant maps to get computational spatial priority maps for each image. This is the base version of our
model. e To further boost predictions, we applied spatial smoothing and center-bias correction, then renormalized the resultant maps. This is the smoothed
and center-bias corrected version of our model reported throughout the paper. f The computational spatial attention model predicts eye movement

patterns. Spatial smoothing and center-bias correction both improve prediction performance, and the best performance is achieved when both additional
operations are included. Equivalent results were found using the model to predict eye movements in our internal (n=11) and external (n = 22) validation
data sets. g Prediction performance for spatial attention model results and three benchmark models. The MIT Center Model was downloaded from the MIT
Saliency Benchmark website (http://saliency.mit.edu/results_mit300.html). Our Center Model is defined as a 2D Gaussian of 600 x 600 px (SD = 600
px) linearly interpolated to the image resolution of 600 x 800 px. The Gold Standard model is defined as the group-average fixation map for a given image
in the opposite validation set. Group-average fixation maps from the internal validation set were used to predict individual's fixations in the external

validation set and vice versa. Error bars represent standard error of the mean across participants in the internal (n =11) or external (n = 22) validation sets

validation data set of 22 participants (M = 1.21, SEM = 0.0123, P
<1x1073). Smoothing and center-bias correction individually
improve prediction performance relative to the base model
(Fig. 3f), and the best performance was achieved when both were
included (Miperna = 1.46, SEM = 0.0350, P <1 x 1073 Mpxeernal
=1.45, SEM = 0.0215, P< 1 x 1073). We show all reconstruction
results for the base version of the model without smoothing or
center-bias correction and for the smoothed and center-bias
corrected version of the model.

As benchmarks, we computed NSS for a gold standard model,
the 2D Gaussian model used for center-bias correction, and the
MIT Saliency Benchmark center-bias model (http://saliency.mit.
edu/results_mit300.html). The gold standard model predicts eye
movements for a left-out individual using the group-average
fixation maps for all participants in the opposite data set (average
internal validation fixation maps were used to predict external
validation fixation patterns and vice versa). We find gold standard
performance greater than our spatial attention models (Mipternal
= 2.86, MExternal = 3.01), and performance less than the spatial
attention model for our center-bias model (Mipterna = 1.04,

MEyierna = 0.961) and the MIT center-bias model (Minterna =
1.02, Mixierna = 0.944) (Fig. 3g).

Model-based reconstruction of spatial priority maps. To assess
whether our spatial attention model captures visual representa-
tions in the brain that relate to eye movements, we developed a
model-based decoding pipeline to reconstruct spatial priority
maps from patterns of fMRI activity. We learned linear mappings
between patterns of fMRI activity and patterns of CNN activity in
each layer, used these mappings to transform fMRI activity into
the same feature space as CNN activity, then applied our spatial
attention model to the CNN-aligned fMRI activity (Fig. 4). This
general procedure of transforming fMRI activity into a compu-
tational model parameter space follows other zero-shot studies
in the domains of object categorization!> and semantic
meaning!416,

Using LORO cross-validation, we reduced the dimensionality
of both CNN activity and fMRI activity using separate PCAs. We
then used PLSR to learn a linear transformation between fMRI
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Fig. 4 Model-based pipeline to reconstruct spatial priority maps. a fMRI was used to measure evoked activity for each image in the experiment. Each image
was parameterized into a CNN feature-space. We learned the transformation between fMRI activity and CNN activity separately for each CNN layer using
PLSR in a LORO cross-validated fashion. These learned transformations were applied to left-out data to align fMRI activity to CNN activity from each layer.
b To reconstruct spatial priority maps from CNN-aligned fMRI activity, we applied the spatial attention model developed on computational CNN activity.
CNN-aligned fMRI activity from each layer was averaged across the feature-based dimension to produce reconstructed layer-specific activity maps, which
were then averaged together to produce a reconstructed spatial priority map for each image (base reconstruction). In a separate analysis, the
reconstructions were smoothed with a 2D Gaussian kernel (SD = 24 px) and pointwise multiplied by a centered 2D Gaussian kernel (600 x 600 px, SD =
600 px, resized to image resolution of 600 x 800 px) to account for center-bias (smoothed and center-bias corrected reconstruction)

components and CNN components, which in turn was used to
transform fMRI components into the same space as CNN
components. The transformed fMRI activity was multiplied by
the transpose of the CNN PCA transformation to reconstruct the
full space of CNN unit activity. This pipeline was applied
separately for each participant, ROI, and CNN pooling layer,
producing five sets of CNN-aligned fMRI activity for each image
in each ROI in each participant (Fig. 4a).

This decoding approach can be viewed as a model-based
alignment operation to express fMRI activity from each
participant in a common CNN-defined feature space, varying

along the two spatial dimensions of the input stimuli and one
feature-based dimension. Such an operation is useful, for our
purposes, because it causes fMRI activity to explicitly vary along
image-centered spatial dimensions, allowing us to extract spatial
representations encoded in the fMRI activity. The specific CNN-
defined feature space to which fMRI activity is aligned represents
a hypothesis for the format of representations captured in fMRI
activity. Additionally, this procedure allows for model-based
pooling of fMRI responses at the group level.

Next, spatial priority maps were calculated from the CNN-
aligned fMRI activity using the same spatial attention model
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defined above (Fig. 4b). Within each layer, CNN-aligned fMRI
activity was averaged across the feature-based channel dimen-
sion to calculate a layer-specific spatial activity map. These
layer-specific activity maps were averaged together and
renormalized to have zero mean and unit standard deviation
to reconstruct an overall spatial priority map for each image
(base reconstruction). In a separate analysis that accounts for

smoothness and center-bias in human fixation patterns, the
layer-averaged spatial reconstructions were spatially smoothed,
corrected for center-bias, and then renormalized to have zero
mean and unit standard deviation (smoothed and center-bias
corrected reconstruction). Example model-based reconstruc-
tions for the base model and smoothing/center-bias corrected
model can be seen in Fig. 5.
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Fig. 5 Model-based reconstructions from early-visual ROls. a Example stimuli, fixation maps, computational spatial priority maps and model-based priority
map reconstructions from early-visual ROls. Fixation maps were averaged across all participants in the external validation data set (n = 22), and model-
based reconstructions were averaged across all participants in the main experiment (n =11). b Example computational priority maps with smoothing and
center-bias correction and model-based reconstructions with smoothing and center-bias correction. Model-based reconstructions were averaged across all

participants in the main experiment (n=11)

NATURE COMMUNICATIONS | (2018)9:5159 | DOI: 10.1038/541467-018-07471-9 | www.nature.com/naturecommunications


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Model-based reconstructions predict eye movement patterns.
Individuals’ model-based reconstructions predicted their own eye
movement patterns on the same images when tested the following
day out-of-scanner (Fig. 1b). All significant predictions of eye
movement patterns from model-based reconstructions are zero-
shot, as we were careful to not use any eye movement data to
train the spatial attention or decoding models. Significance for
model-based reconstructions was assessed in the same manner as
with reconstructed fixation maps using permutation testing.
Significant NSS values were found for reconstructions from V1
(M = 0.0827, SEM = 0.0215, P< 1 x 1073), V2 (M = 0.0938, SEM
=0.0167, P<1x1073), V3 (M =0.0860, SEM = 0.0209, P< 1 x
107%), and hV4 (M =0.0911, SEM =0.0194, P<1x107). We
found analogous results for reconstructions that were smoothed
and corrected for center-bias (Fig. 1c): V1 (M =0.111, SEM =
0.0320, P<1x1073), V2 (M=0.123, SEM =0.0223, P<1x
1073), V3 (M =0.113, SEM = 0.0288, P< 1 x 1073), and hV4 (M
=0.128, SEM = 0.0250, P< 1 x 1073).

Next, we found that group-level spatial priority map reconstruc-
tions generalize to predict a left-out participant’s eye movements. In
a LOSO cross-validated manner, we computed group-average
model-based reconstructions for each image then predicted the left-
out participant’s eye movement patterns. Based on empirically
estimated null distributions, prediction of eye movement patterns in
a left-out participant using group-average reconstructions was
significant in V1 (M =0.193, SEM = 0.0146, P< 1 x 10-3), V2 (M
—=0.238, SEM=00111, P<1x1073), V3 (M=0239, SEM =
0.0170, P< 1 x 10-3), and hV4 (M = 0.248, SEM = 0.0156, P< 1 x
10-3) (Fig. 1b). Consistent results were observed for smoothed and
center-bias corrected reconstructions (Fig. 1c): V1 (M =0.254,
SEM =0.0189, P<1x1073), V2 (M=0.310, SEM =0.0173, P<
1x107%), V3 (M=0311, SEM =0.0223, P<1x107®), and hV4
(M =0.334, SEM = 0.0194, P< 1 x 1073),

To further test generalizability, we used model-based reconstruc-
tions averaged across all participants to predict eye movements in
the external validation data set. Overall group-average reconstruc-
tions were calculated using all participants in the fMRI experiment,
and NSS was calculated for each of the 22 participants in the
external validation data. Based on empirically estimated null
distributions, eye movements in this independent set of participants
were significantly predicted by group-average model-based recon-
structions (Fig. 1b) from V1 (M =0.177, SEM = 0.0106, P< 1 x
1073), V2 (M =0.248, SEM =9.35x 1073, P<1x1073), V3 (M=
0.247, SEM =9.02 x 1073, P< 1 x 10~%), and hV4 (M = 0.267, SEM
=848 x 1073, P< 1 x 1073). Again, similar results were observed for
smoothed and center-bias corrected reconstructions (Fig. 1c): V1
(M = 0233, SEM = 0.0122, P<1x1073), V2 (M =0.303, SEM =
0.0118, P<1x10-3), V3 (M =0.311, SEM = 0.0115, P< 1 x 10-3),
and hV4 (M =0.339, SEM =9.98x 1073, P<1x1073).

Our primary aim was to predict eye movement patterns in a
zero-shot fashion without including eye movement data any-
where in the spatial attention model or decoding pipeline, so
center-bias was modeled as a centered 2D Gaussian. When
center-bias was based on an empirical fixation distribution,
predictions from model-based reconstructions improved (Sup-
plementary Figure 2, Supplementary Figure 3).

Mapping the CNN hierarchy to brain anatomy. Next, we
mapped the hierarchical structure in the spatial attention model
onto brain anatomy by predicting eye movement patterns using
model-based spatial reconstructions of each individual layer in
the CNN. Prediction significance was determined separately for
each layer, ROI, and validation type using permutation testing.
These analyses were conducted separately on unsmoothed and
smoothed layer reconstructions.

The hierarchy across layers in the spatial attention model maps
onto the hierarchy of visual brain regions. Prediction from V1
activity was best for reconstructions of CNN layers pool2 and
pool3, V2 predictions were best for reconstructions of CNN
layers pool2, pool3, and pool4, and a roughly linear increase in
prediction performance across CNN layers was observed for V3
and hV4 (Fig. 6). We found this relationship (ANOVA,
interaction between layer and ROI) within individuals for
unsmoothed reconstructions (F(40,400) =1.85, P=1.83 x 1073)
and to a weaker degree in smoothed reconstructions (F(40,400)
=1.55, P=0.0203). The interaction between layer and ROI was
stronger for all reconstructions in the internal validation
(Unsmoothed: F(40,400) =27.05, P<2x 1076, Smoothed: F
(40,400) =28.55, P<2x10716) and external validation
(Unsmoothed: F(40,840) =42.06, P<2x 10716, Smoothed: F
(40,840) = 55.27, P < 2 x 10719) analyses (Fig. 6).

Scene and object CNNs yield most predictive reconstructions.
Finally, we test how spatial priority map reconstructions and eye
movement predictions are affected by the training regime for the
CNN model. CNN weights are affected by the stimuli on which
they are trained, resulting in different features optimized to
support different types of visual recognition. Thus, CNN activity
will map onto brain representations differently depending on the
type of visual stimuli used for training. To test which type of
visual features best characterize representations that predict eye
movements, we use CNNs with different goal-directed training
regimes as the basis-space to which fMRI activity is aligned. In
addition to the scene-categorization CNN used in our primary
analyses, we used models with identical VGG16 architectures
trained for object-categorization!®, face identification?!, and
random-weights models with no goal-directed training (Fig. 7a).
While the dimensionality of the resultant CNN units are identical
in all cases, the different training regimes result in different sets of
learned features optimized to support a particular type of visual
processing. The CNN with random-weights controls for how well
features extracted by the deep architecture map onto eye move-
ment patterns in the absence of goal-directed training. The full
model-based decoding pipeline was run separately for 20 random
models, and NSS values were averaged across models. The ana-
lyses for all CNN types was identical to the model-based pipeline
outlined above. Prediction results for computational spatial
attention models using each CNN can be seen in Supplementary
Figure 4.

Models using CNNs trained for scene- and object-
categorization provided the highest model-based prediction
performance from fMRI activity, suggesting that features
optimized to support recognition of natural scenes and objects
could generalize to guide representation of spatial attention and
eye movements. Within participants, we found main effects of
CNN training regime on prediction performance for base
reconstructions from V1 (F(3,30) =7.60, P=6.36x107%), V2
(F(3,30) =7.25, P=8.48 x 107%), V3 (F(3,30) = 5.21, P=5.12x
10-3), and hV4 (F(3,30) =7.51, P=6.87 x 107%) (Fig. 7b). The
same main effects were found for smoothed and center-bias
corrected reconstructions from V1 (F(3,30) =7.60, P=6.36 x
107%), V2 (F(3,30) = 7.25, P=8.48 x 107%), V3 (F(3,30) = 5.21, P
=5.12 % 10%), and hV4 (F(3,30) = 7.51, P = 6.87 x 10~%). Analo-
gous patterns of results were present across models in the internal
and external validation analyses (Fig. 7¢).

Discussion

We demonstrate that eye movement patterns can be predicted
from fMRI activity evoked by natural scenes. Using a direct
decoding approach, we predicted eye movement patterns with
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Fig. 6 Layer-specific reconstructions predict eye movement patterns. We see a correspondence between the layer hierarchy in the CNN and the visual
hierarchy in the brain, such that reconstructions of early/late layers from early/late visual regions, respectively, best predict eye movement patterns.
Spatial reconstructions for each layer were calculated by averaging across the feature-based channel dimension in CNN-aligned fMRI activity. Results are
shown for unsmoothed and smoothed reconstructions. All layers for all shown ROls are significant at P<1x 1073 (determined using permutation testing).
Error bars represent standard error of the mean within the current data set (n =11, Within-individual and Internal validation) or within the external

validation data set (n = 22, External Validation)

fixation maps reconstructed directly from fMRI activity. Using a
model-based decoding approach, we predicted eye movement
patterns with reconstructions of spatial priority maps from a
CNN-based model of spatial attention. We transformed fMRI
activity into the same space as CNN unit activity and recon-
structed spatial priority maps from CNN-aligned fMRI activity.
Model-based reconstructions achieved zero-shot prediction of eye
movement patterns, as the decoding models were never trained
on fixation patterns.

Our model-based reconstruction approach allowed us to probe
the nature of representations in the brain that predict eye
movements to scenes. We mapped the hierarchical structure of
the CNN-based spatial attention model onto brain anatomy
across early-visual areas. There was a representational gradient
between visual brain regions and the layer whose reconstructions
provided the best prediction of eye movements. Reconstructions
of early/late CNN layers from fMRI activity in early/late early-
visual regions, respectively, best predicted eye movements.
Additionally, we varied the training regime of the CNN to which
fMRI activity is aligned and achieved the best prediction per-
formance using CNNss trained for scene and object categorization.
Opverall, we validate techniques to measure spatial representations
in the brain and link these representations to eye movement
behavior, establishing a three-way link between behavior, brain
activity, and artificial neural networks.

We advance the use of multivariate fMRI reconstruction to
access visual and behavioral representations evoked by natural sti-
muli in several manners. First, we show that multivariate behavioral
patterns (eye movements) can be directly reconstructed from fMRI

activity evoked by natural scenes. To date, applications of fMRI
reconstruction have been primarily focused on reconstructing the
input stimulus?226 and more recently computationally-defined
representations!>1027-32, Here, we reconstruct fixation maps using
the same techniques previously applied to reconstruct visual sti-
muli?®. As a further advance, we validate a model-based decoding
pipeline that achieves zero-shot prediction of eye movement pat-
terns. Such zero-shot (also called generic, universal) decoding of
fMRI activity to novel content (not used in training) has been
demonstrated for object categorization!® and semantics'1°. Here,
we extend this general approach to predict a complex behavior from
brain activity without including any measurements of that behavior
during training.

Our model-based approach tests how well a spatial attention
model captures representations in visual brain regions that cor-
respond to eye movements, providing a crucial technique to
validate computational models of spatial attention. Eye move-
ments to natural scenes are the standard behavioral measure used
to validate spatial attention models>*. However, there are no
widely used techniques to validate these same models using brain
activity measurements. Going beyond behavioral prediction of
eye movements, we provide a brain-based measure to adjudicate
between different models. The CNN used as the intermediate
basis-space for the model-based decoding pipeline represents a
hypothesis for the format of representations in visual brain
regions that map onto eye movements. As a proof-of-concept for
this approach, we find the best prediction of eye movements
when CNNis trained for scene- and object-categorization are used
as the basis-space, suggesting that representations optimized only
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Fig. 7 Eye movement prediction performance depends on the training regime for the CNN to which fMRI activity is aligned. a To assess the features that
support guidance of eye movements in the brain, we used CNNs with identical VGG-16 architectures pre-trained for different types of visual categorization
as the foundation for our model-based decoding pipeline. In addition to the scene-categorization CNN used in our primary analyses (VGG-Places365)" 12,
we used a CNN trained for object categorization (VGG-16)'0, a CNN trained for face identification (VGG-Face)?!, and a CNN with no goal-directed training
(VGG-16 with random weights). The dimensionality and depth of the units in each CNN are identical, but the different training regimes result in different
sets of learned features optimized to support different types of visual recognition. b Within-individual prediction performance from model-based
reconstructions according to the type of pre-training the CNN received. Results are shown for the base reconstructions and the smoothed/center-bias
corrected reconstructions. We observe a main effect of CNN type in the same regions that provide the best prediction performance. CNNs trained for
scene- and object-categorization provided the best prediction performance, suggesting that the same features that support visual categorization of natural
stimuli in the brain may generalize to guide spatial attention to natural scenes. *P<1x 1072, **P < 4.5 x 10-3 (Bonferroni-corrected threshold), ***P <1x
1073. ¢ Eye movement prediction performance for all model-based reconstructions in all ROls. Prediction performance for direct fixation map
reconstructions is included for comparison. Error bars represent standard error of the mean within the current data set (n =11, Within-individual and
Internal validation) or within the external validation data set (n= 22, External validation). Significance for all analyses was assessed using permutation
tests. Predictions from V1, V2, V3, and hV4 were significant for all analyses (P < 0.001)

to support natural visual recognition can generalize off-the-shelf
to guide spatial attention and eye movements.

We took a predictive decoding approach instead of using RSA
or encoding models. Decoding models are uniquely suited to
make item-level predictions of behavior from brain activity33.
Our aim here was to predict eye movements to individual natural

scenes from brain activity in order to maintain continuity with
the spatial attention modeling literature, where prediction of eye
movement patterns is the primary metric used to assess the
validity of a given model. The brain-based predictions we present
here are much lower in magnitude than predictions from com-
putational spatial attention models (Supplementary Figure 5).
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Such small but reliable effect sizes are common in fMRI. The goal
of predicting eye movement patterns from brain activity is not to
improve prediction above and beyond the levels achieved using
image-computable spatial attention models, but, especially using
our model-based approach, to provide a scientific tool to char-
acterize the representations and computations that guide eye
movement behavior.

The current experiment builds on recent work finding corre-
spondences between representations in goal-directed artificial
neural networks and brain activity!>34-42, A key finding from
this body of work is that similar gradients are found in repre-
sentations in CNNs and along the ventral stream. Activity from
early/late CNN layers fits brain activity from areas early/late in
the ventral stream or evoked earlier/later in time, respectively.
The correspondence between representations of natural stimuli in
CNNs and biological brains has now been replicated across
species (humans and macaques), imaging techniques (multi-unit
recordings, fMRI, MEG, EEG), analysis techniques (encoding
models, RSA, decoding models), and stimulus type (objects and
scenes) (see ref. 43745 for reviews).

Our findings show that representations in goal-directed CNNs
map onto representations in the human brain in a way that is
meaningful for visual behavior. We find the same previously-
reported correspondence between the hierarchies in CNNs and
along the ventral stream when using layer-specific reconstruc-
tions to predict eye movements, demonstrating a three-way link
between brain activity, artificial neural networks, and behavioral
measurements that has been absent from the literature. Estab-
lishing such three-way links is essential to understand the com-
putational mechanisms in biological brains that give rise to the
mind and behaviore. Moving forward, our approach can be
applied to assess how features represented in artificial neural
networks trained for a variety of goal-directed tasks might sup-
port other behaviors and cognitive processes, such as visual
categorization and imagery, memory encoding and retrieval, and
feature-based attention.

We see the best prediction of eye movement patterns from
fMRI activity in early-visual areas and not downstream areas such
as IPS and sPCS which are active during online shifts in spatial
attention. We believe this result stems from predicting out-of-
scanner eye movements from fMRI activity evoked by brief (250
ms) scene presentations. Given the brief presentation times and
lack of an explicit attentional task, it is likely that IPS and sPCS
were less engaged than if participants searched or freely viewed
the scenes. Regions in parietal and frontal cortices tend to be most
engaged when spatial attention is being actively shifted*”#3, Due
to the short presentation times, such shifts were not possible
during the fMRI experiment, suggesting that the spatial repre-
sentations reconstructed here are stimulus-driven representations
of spatial priority. In future work, we will explore how our
spatial reconstructions for natural scenes are affected by task-
contexts that explicitly demand covert and overt shifts in spatial
attention.

In sum, we show that eye movement patterns to natural
scenes can be predicted from fMRI activity in visual brain
regions both directly and in a zero-shot fashion. These results
validate two techniques to access spatial representations in the
human brain that correspond to allocation of spatial attention.
We demonstrate that features represented in goal-directed
CNNs map onto representations in early-visual areas that pre-
dict eye movement patterns, and provide evidence that visual
representations optimized for scene and object recognition
generalize to guide spatial attention. We see great potential for
our model-based technique moving forward to find three-way
links between behavior, computational models of cognition, and
biological brains.

Methods

fMRI participants. Fifteen participants from Yale University and the surrounding
community underwent fMRI scanning while viewing natural scene images and
completing a behavioral old/new recognition task. One participant was excluded
because they withdrew from the study early and three participants were excluded
for excessive motion, leaving 11 for analysis (6 females, ages 19-36, mean age =
25.27). Excessive motion for individual runs was defined a priori as >2 mm
translation or > 3° rotation over the course of the run. A participant was excluded if
more than two of their runs showed excessive motion. Nine of the included par-
ticipants had usable data for all 12 runs, one participant had 11 runs, and one
participant had 10 runs. All were right handed and had normal or corrected-to-
normal vision. The study was approved by the Yale University Human Subjects
Committee. Participant gave written informed consent and were paid for their
participation.

fMRI paradigm and stimuli. Participants performed an old/new vigilance task
during scanning. Stimuli were images of natural scenes presented in their native
resolution of 600 x 800 px. In the scanner, they subtended 17.60° x 13.20° of visual
angle. A fixation dot was visible in the center of the display throughout the entire
experiment. Participants were instructed to stare at the fixation dot and not move
their eyes for the duration of each run. Stimulus presentation and response
recording was controlled using Psychtoolbox-3 (Version 3.0.12)4° running on a
Macbook Pro (OS X 10.11 El Capitan).

Each trial began with a fixation point presented for 1000 ms. Then an image of a
natural scene was briefly presented for 250 ms and followed by a 1500 ms response
period where participants were asked to indicate via button press (left key = “new”,
right key = “old”) whether they had previously seen the scene in an earlier trial
within the run. The short presentation time of 250 ms was chosen to ensure that
participants did not have time to initiate a saccade during the image presentation
period. After a 1250 ms fixation, participants completed an active-baseline arrow
task (5000 ms) where they were asked to indicate what direction a series of four
left- or right-facing arrows were pointing. This active-baseline task was followed by
a 2000 ms fixation period before the next trial began. Each participant completed
12 runs with 24 trials per run, for a total of 288 trials. Within in each run, 12 scene
images were each presented twice, with a lag of three to five trials between
repetitions.

fMRI acquisition and preprocessing. Blood-oxygen-level-dependent (BOLD)
data were collected on a 3 T Siemens Trio TIM system with a 32-channel head coil
at the Yale Magnetic Resonance Research Center. A T1-weighted gradient-echo
sequence was used to acquire high-resolution structural images for each participant
(TR =1900ms, TE = 2.52 ms, flip angle = 9°, FOV = 250 mm, matrix size = 256 x
256, in-plane resolution = 1.0 mm?, slice thickness = 1.0 mm, 176 sagittal slices).
Functional runs included 3408 task volumes (284 per run) acquired using a
multiband gradient-EPI (echo-planar imaging) sequence (TR = 1000 ms, TE = 30
ms, flip angle = 62°, FOV = 210 mm, matrix size = 84 x 84, in-plane resolution =
2.5 mm?, slice thickness = 2.5 mm, 51 axial-oblique slices parallel to the ac—pc line,
multiband acceleration factor = 3). The first 5 TRs of each functional run were
discarded, leaving a total of 3348 task volumes 279 per run).

Data were analyzed using AFNI*” and custom scripts in Matlab (R2016b, The
MathWorks, Inc., Natick, Massachusetts, United States) and Python (version 2.7,
Python Software Foundation). Functional data were despiked, corrected for
motion, and aligned to the high-resolution MPRAGE. Cortical surface
reconstruction was completed using Freesurfer®!~>°. Functional data was projected
from volumetric space to the cortical surface, and all subsequent analyses were
done in surface space. In surface space, data were spatially smoothed using a 5 mm
full-width, half-maximum Gaussian filter. 12 motion parameters (roll, pitch, yaw,
superior displacement, left displacement, posterior displacement, and the
derivatives of these parameters) were regressed from the functional data, and the
error terms from this regression were used for all subsequent analyses. Functional
data for each trial were averaged from TR 5 to TR 8 to extract a single whole-brain
activation pattern for each trial.

fMRI regions of interest. Functional data to localize ROIs were collected in a
separate scanning session from the main experiment. Functional scan parameters
for the localizer scans matched the parameters used for the main experiment.
Borders of early-visual areas (V1, V2, V3, hV4) were delineated on the flattened
cortical surface with standard retinotopic mapping techniques®”>>® using a left/right
rotating wedge and expanding/contracting ring of a flickering checkerboard pat-
tern. Five category-specific ROIs were functionally defined using data from two
localizer scans ran in a separate MRI session from the main experiment. In each
run, participants viewed blocks of rapidly-presented images from the following
categories: faces, scenes, objects, and scrambled objects. Scene-selective para-
hippocampal place area (PPA), retrosplenial cortex (RSC), and occipital place area
(OPA) were defined using a [scenes > faces] contrast®. Object-selective lateral
occipital cortex (LOC) was defined using a [objects > scrambled] objects contrast.
Face-selective fusiform face area (FFA) was defined using a [faces > scenes] con-
trast®. Finally, two regions implicated in shifts of attention were functionally
localized using data from two additional localizer scans. In these scans, participants
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alternated between blocks of fixating on a stationary dot in the middle of the screen
and blocks of shifting gaze to follow a moving dot that moved to a new random
location on the screen every 1000 ms. Attention-selective regions in the intrapar-
ietal sulcus (IPS) and superior precentral sulcus (sPCS) were defined using a
[shifting fixation > stationary fixation] contrast. Each ROI was defined unilaterally
then combined across hemispheres into the bilateral ROIs used for all subsequent
analyses.

Eye tracking apparatus. During the follow-up eye tracking session, eye move-
ments were monitored using an Eyelink1000 + eye tracking camera (SR Research,
Ottawa, ON, Canada), which uses infrared pupil detection and corneal reflection to
track eye movements. The camera was mounted above the participants’ head using
a tower setup that stabilized participants’ heads with a chin rest and a forehead rest.
Eye movements were recorded monocularly from the participants’ right eyes at
1000 Hz. Participants were positioned 50 cm from an LCD monitor 43 cm diag-
onal) with a resolution of 1280 x 1024 px and refresh rate of 60 Hz. Stimuli were
presented in their native resolution of 800 x 600 px and subtended 23.99° x 17.98°
of visual angle. Stimulus presentation and response recording were controlled using
Psychtoolbox®.

Eye tracking paradigm and stimuli. The day after the fMRI session, participants
returned to complete a surprise recognition memory test on the stimuli from the
day before while their eye movements were monitored using an eye tracking
camera. Half of the stimuli were the 144 scene images from the fMRI experiment
and the other half were 144 lure scene images the participants had never seen. They
were instructed to freely explore each image then provide a response indicating
their confidence that they saw the image during the fMRI experiment the preceding
day (1 = Definitely old, 2 = Probably old, 3 = Probably new, 4 = Definitely new).

At the beginning of each block, the eye tracking camera was calibrated and
validated using a nine-point fixation sequence. Each trial was preceded by a drift
check in which the participant stared at a centrally located fixation dot. The camera
was recalibrated in the middle of the block if the spatial error during the drift check
on the preceding trial exceeded 1° of visual angle. The mean spatial error across all
calibrations and participants was 0.46° of visual angle (SD = 0.10°). After the drift
check, an image was presented for 3000 ms and participants’ eye movements were
monitored while they explored the images. After 3000 ms, the response scale
appeared on the scale and the participants had as much time as they needed to
make their memory judgment. After their response was recorded, a new trial began.
Overall participants completed 12 blocks of 24 trials, with 12 target images from
the fMRI experiment and 12 novel lure images in each block.

Eye movement prediction. All fixations prior to 200 ms were discarded to remove
the initial centrally located fixation recorded for each trial. Fixations from 300 ms
to 2000 ms were included in all eye movement analyses.

We evaluated the success of our model at predicting human fixation patterns
using the Normalized Scanpath Salience (NSS) metric!”. NSS is defined as the
average normalized values in a spatial priority map or reconstruction at all fixated
locations:

Nss =57 5(x.) )

Here, § is the spatial priority map, N is the total number of fixations, and (xzyy)
is a fixated location.

Spatial priority maps (or reconstructions) are normalized to have zero mean
and unit standard deviation prior to calculation of NSS. NSS indicates, in units of
standard deviations, the salience of the fixated locations relative to the mean of the
image. Positive values indicate that fixated regions of space were tagged within the
spatial priority map or reconstruction as having higher than average priority.

For the within-individual validation eye movement prediction analysis, NSS was
calculated within each ROI for each image using an individual’s own reconstructed
spatial priority maps and eye movements on the same image. NSS was averaged
across all images to compute a single NSS metric for each ROI in each participant.

For the internal validation eye movement prediction analysis, NSS was
calculated within each ROI for each image using a leave-one-subject-out cross-
validated group-average reconstructed spatial priority map and eye movements
from a left-out-participant. Again, NSS was averaged across all images to compute a
single NSS metric for each ROI in each participant.

Permutation testing. To evaluate prediction performance for all analyses, we used
permutation testing to derive empirical null distributions of NSS scores. Image
labels associated with reconstructions were randomly permuted 1000 times. The
randomly permuted reconstructions were used to predict eye movement patterns
to generate empirical null distributions. P equals the percentage of permutations in
the null distribution with an NSS greater than the true NSS. This procedure was
completed separately for each analysis in each ROL

Fixation map reconstruction. To directly decode eye movement patterns from
fMRI activity, we used partial least squares regression (PLSR). PLSR is a multi-
variate machine learning technique that extracts latent variables from a multi-
dimensional input space (here, fMRI activity) and a multidimensional output space
(here, fixation patterns) then learns a linear transformation between the two sets of
latent variables. PLSR has several characteristics that make it ideal for modeling
fMRI data®!:62, First, PLSR works well with data showing high multicollinearity
between predictors (here, voxels), as is common for fMRI data. Second, PLSR
handles data sets with many more predictors than measurements (here, trials) by
reducing the full feature-spaces to a set of latent variables equal in size to the
degrees of freedom for the data sets (in this case, number of training trials minus
one). Finally, PLSR allows for the leverage of multivariate patterns within both
input and output variables, unlike many common fMRI pattern analysis techniques
which only leverage multivariate patterns in input variables.

First, we use PCA to reduce the dimensionality of fixation maps. In a leave-one-
run-out (LORO) cross-validated manner, fixation maps were encoded as a set of
131 component scores that load onto eigen-fixation-maps. For each fixation map,
we start with a [s x px] fixation map, with s capturing each scene image in the
training set (132 total) and px capturing each pixel in the fixation map. Using PCA,
we extract a set of 131 eigenvectors (eigen-fixation-maps), and encode each fixation
map from [s x px] pixel-space to a [s X fixpc], with fixpc capturing 131 principal
components (PC) scores across the 131 component eigen-fixation-maps. The
number of components was selected simply as the maximum number allowed
based on the size of the training set. Additionally, the PCAs for each layer produce
a [px x fixpc] transformation matrix to move between the original pixel-space and
fixation-map-PC-space. After decoding, the transpose of this transformation
matrix will be used to project the fixpc scores decoded from brain activity back into
pixel-space to reconstruct a full-resolution fixation map.

Additionally, separate PCAs were used to reduce the dimensionality of fMRI
activity patterns from each ROI, again in a LORO cross-validated manner. There
are different numbers of voxels in each ROI in each participant, and this step
normalizes the number of predictor features used for decoding across ROIs and
participants. fMRI activity starts in a [t x v] matrix of voxel activity, with the ¢
capturing trials in the training set (264 total) and the v capturing voxels within a
given ROI We again use the maximum number of components allowed based on
the number of training samples (263) to reduce fMRI activity patterns to a [f X vpc]
space, with vpc capturing fMRI PC scores across voxels.

We used PLSR to learn a [vpc X fixpc] transformation matrix that captures the
linear relationship between fMRI components and fixation map components. PLSR
models were trained in the same LORO cross-validated fashion used to define the
PCAs, such that trials in eleven runs of the fMRI experiment are used as training
data to learn the [vpc X fixpc] weight matrix. We allowed the maximum number of
PLSR components (130, equal to the number of fixation map components minus
one). fMRI components from trials in the left-out run were then multiplied by this
learned transformation matrix to decode fixation map components for each trial in
the run. The decoded components were then multiplied by the transpose of the
[px x fixpc] PCA transformation matrix to reconstruct a full-resolution fixation
map. This approach is analogous to a previously published technique used to
reconstruct face images from patterns of fMRI activity (Cowen et al. 2014). The
reconstructed fixation maps were averaged across the two repetitions for a given
scene. Separate PLSR decoders were used to decode fixation maps within each
participant from fMRI components extracted from bilateral activity patterns in
each of the 11 ROIs.

Spatial attention model. For our primary model, we used VGG16-Places365, a
variant of the VGG16 CNN model!?, trained for scene categorization on the
Places365 image set!1!12. The VGG16 architecture used in VGG16-Places365
consists of 21 layers: 13 convolution layers, five pooling layers, and three fully-
connected layers!®. The network takes a 224 x 224 px RGB image, with the mean
RGB value from the training set subtracted out, as input. The first 18 layers are a
series of convolutional layers, consisting of filters with a small receptive field of 3 x
3 and a fixed convolution stride of 1 pixel, followed by spatial max-pooling layers.
Units in these layers are organized along three dimensions: the x and y dimensions
of the input image and a feature-based dimension that captures which filter
(channel) produced the activity for a given feature map. This stack of convolution
and pooling layers feeds into the three fully-connected layers. The last fully con-
nected layer is a softmax classifier that produces a probability distribution over
365 scene category labels.

The Places365 database is a scene-centric large-scale image database consisting
of natural scene images downloaded off the internet and labeled across a series
experiments by human observers!2. VGG16-Places365 was trained on a set of
1,803,460 images and validated on a set of 18,250 images. On a test set of 328,500
images, VGG16-Places365 produced better classification performance than two
other HCNN architectures, AlexNet? and GoogLeNet®, trained in the same
manner as VGG16-Places365 on the Places365 image set!2. VGG16-Places365 also
produced superior classification performance than AlexNet-Places365 and
GoogLeNet-Places365 on four additional scene-centric image sets'2. Additionally,
the filters in VGG16-Places365, especially in the later layers, develop receptive
fields that detect whole objects®. Objects in scenes are known to attract spatial
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attention®-%7, suggesting that the spatial features extracted by VGG16-Places365
should be maximally predictive of spatial attention behavior.

As control models, we used the original version of VGG-16 trained for 1000-
way object categorization on the ImageNet image set'?, the VGG-16 architecture
trained for 2622-way facial identification amongst a set of celebrities?!, and the
VGG-16 architecture with random weights and no goal-directed training. Twenty
random networks were used and results were averaged across networks.

Each image was resized from its native resolution (800 x 600) to the input size
for VGG16-Places365 (224 x 224) and provided as input to VGG16-Places365 in
Caffe. We limit the features in our model to unit activity from the five pooling
layers. After extracting unit activity from each pooling layer, we averaged activity
across the feature-based dimension to calculate a single activation map for the
layer. The resultant activation map was then resized to full image resolution and
normalized across all locations to have zero mean and unit standard deviation. In
the base version of the model activation maps were averaged across layers and
renormalized to zero mean and unit standard deviation to calculate the final spatial
priority map. In the smoothed and center-bias corrected version of the model,
activation maps were averaged across layers, smoothed with a 2D Gaussian kernel
(SDyGG-Placessss = 24 pX, SDvGG-16 = 24 PX, SDvGG-Face = 28 PX, SDvGG-Random =
28 px, all determined using leave-one-subject-out cross-validation in the internal
validation data set), and pointwise multiplied by a centered 2D Gaussian kernel
(size = 600 x 600 px, SD = 600 px) resized to the image resolution of 600 x 800 px
to upregulate activity in the center of the map and downregulate activity towards
the edges, then renormalized to have zero mean and unit standard deviation.

Aligning fMRI activity to CNN unit activity. We reduced the dimensionality of
both VGG16-Places365 unit activity using PCA, again using a LORO cross-
validation scheme. The number of units in each pooling layer of VGG16-Places365
are as follows: 802,816 in pooll, 401,408 in pool2, 200,704 in pool3, 100,352 in
pool4, and 25,088 in pool5. Within each layer, we start with a [s x u] matrix, with s
capturing each scene image in the training set (132 total) in the experiment and u
capturing all units in the layer. Using PCA, we extract a set of 131 component
eigenvectors for each layer, again defined as the maximum number of components
allowed based on the number of training samples. This allows us to reduce the
original [s x u] unit-space to a [s x upc] space, with upc capturing 131 PC scores
across the 131 component eigenvectors. Additionally, the PCAs for each layer
produce a [u X upc] transformation matrix to move between the original unit-space
and unit-PC-space. After decoding, the transpose of this transformation matrix will
be used to project the upc scores decoded from brain activity back into the original
VGG16-Places365 unit-space to reconstruct the full set of unit activity for each
layer.

We used PLSR to learn a [vpc X upc] transformation matrix that captures the
linear relationship between fMRI components and VGG16-Places365 unit
components. PLSR models were trained in a LORO cross-validated fashion, such
that trials in eleven runs of the fMRI experiment are used as training data to learn
the [vpc X upc] weight matrix. As with direct fixation map reconstruction, we
allowed the maximum number of PLSR components (130, equal to the number of
VGG16-Places365 components minus one). fMRI components from trials in the
left-out run were then multiplied by this learned transformation matrix to
transform them into the same space as VGG16-Places365 components for each
trial in the run. The transformed fMRI data was then multiplied by the transpose of
the PCA dimensionality reduction matrix to reconstruct the full VGG16-Places365
unit activity space. The reconstructed VGG16-Places365 unit activities were then
averaged across the two repetitions for a given scene. Separate PLSR decoders were
used to align fMRI components extracted from bilateral activity in each of the 11
ROIs with VGG16-Places365 unit activity for each pooling layer within each
participant from.

Model-based spatial priority map reconstruction. Spatial priority maps were
reconstructed from fMRI activity aligned into the same space as all five pooling
layers of VGG16-Places365 using the same computational spatial attention model
defined above. VGG16-Places365-aligned fMRI activity from each pooling layer
was averaged across the feature-based filter dimension to produce a single two-
dimensional activity map showing for each layer. These activity maps were then
resized to the image resolution (600 x 800 px) and normalized across pixels to have
zero mean and unit standard deviation. These layer-specific activity maps were
averaged across layers to produce a single reconstructed spatial priority map for
each ROI in each participant was then renormalized to have unit mean and zero
standard deviation. The same smoothing and center-bias correction procedure
applied to the computational priority maps was also applied to the reconstructions
in a separate analysis. These maps were used for all within-participant analyses.

Additionally, to produce group-average reconstructed spatial priority maps,
participant-specific reconstructions were averaged across participants. If a given
participant was missing fMRI data for a given image, they were excluded from the
calculation of the group-average reconstruction for that image. In the internal
validation eye movement prediction analysis, these group-average maps were
generated using 10 participants (N-1). In the external validation eye movement
prediction analysis, these group-average maps were generated using the full set of
11 participants.

External validation participants. A total of 22 participants (9 female, ages 18-41,
mean age = 20.2) viewed the same images as part of a previously published study'®.
All participants had normal or corrected-to-normal vision and received partial
course credit in exchange for their participation. Each participant provided written
informed consent and the study was approved by The Ohio State University
Independent Review Board.

External validation eye tracking apparatus. Eye movements were monitored
using an Eyelink1000 eye tracking camera (SR Research, Ottawa, ON, Canada),
which uses the same method of infrared pupil detection and corneal reflection to
track eye movements as the Eyelink1000 + camera used in the current experiment.
Eye movements were monitored monocularly from each participant’s dominant
eye at 1000 Hz. As in the current experiment, the camera was mounted above the
participants’ heads using a tower setup, the participants’ heads were stabilized with
chin and forehead rests, calibration, and validation were completed using a nine-
point fixation sequence, drift checks were performed before each trial, and the
camera was recalibrated at the beginning of every block or if the error exceeded 1°
of visual angle during a drift check. The average spatial error across all calibrations
and participants was 0.49° of visual angle (SD = 0.13°).

External validation paradigm and stimuli. Participants viewed each of the 144
images used in the fMRI portion of the current experiment, plus an additional 54
images not included in the current experiment. Participants freely explored each
image for 2000 ms to 8000 ms and answered a multiple choice or true/false
question about the image after 33% of the trials to ensure attention throughout the
experiment.

External validation eye movement prediction. The same fixation selection cri-
teria applied in the current experiment were applied to eye movement data from
the external validation data set. Any fixation made in the first 200 ms was dis-
carded, and fixations initiated between 200 ms and 2000ms were included in
subsequent analysis.

For the external validation eye movement prediction analysis, we aimed to
predict eye movements from the 22 participants in this data set using the overall
group-average reconstructed spatial priority maps from all 11 participants in the
current experiment. We calculated NSS for each of the 22 participants on each
image using reconstructed priority maps from each ROI and averaged across all
image to get average NSS for each ROI in each participant. Within each ROI, NSS
across participants was compared to chance using one-sample -test.

Code availability. Code supporting the findings of this study are available on Open
Science Framework (OSF) (https://osf.io/8dy7r/).

Data availability

Images, eye tracking data, and fMRI data supporting the findings of this study are
available on OSF (https://osf.io/8dy7r/). The full scene image set from which our
images were drawn is available on OSF (https://osf.io/9squn/). The neural network
models are available online: VGG16-Places365 (https://github.com/CSAILVision/
places365); VGG16 (http://www.robots.ox.ac.uk/%7Evgg/research/very_deep/);
and VGG16-Face (http://www.robots.ox.ac.uk/~vgg/software/vgg_face/). A
Reporting Summary for this Article is available as a Supplementary Information
file.
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