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Simple Summary: Body condition scoring is a valuable tool used to assess the changes in subcu-
taneous body tissue reserves of dairy cows throughout the lactation. A visual method is typically
used to assign a body condition score (BCS) to a cow following a standardized scale based on an
assessment of tissue cover in the hind quarters of the animal. This method is subject to operator
bias and is labor intensive, limiting the number of animals that can be scored and frequency of
measurement. The objective of this study was to evaluate the suitability of an automated 3D body
condition scoring camera system with capability to measure BCS daily as an alternative to visual body
condition scoring for research applications. We found that the camera system using raw data greatly
increased precision and ability to detect changes in BCS within dairy cows over time compared with
the visual method assessed weekly. For research applications, the precision and sensitivity were
further improved by a proposed refinement of the camera’s daily BCS data.

Abstract: Body condition scoring is a valuable tool used to assess the changes in subcutaneous tissue
reserves of dairy cows throughout the lactation resulting from changes to management or nutritional
interventions. A subjective visual method is typically used to assign a body condition score (BCS) to a
cow following a standardized scale, but this method is subject to operator bias and is labor intensive,
limiting the number of animals that can be scored and frequency of measurement. An automated
three-dimensional body condition scoring camera system is commercially available (DeLaval Body
Condition Scoring, BCS DeLaval International AB, Tumba, Sweden), but the reliability of the BCS
data for research applications is still unknown, as the system’s sensitivity to change in BCS over time
within cows has yet to be investigated. The objective of this study was to evaluate the suitability of an
automated body condition scoring system for dairy cows for research applications as an alternative
to visual body condition scoring. Thirty-two multiparous Holstein-Friesian cows (9 ± 6.8 days in
milk) were body condition scored visually by three trained staff weekly and automatically twice each
day by the camera for at least 7 consecutive weeks. Measurements were performed in early lactation,
when the greatest differences in BCS of a cow over the lactation are normally present, and changes in
BCS occur rapidly compared with later stages, allowing for detectable changes in a short timeframe
by each method. Two data sets were obtained from the automatic body condition scoring camera:
(1) raw daily BCS camera values and (2) a refined data set obtained from the raw daily BCS camera
data by fitting a robust smooth loess function to identify and remove outliers. Agreement, precision,
and sensitivity properties of the three data sets (visual, raw, and refined camera BCS) were compared
in terms of the weekly average for each cow. Sensitivity was estimated as the ratio of response to
precision, providing an objective performance criterion for independent comparison of methods. The
camera body condition scoring method, using raw or refined camera data, performed better on this
criterion compared with the visual method. Sensitivities of the raw BCS camera method, the refined
BCS camera method, and the visual BCS method for changes in weekly mean score were 3.6, 6.2,
and 1.7, respectively. To detect a change in BCS of an animal, assuming a decline of about 0.2 BCS
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(1–8 scale) per month, as was observed on average in this experiment, it would take around 44 days
with the visual method, 21 days with the raw camera method, or 12 days with the refined camera
method. This represents an increased capacity of both camera methods to detect changes in BCS over
time compared with the visual method, which improved further when raw camera data were refined
as per our proposed method. We recommend the use of the proposed refinement of the camera’s
daily BCS data for research applications.

Keywords: body condition score; 3D camera; sensitivity; animal research; automation

1. Introduction

Body condition of dairy cows is an indirect indicator of their subcutaneous body
reserves status. Depletion of body reserves in dairy cows normally occurs in early lacta-
tion, and accretion occurs towards the end of the lactation [1]. Research has shown that
over-fat or -skinny cows at calving or rapid loss of body condition in early lactation can
predispose cows to lower milk production, negative health outcomes, and poorer repro-
ductive performance [2,3]. Further, excessive loss of body condition in early lactation has
been associated with decreased survival of cows in the herd [4]. Therefore, assessing and
managing the rate of change in body condition and achieving optimum body condition at
different stages of lactation are key factors for maintaining or improving performance and
welfare of dairy cows.

Assessment of cow body condition is typically performed by at least two operators
utilizing one of the available body condition score (BCS) scales [5–7] that are linearly
related with each other [8]. Visual body condition scoring consists of a visual evaluation
of anatomical points from the rear-end of the dairy cow (e.g., hooks and tail-head area),
where changes in subcutaneous body reserves are visually more evident, to assign a score
according to a standardized scale. However, this technique includes operator subjectivity
as well as requiring the animal to be restrained in some cases during the evaluation process.
This is a labor-intensive technique that limits the number or frequency of animals that can
be scored. Therefore, implementation of an automated body condition scoring system has
the potential to remove subjectivity in scoring, minimize stress to the animal, and increase
the number and frequency of measurements collected.

Automated sensor technologies are increasingly being researched and developed
for precision livestock farming [9]. In recent years, an automatic three-dimensional (3D)
body condition scoring camera system mounted over areas of normal cow traffic flow has
become commercially available in recent years (DeLaval Body Condition Scoring, BCS
DeLaval International AB, Tumba, Sweden). This camera system individually identifies
cows fitted with transponders via a radio-frequency identification reader and allows for
multiple BCS measurements within a day, with the camera software recording individual
daily BCS values for each scoring session and reporting a daily trimmed, 7-d rolling average
of BCS. The rolling average is derived from measurements made over the preceding seven
days, with the lowest and highest 20% of values removed as outliers. A recent study
reported a strong positive correlation (0.78) between BCS values obtained visually and
those reported by the same camera system, with the camera system reporting agreement
with visual BCS values within a range commonly observed in dairy cows (3–3.75 using a
1–5 scale) but disagreement for cows outside of that BCS range [10]. In that study, authors
suggested that the inaccuracy of the automated system may be related to failure of the
system’s algorithm to capture key differences in physical features of under- and over-
conditioned cows, and therefore, efforts to improve the system’s algorithms could enhance
its reliability. On the other hand, lack of agreement between camera and visual BCS could
be due to unreliability of visual scoring that is not at a proper interval scale. This question
is particularly important for research applications, which require a precise measure for
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reporting in the literature rather than a comparative ranking that might be satisfactory for
commercial dairy farming purposes.

Mullins et al. [10] compared visual BCS observations from 343 dairy cows against
individual daily 7-d rolling averages estimated by the camera software. Furthermore,
Mullins et al. [10] used correlation coefficients to study the linear relationship and Bland–
Altman plot to study the agreement between camera scores and visual scores, but no
measure of objective performance for each method was reported.

Our objective was to evaluate the suitability of a commercially available, automatic,
3D body condition scoring camera system for dairy cows as an alternative to visual body
condition scoring, firstly by investigating agreement between visual and camera BCS and,
secondly, by comparing the performance of the two measurement methods in terms of their
relative sensitivity as a measure of objective performance [11]. The automatic 3D camera
system has obvious practical advantages. We hypothesize that it will also be more sensitive
for measuring body condition compared to a visual body condition scoring method.

2. Materials and Methods

This study was conducted in accordance with the Australian Code of Practice for the
Care and Use of Animals for Scientific Purposes (National Health and Medical Research
Council, 2004). Animal use was approved by the Animal Ethics Committee of the De-
partment of Jobs, Precincts, and Regions, Victoria (AEC 2019-09). Thirty-two multiparous
Holstein-Friesian cows in early lactation (9 ± 6.8 days in milk and 4.8 ± 1.30 years old)
were visually body condition scored on a weekly basis on the same day of the week and
automatically, twice daily, from 1 August to 30 September 2019. This study was conducted
in early lactation, when the highest and lowest BCS values in the lactation are typically
observed, and changes in BCS occur rapidly compared with later stages. The frequency of
visual measurements in this study was justified by the rapid and detectable changes in BCS
that occur during the first 7–10 weeks after calving. Measurements were performed for at
least 7 consecutive weeks for all cows, except for one cow that exited the experiment early
due to locomotive problems and was only scored over 3 consecutive weeks. Cows were
fed a grain mix concentrate twice daily at each milking (approximately 06:15 and 15:15 h)
throughout the study, offered pasture silage while housed in a barn facility during the first
three weeks after calving, and subsequently held outdoors and offered perennial ryegrass
pasture for the remainder of the measurement period. Visual BCS measurements were
performed independently on each cow after the morning milking by three trained staff
throughout the study using the 1–8 BCS scale with 0.25-point increments [6]. Automatic
BCS measurements were recorded after each milking using a commercially available 3D
body condition scoring camera systems (DeLaval Body Condition Scoring, BCS DeLaval
International AB, Tumba, Sweden) with two cameras, each mounted over one of the milking
parlor exit races. Cows were individually identified via a radio-frequency identification
collar system allowing for multiple BCS measurements in a day. Hence, each cow typically
had 3 visual BCS measurements performed during the same day each week and 14 auto-
matic BCS measurements per week. The camera system reports BCS values in increments
of 0.1 points and offers two scale settings, 1–5 scale [5] or 1–10 scale [7], and for the purpose
of this study, the system was set to the 1–10 BCS scale. This scale was converted to the
1–8 scale [6] by applying the published linear equation of Roche et al. [8]. Data from the
camera system are reported as 7-d BCS rolling average (not used for the purpose of this
study) that, prior to averaging, removes the lowest and highest 20% of values or as daily
AM and PM BCS values. Individual daily AM and PM raw BCS data from each of the
cameras was accessed via the manufacturer’s software (DelPro Farm Manager, DeLaval
International AB, Tumba, Sweden) using the pathway Systems>Devices>BCS Camera>BCS
CAM, as data are not readily available for download and were downloaded weekly before
data were automatically overwritten by the system after 8 days.
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Statistical Analyses

The raw camera data were initially examined graphically for errors. About 8% of
the camera BCS data were either zero or negative, which were treated as erroneous and
excluded from further analyses. For the raw camera method, analyses were performed
on data with zero and negative values removed but including other outlier points. For
the refined camera method, data identified as outliers were also removed after allowing
for effects of cow and time using a robust smoothing function, loess [12]. This smoother
was fitted to the camera BCS time series data for each cow using R software [13], with
loess arguments, span = 0.5, and family = “symmetric.” The “symmetric” setting selects
an iterative algorithm that down-weights the effect of outliers on the fitted smooth line.
Outliers were identified using Tukey’s rule [14] as any value having a residual greater than
1.5 times the interquartile range, either below the first quartile or above the third quartile
of the distribution of residuals. This method flexibly allows for trends in body condition
with time, removing outliers objectively identified, and so differs from the method used in
the camera system to obtain the trimmed 7-d BCS rolling average that, prior to averaging,
removes the lowest and highest 20% of values.

The Pearson correlation coefficient (CC) and Lin’s concordance correlation coefficient
(LCCC) [15] were calculated to measure linear relationship and agreement between camera
and visual methods, using animal by week mean data. Agreement was also analysed
using Bland–Altman plots of difference versus mean of the two methods, using animal by
week mean data and entailed calculation of the mean difference, the standard deviation of
difference, and 95% range for the difference [16].

Sensitivity (denoted by Θ in this paper), as proposed by Mandel and Stiehler [11],
modified by Hannah et al. [17], and defined as

Θ =
σa

σm
, (1)

where the numerator, σa, represents actual standard deviation in body condition, and
the denominator, σm, is the measurement error standard deviation (i.e., standard error),
was calculated for each measurement method. In each case, the standard deviations, σa
and σm, related to a cow by week, mean were calculated, to ensure fair comparison of the
measurement methods at a common temporal and physical scale. These standard deviations
were themselves calculated from components of variance as described below, derived under
each sampling design and estimated in detailed random-effects models [18]. The random-
effects models included all available terms in the respective sampling structures, as listed in
Table 1, and were fitted separately to the camera and visual BCS data using REML software
in Genstat 20 (VSNi, 2019).

Estimates of σa and σm were calculated differently for the detection of changes in body
condition over time within animals and for the detection of differences between animals at
a given time. These involved different but overlapping sets of variance components. In the
following, the subscripts W, D, M, A, C, S and ε, of variance components, σ2, refer to week,
day, milking, animal, camera, scorer and residual error, respectively. For changes over time,
σ2

a = σ2
W + σ2

WA, and for differences between animals, σ2
a = σ2

A + σ2
WA, where σ2

W , σ2
A, and

σ2
WA were variance components for week, animal, and animal by week, respectively. These

equations were applied for each measurement method.
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Table 1. Estimates of random-effect model parameters (mean and variance components) for each of
raw camera, refined camera, and visual body condition score (BCS) data. Camera measurements
were taken at least twice daily for a period of 7 weeks on each of 32 cows. The same cows were scored
visually for BCS by three scorers on one day of each week over the same period.

Model Parameters Raw Camera Refined Camera Visual Scoring

Mean BCS 4.50 4.49 4.44
Variance components (×10−2):

Week (σ2
W ) 1.70 1.90 1.00

Animal (σ2
A) 3.75 4.63 7.36

Camera (σ2
C), or Scorer (σ2

S) 0.00 0.00 0.04
Week.Day

(
σ2

WD
)

0.05 0.04
Week.Animal (σ2

WA) 0.52 0.77 0.94
Week.Camera (σ2

WC), or
Week.Scorer (σ2

WS)
0.00 0.00 0.22

Animal.Camera (σ2
AC), or

Animal.Scorer (σ2
AS)

0.14 0.06 0.56

Week.Day.Milking (σ2
WDM) 0.00 0.00

Week.Day.Animal (σ2
WDA) 0.00 0.06

Week.Day.Camera (σ2
WDC) 0.00 0.00

Week.Animal.Camera (σ2
WAC) 0.00 0.00

Week.Day.Milking.Animal
(σ2

WDMA)
0.00 0.12

Week.Day.Milking.Camera(σ2
WDMC) 0.02 0.03

Week.Day.Animal.Camera
(σ2

WDAC)
0.092 0.00

Week.Day.Milking.Animal.Camera
(σ2

WDMAC)
0.00 0.00

Residual (σ2
ε ) 2.18 0.62 1.86

Subscripts W, D, M, A, C, S and ε, of variance components, σ2, refer to week, day, milking, animal, camera, scorer
and residual error, respectively.

The error variances denoted by σ2
m, were calculated as

σ2
m = ∑

i∈M

σ2
i

ni
, (2)

where M was the set of indices of relevant variance components that contributed to error,
and ni was the number of effects from each factor that were averaged into an animal by
week mean. In the case of visual BCS, Equation (2) is expanded to

σ2
m =

σ2
WS
3

+
σ2

ε

3
, (3a)

for changes with time, or

σ2
m =

σ2
AS
3

+
σ2

ε

3
, (3b)

for differences between animals, with the components defined as per Table 1. The denomi-
nators, ni = 3, derive from there being 3 scores (once per week by 3 scorers) for each animal.
Note that the scorer variance component, σS

2, does not appear as part of this effective error
variance. This was because, under the sampling design of this study, scorer main effects
were orthogonal to animal by week and thus not involved in comparisons over weeks nor
between animals.

In the case of the camera BCS, most of the variance components not included in σ2
a

were included in σ2
m; thus, Equation (2) expanded to

σ2
m =

σ2
WD
7

+
σ2

WC
2

+
σ2

WDM
14

+
σ2

WDA
7

+
σ2

WDC
14

+
σ2

WAC
2

+
σ2

WDMA
14

+
σ2

WDMC
14

+
σ2

WDAC
14

+
σ2

WDMAC
14

+
σ2

ε

14
, (4a)
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for changes with time, or

σ2
m =

σ2
AC
2

+
σ2

WDA
7

+
σ2

WAC
2

+
σ2

WDMA
14

+
σ2

WDAC
14

+
σ2

WDMAC
14

+
σ2

ε

14
, (4b)

for differences between animals within time, with the variance components defined in
Table 1. The main effect of camera, while not orthogonal to animal and week effects (since
animals self-selected camera after each milking), could nonetheless be accounted for as
a block effect and so was not included in these formulae. If camera devices operated
consistently independent of animal or time, many of these variance components could be
expected to be zero.

The sensitivity of each camera BCS measurement method relative to the visual BCS
measurement method was calculated as a relative sensitivity (8):

RS =
Θcam

Θvis
(5)

where Θcam and Θvis are sensitivity for camera and visual BCS measurement method
respectively. Using this ratio, it is possible to calculate a sampling intensity (i.e., the number
of independent measurements per animal by week mean) under one method that would be
needed for its sensitivity to equal that of the other method. For example, the error variance
σ2

m of a visual BCS of a cow by week mean is inversely proportion to the number of samplers
(Equation (3a,b)). Consequently, RS (Equation (5)), via Equation (1), is proportional to the
square-root of the number of samplers since σ2

a is independent of this number. It follows
that the number of samplers needed to render the sensitivity of the visual BCS to equal that
of the camera is RS2 times the current number of visual samplers. This was calculated for
both the raw and refined camera methods.

An average rate of change in BCS per month was estimated from our data as the slope,
β, of a linear regression of BCS against time. A detectable change in body condition would
be, say, 3σm, for a single animal. Hence, the time required for a change in body condition to
be detected was calculated as

t = 3σm/β (6)

under each method.

3. Results

Raw BCS data of three example cows, those having maximum, median, and minimum
mean BCS values, are presented in Figure 1 (camera) and Figure 2 (visual).

The overall BCS means for raw camera, refined camera, and for visual methods were
4.50, 4.49, and 4.44 (Table 1). The Pearson’s CC and LCCC between raw camera method
and visual methods of BCS measurements were 0.85 and 0.81 and between refined camera
and visual methods were 0.86 and 0.83, respectively. The relationship between refined
camera BCS and visual BCS is presented in Figure 3.

Figure 4 shows the Bland–Altman (difference vs. average) plots of weekly animal
means for the refined camera data and the visual method. The plot shows a mean difference
of 0.07 between the refined camera and the visual method and 95% of differences between
−0.26 and 0.41 on the y-axis. The standard deviation of differences between the refined
camera and the visual method was 0.16. The differences between the camera and the
visual method trended downwards with increasing average, with the differences being
mostly positive (camera value greater than visual score) for smaller mean values and mostly
negative (camera value less than visual score) for larger mean BCS values (Figure 4).
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Figure 1. Raw camera body condition score (BCS) values of three selected cows (4617, 3514, and 4612:
maximum, median, and minimum BCS mean value cows) by two cameras (open squares and circles)
during the experiment, on 1–8 scale. The fitted solid line is a robust loess smooth curve that was used
to identify the outliers (red open squares and circles).

Figure 2. Visual body condition score (BCS) values of three selected cows (4617, 3514, and 4612:
maximum, median, and minimum BCS mean value cows) by three scorers (open squares, open
triangles, and inverted open triangles) on 1–8 scale.
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Figure 3. Scatter plot with each solid dot representing a weekly mean body condition score (BCS) for
a cow by refined camera method versus visual measurement method. The solid line represents the
line of agreement.

Figure 4. Bland–Altman plot with each solid dot representing a weekly mean body condition score
(BCS) for a cow between refined camera and visual measurement methods. The central horizontal
dotted line represents the mean difference between the two measurement methods, and the fine
dotted lines represent the 95% range of the differences. The long-dashed line is a linear regression
(p < 0.05) of difference versus the average.
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The diagonally striped pattern of points visible in the graph is an artefact of the
discreetness of the 1–8 visual score scale, scored to the nearest 0.25. The average score from
three scorers therefore allowed 12 possible distinct values in increments of 0.083 per unit
score. These manifested as 12 diagonal rows of points between 4.0 and 5.0 on the x-axis on
Figure 4. The discreteness of the visual scoring scale could therefore account for only about
one-tenth of the differences actually observed between camera and visual scores.

The scatter plot and the Bland–Altman plot for raw camera data with visual BCS are
not shown. These were very similar to those for the refined data in Figures 3 and 4. The
mean difference between the raw camera and the visual method was 0.08. The standard
deviation of differences between the raw camera and the visual method was 0.17. The
exclusion of outliers in the refined data had little visual effect on the figures since each
point on these graphs represents an animal by week average of 14 camera data, of which
only one on average was an outlier.

The variance components associated with random-effect terms for camera and visual
BCS and their estimates are provided in Table 1. Most of the variance measured by each
method was explained by animal, week, and their interaction. These three correspond to
actual differences in body condition. The largest component was the variance between ani-
mals, followed by between weeks, and lastly animal by week (Table 1). Of the components
contributing to error, the largest was the residual variance in each case.

The effective error standard deviation for an animal by week mean relevant to changes
over time (Equations (3a) and (4a)) was 0.041, 0.026, and 0.083 for raw camera, refined
camera, and visual methods, respectively (Table 2). The sensitivity to change in cow BCS
between weeks was greatest for the refined camera method (6.2), intermediate for the
raw method (3.6), and least for the visual method (1.7, Table 2). The relative sensitivity,
RS, was 3.7 for the refined camera method and 2.1 for the raw camera method relative
to the visual method. The square of these RS indicates that 14 times as many scorers
(that is, 3.72 × 3 = 41 scorers in this experiment) would have been needed for the visual
scoring method to match the performance of the refined camera method in terms of its
sensitivity and about five times as many scorers (i.e., 2.12 × 3 = 14 scorers) to match the
performance of the raw camera method. The estimated rate of change, β, in BCS observed
in this experiment is shown in Table 2. It would take 44 days to detect a change in BCS in
an animal using visual BCS method but 21 or 12 days to detect a change using the raw or
refined camera methods, respectively (Table 2).

Table 2. Estimates of summary statistics for comparison of raw camera, refined camera, and visual
body condition score (BCS) measurement methods. Each statistic relates to the response and/or
precision of a cow by week mean. Under both camera methods each mean was an average of
approximately 14 camera measurements, and under the visual scoring method, each mean was an
average of 3 independent scores.

Summary Statistics Raw Camera Refined Camera Visual Scoring

For change within animal over time:
Actual SD, σa, (BCS) 0.149 0.164 0.139
Error SD, σm, (BCS) 0.041 0.026 0.083

Sensitivity, Θ 3.6 6.2 1.7
Relative Sensitivity, RS, of camera to visual scoring 2.1 3.7

Rate of change in BCS, β, (BCS/Month) −0.18 −0.19 −0.17
Time to detect BCS change of 3σm, (Days) 21 12 44

For differences between animals at the same week:
Actual SD, σa, (BCS) 0.207 0.232 0.288
Error SD, σm, (BCS) 0.048 0.030 0.090

Sensitivity (Θ = σa/σm) 4.3 7.8 3.2
Relative Sensitivity, RS, of camera to visual scoring 1.3 2.4

SD—Standard deviation.



Animals 2022, 12, 72 10 of 13

Standard errors for detecting differences between animals within week (Equations (3b) and (4b))
were 0.048, 0.030, and 0.090 of a BCS for raw camera, refined camera, and visual methods,
respectively (Table 2). The corresponding sensitivities were 4.3, 7.8, and 3.2 (Table 2). The
relative sensitivities were 1.3 and 2.4 for the raw and refined camera methods relative to
the visual method. The squares of these relative sensitivities indicate that six times as many
scorers would be needed for the visual scoring method to match the performance of the
refined camera method, and two times as many scorers would be needed to match the
performance of the raw camera method.

4. Discussion

Body condition score and its change over time in dairy cows are valuable metrics
for evaluation of management and nutritional programs in production or research set-
tings given their associations with cows’ production, health, reproduction, and welfare
traits [2–4]. The visual method used to evaluate BCS of dairy cows has been questioned
not only because of the subjectivity associated with a visual assessment and interpretation
of that information to assign a BCS value [19] but also because it is deemed, by default, as
the traditional standard for comparison with other methodologies [10]. The findings of
this research indicate a more objective technology-driven methodology represents a better
reference method in commercial and research settings.

Body condition score measurements were performed between calving or very early
postpartum and weeks 7 or 10 after calving. This allowed for individual measurements
of BCS when cows normally record their highest and lowest BCS values and the greatest
changes in BCS throughout the lactation in a short timeframe. The statistical metrics em-
ployed in this study demonstrated a high degree of correlation and agreement between
the camera and visual BCS. The Pearson CC of 0.86 and LCCC of 0.83 between the refined
camera and visual methods, calculated on animal by weekly means, while below unity,
were high given the restricted range of visual BCS data from 3.6 to 5.4 compared with
the full 1–8 scoring scale. Correlation coefficients depend on data range as well as linear
relationship [16], and a narrow range of data results in a smaller estimate of correlation. On
the other hand, as correlations are between means, they would be larger than correlations
between individual measurements. Nonetheless, these results were consistent with obser-
vations by Mullins et al. [10], who, in a Bland–Altman plot, showed agreement between
BCS values obtained with the same camera system as was used in our study but who used
the trimmed 7-d BCS rolling average data readily available and reported by the system’s
software and a visual method using the 1–5 BCS scale [5].

Some small systematic differences between visual and camera scores were observed
in our data, with the mean camera BCS being 0.08 greater than the mean visual BCS. There
was also a tendency for this difference to be positive when body condition was low and
for it to be negative when the body condition was high. This trend, albeit small and
accounting for at most 0.1 of a BCS unit at the extremes of our data (Figure 4), could have
arisen by a small calibration error either within the camera software to its 1–10 scale or
between the 1–10 and the 1–8 scale. It could equally be due to inaccuracy in visual scoring.
Alternatively, it may be an artefact of unequal error variances in the two measurement
variables, in this case visual BCS and refined camera BCS, in the Bland–Altman plot as
outlined by Francq and Govaerts [20]. An underestimate of calibration slope would lead
to under-estimates of camera values at large BCS and over-estimates at small BCS, as was
apparent in Figures 3 and 4. This flattening of calibration relationship would also lead to
under-estimation of standard deviations σa and σm for the camera methods.

An accurate calibration of the camera to visual BCS scale is important for continuity of
interpretation of animal management standards already in place and expressed in terms of
the visual 1–8 BCS scale. While recalibration could be achieved by regressing our visual
score data on our camera data, and doing so would increase method agreement marginally
within this study, recalibration would not be an option available to studies that did not
employ both measurement methods simultaneously. Apart from this impracticality, calibra-
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tion depends for its success on the quantity, quality, and range of data at hand. Repeated
recalibration across studies would compromise consistency of the camera method, which
otherwise is among its main advantages over a manual method. The calibration supplied
with the camera in conjunction with that of Roche et al. [8] appears to be adequate to
preserve interpretation of the standard 1–8 BCS scale, and no recalibration is recommended.

To be effective, a measurement method must be both responsive and precise. A
method that fails to be responsive, for example, by returning a constant BCS of “4”, would
be useless despite its perfect (zero-variance) precision. The statistic for sensitivity defined
in Equation (1) offers a criterion by which performance of the measurement methods can
be compared. It quantifies response and precision simultaneously, reflecting the capability
of a measurement method to detect real effects. Sensitivity, so defined, is invariant to linear
changes of scale so that it remains unchanged whether the camera BCS is expressed on
a 1–5, a 1–8, or a 1–10 scale or whether the linear calibration is not quite right. It does so
by giving the response on the scale as a proportion of precision on the same scale. The
choice of scale and its calibration, then, are a separate issue. The relative sensitivity (RS,
Equation (5)) facilitates comparison of two methods in a way that is also independent of
the magnitude of the biological effects present in the experiment, provided the responses in
the two measures remain linearly related to those effects. The RS provides a relevant and
reliable criterion by which the essential performance of two methods can be compared [11].

In the current experiment, comparisons were made at the scale of an animal by week
mean, with camera data accumulated twice daily and visual BCS performed by three
scorers once each week. The sensitivity of the refined camera method was 3.7 (i.e., the RS)
times that of the sensitivity of the visual method of body condition scoring for detecting
changes. This represents a considerable improvement in performance of the refined camera
method over the visual method. The sampling intensity of the visual BCS would have
to be increased 14 (i.e., RS2)-fold, from 3 to 41 independent visual scorers, to equal the
performance of the refined camera. Such was its sensitivity that the refined camera could
detect a change in BCS in an estimated 12 days rather than the 44 days for the visual
method (Table 2) given the average rate of change observed and the sampling protocols
in our experiment. Without excluding outliers, the raw camera method would take an
estimated 21 days to detect a change in BCS, and there would need to be RS2 ≈ 5 times as
many visual scorers to match its sensitivity. Substantial gains in performance were also
observed for detecting differences between animals within a week, with RS values of 2.4
for the refined camera method and 1.3 for the raw camera method relative to the visual
method. These represent an increased capability of both camera methods for detecting
changes and differences in BCS compared with the visual method but especially when raw
data were refined as per our statistical method for filtering outliers.

A single BCS measurement from the refined camera data had greater precision and
smaller residual standard deviation, (σε = 0.08) compared with a single BCS measurement
from the camera system raw data (σε = 0.15) or a single score from the visual method
(σε = 0.14; Table 1). The single-measurement gain in precision for the refined camera was
modest and non-existent for the raw camera data over the visual method. The substantial
gains in sensitivity observed were therefore largely a consequence of the greater measure-
ment frequency and hence a greater number of measurements per cow per week made by
the camera system (typically 14 measurements in total from twice a day measurements)
compared with visual scoring (three measurements on just one day of the week). The
increased precision and sensitivity offered by the refined camera method make it the pre-
ferred method, especially for research applications, particularly when an experiment is
enrolling a limited number of animals, based on the principles of refinement and reduction
for the ethical and economic use of animals in research.

To our knowledge, only one study has reported the ability of a 3D camera system to
detect changes on specific points of the dorsal portion of the animal (e.g., rump angle, pin
width) over time within cows [21]. However, in that study, the ability of the camera system
to detect changes over time was interpreted based on agreement between the camera
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and visual measurements. The 7-d rolling BCS trimmed average provided by the camera
software is similar in concept to our loess-filtered 7-d mean. The loess-filtered version
should perform a little better, as it allows for time trend and discards fewer data, only
excluding data when their distance from the center of their distribution is sufficient to
identify them as outliers, which turned out to be around 7% of the data.

The BCS means obtained by all three methods compared in our study ranged from
3.6 to 5.4 and were mostly within the recommended range for cows in early lactation
(4.5–5 points in a 1–8 scale). How the camera method behaves outside this range remains to
be tested; however, cows’ BCS is not typically observed and managed outside of this range,
as it predisposes them to decreased productive and health performance and to animal
welfare concerns in extreme cases in both research and commercial farms.

5. Conclusions

The automated 3D camera system used in this study (DeLaval Body Condition Scoring,
BCS DeLaval International AB, Tumba, Sweden) is a suitable option for measuring BCS
in dairy cows in research and commercial dairy farming situations. The camera system
greatly increased precision and ability to detect differences between animals and changes
in BCS within animals over time compared with the traditional visual method. Further,
improved precision and sensitivity was achieved by a proposed refinement of the camera’s
raw BCS data by fitting a robust loess smoother with removal of outliers.
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