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Abstract: The increasing incidence of inflammatory bowel diseases (IBD) and the increasing sever-
ity of the course of these diseases create the need for developing new methods of therapy. The
gut microbiome is extensively studied as a factor influencing the development and course of IBD.
The composition of intestinal microbiota can be relatively easily modified by diet (i.e., prebiotics,
mainly dietary fibers) and bacterial supplementation using beneficial bacteria strains called probi-
otics. Additionally, the effects of the improved microbiome could be enhanced or gained by using
paraprobiotics (non-viable, inactivated bacteria or their components) and/or postbiotics (products of
bacterial metabolism or equal synthetic products that beneficially modulate immunological response
and inflammation). This study summarizes the recent works on prebiotics, probiotics, synbiotics
(products merging pre- and probiotics), paraprobiotics and postbiotics in IBD.

Keywords: ulcerative colitis; Crohn’s disease; inflammatory bowel disease; intestinal microbiome;
short chain fatty acids; dietary fibers

1. Introduction

The human intestinal microbiome consists of over 1000 species of bacteria and other
microorganisms. The total number of these may exceed the number of host cells [1]. The
intestinal microflora, also called the microbiome, has many functions. Its primary func-
tion is to support the digestive system. In addition, intestinal bacteria produce vitamins,
stimulate the immune system, communicate with the intestinal epithelium and modulate
the host’s behavior [2,3]. Communication between the host and microbiome is two-way.
On the one hand, microorganisms communicate with the intestinal cells by detecting the
host’s hormones and peptides, such as catecholamines. In this way, the microorganisms
make sure that they are present in the right place and increase the expression of supporting
colonization genes [4]. On the other hand, the microbiome produces a wide range of
signaling molecules. Signals from microbial metabolites influence immune maturation,
immune homeostasis, host energy metabolism and the maintenance of mucosal integrity.
Specific classes of metabolites, notably short chain fatty acids and tryptophan metabolites,
have been implicated in the pathogenesis of IBD [5]. The intestinal microbiome is easily
altered due to a change of diet or illness. There are also salient differences between in-
dividual hosts. Among the microorganisms living in the digestive tract, there are those
with positive and negative effects on humans. The beneficial effects of microorganisms
are very broad. They include preventing the invasion of disease-causing bacteria and syn-
thesizing essential nutrients and vitamins [6–8]. The microorganisms with positive effects
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can be used to improve health. Microorganisms that, after appropriate preparation and
administration, have a positive effect on the body are called probiotics. In 2014, the expert
panel from the International Scientific Association for Probiotics and Prebiotics (ISAPP),
authorship Hill et al., formulated the definition of probiotics as “live microorganisms which
when administered in adequate amounts confer a health benefit on the host” [9]. There
is scientific evidence that selected probiotic strains play a significant role in the treatment
and prevention of diseases such as diarrhea, lactose intolerance, ulcerative colitis (UC),
Crohn’s disease (CD), irritable bowel syndrome (IBS), obesity and cancers, as well as in the
development of insulin resistance [10–16].

Crohn’s disease (CD) and ulcerative colitis (UC) are the main types of inflammatory
bowel diseases (IBD). UC is usually limited to diffuse mucosal inflammation, with neu-
trophils predominating in the lamina propria and crypts of the colon. In CD, inflammation
can involve any part of the gastrointestinal tract, but the typical regions are the small
intestine, especially the terminal ileum, and the colon. Interactions among genetic and envi-
ronmental factors, impaired immune regulation, gut barrier dysfunction and changes in the
intestinal flora are related to the pathogenesis and development of IBD. Currently, there is
a lot of talk about the influence of the gut microbiome (GM) on the development and course
of IBD [17–19]. Bacterial microflora in patients with IBD differ from that observed in healthy
people [20]. There is a considerable reduction in microbiome diversity observed in this
group of patients, especially anaerobic ones, with decreased numbers of Bifidobacterium spp.
and Lactobacillus spp. and increased Bacteroides, Escherichia and Enterococci spp. [21–26].
One of the suspected mechanisms that can cause intestinal inflammation is a loss of tol-
erance to commensal bacteria in patients with IBD, which may stimulate an upregulate
autoimmunological response to the microbiome [27,28]. Prebiotics, mainly dietary fibers,
provide appropriate metabolic substrates for bacteria. These polysaccharides metabolized
by microbes are the source of short chain fatty acids (SCFAs), including acetate, propi-
onate and butyrate—the most typical products of probiotics metabolism, called postbiotics.
Paraprobiotics, also known as “non-viable probiotics”, “inactivate probiotics” or “ghost
probiotics”, refers to both non-viable microbial cells and their fragments. Paraprobiotics
are better than probiotics in some clinical cases [29]. This study summarizes the recent data
regarding prebiotics, probiotics, synbiotics, paraprobiotics and postbiotics in IBD, classifies
clinical trials and research and also shows a possibility for future development.

2. Prebiotics

Prebiotics are non-digestible food ingredients which selectively stimulate the growth
and the activity of bacterial species in the intestine that have a positive influence on the
health of the host organism [30]. The most common prebiotics are inulin, glucooligosac-
charides (GOS), fructooligosaccharides (FOS), lactulose and derivatives of galactose and
β-glucans [31,32]. Prebiotics are not digested by endogenous enzymes in the human gas-
trointestinal tract, which is why they reach the colon, and there, they are fermented by
bacterial microflora [32,33]. Prebiotics are naturally found in over 36,000 products of plant
origin, including artichokes, asparagus, chicory, garlic, onions, wheat and bananas. Addi-
tionally, prebiotics may also be artificially produced and introduced into food to increase
its nutritional and health value. Prebiotics enhance the number of beneficial bacteria in the
human intestine, such as the Lactobacillus, Bifidobacterium and Bacteroides families [33,34].
In order for a product (food or supplement) to be considered a prebiotic, it must meet the
following conditions [32]:

• Stimulate the growth and activity of selected strains of bacteria that have a beneficial
effect on health.

• Decrease the pH of the intestinal contents.
• To be resistant to hydrolysis and the action of gastrointestinal enzymes.
• To not be absorbed in the upper gastrointestinal tract.
• To provide a medium for one or more beneficial microorganisms in the colon.
• To be stable in the food processing process.
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Prebiotics reach the large intestine unchanged and are fermented by the bacteria
inhabiting this part of the digestive tract. As prebiotics pass through the lumen of the
intestine, they bind to water and increase the volume of the intestinal contents. Due
to the loose structure and large surface area, these contents provide a good breeding
ground for bacteria. In the process of fermentation of prebiotics, short chain fatty acids
are formed, which play an extremely important role in the proper functioning of the
intestines. They are a breeding ground for beneficial bacteria and at the same time inhibit
the growth of pathogens; accelerate the healing and regeneration processes of the intestinal
epithelium; increase the production of mucus; maintain the correct pH in the intestine,
which reduces the growth of pathogenic bacteria; increases the absorption of calcium, iron,
and magnesium, lowering blood cholesterol levels; and also favorably affects glucose and
protein metabolism in the liver [32–35].

Recent Clinical Trials on Prebiotics in IBD

Research studies have shown that the consumption of prebiotics greatly affects the
composition of the intestinal microbiome and its metabolic activity. This happens due to
the modulation of lipid metabolism, increased calcium bioavailability, effects on the system
immune function and the modification of intestinal function [36]. However, there are only
a few studies regarding prebiotics in IBD published up to now.

Benjamin et al., in their randomized, double-blind and placebo-controlled study on
54 subjects in an intervention group and 49 controls, assessed the impact of FOS on active
CD. Patients with active CD were randomized to receive 15 g of FOS or placebo per day
for 4 weeks. They found that there was a worsening of the clinical status of patients in
the acute stage of CD treated with FOS. Concentrations of probiotic Bifidobacteria spp.
and Faecalibacterium prausnitzii in stool showed no difference between CD and control
groups [37]. In another study, performed by Hafer et al., the authors assessed lactulose
influence on clinical, laboratory, endoscopic and histopathological activity as well as on
quality of life (QoL) in active IBD patients. Authors enrolled 14 active UC patients and
17 active CD patients to the study who were treated with standard therapy alone or com-
bined with 10 g of lactulose daily for 4 months. They found that oral lactulose had no
positive effect in active IBD, both UC and CD, on clinical, endoscopic or histopathological
activity. However, they observed a significant improvement in QoL in UC patients treated
with lactulose compared to controls [38]. Kanauchi et al. performed the open-label mul-
ticenter clinical trial with germinated barley foodstuff (GBF) treatment in patients with
UC. They enrolled 21 patients with mild-to-moderate active UC and administered GBF
for 24 weeks outside of standard therapy with aminosalicylates and/or steroids. After
24 weeks of treatment with the prebiotic, the GBF group showed significant decreases in
clinical activity, especially with the presence of blood in the stools and nocturnal diarrhea,
compared to the group without GBF treatment [39]. Another study was published by
Casellas et al. In their prospective, randomized, placebo-controlled study, they assessed the
efficacy of supplementation of inulin enriched with FOS in patients with mild-to-moderate
acute UC for 2 weeks. There were ten patients enrolled in the intervention group and
nine patients in the placebo group. After 7 days of therapy, a significant decrease in stool
calprotectin in the intervention group was observed [40]. Hallert et al., in their random-
ized, placebo-controlled study, evaluated the efficiency of ispaghula husk supplementation
in patients with inactive UC. Twenty-nine patients enrolled in the study with inactive
UC were treated with ispaghula husk for 4 months. Afterwards, the intervention group
showed a significantly higher clinical improvement rate (69%) compared to the placebo
group (24%) [41]. Fernandez-Benares et al., in their study on 105 patients with inactive UC,
evaluated Plantago ovata seeds in three groups of patients treated with mesalamine alone,
Plantago ovata seeds with mesalamine and Plantago ovata seeds alone for 12 months. They
found similar remission rates in all groups of patients. Additionally, a significant increase
in stool butyrate levels was observed in the Plantago ovada seeds groups [42]. Hanai et al.,
in their study, assessed germinated barley foodstuff (GBF) treatment in 59 inactive UC
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patients for 12 months. He reported significantly lower relapse rates in the GBF group
compared to the group without GBF treatment after 12 months of therapy [43]. These data
are summarized in Table 1.

Table 1. Studies evaluating prebiotics in IBD patients.

Study Subjects Intervention Number of Patients Duration of the Study Outcome

Benjamin JL et al., 2011 Active CD FOS vs. placebo 54 with CD and
49 controls 4 weeks

Deterioration of clinical
status of CD patients; no
significant differences in

Bifidobacteria spp. and
F. prausnitzii

stool concentrations

Hafer A et al., 2007 Active UC
and CD Lactulose 14 with UC and 17

with CD patients 4 months

No significant improvement
in clinical, endoscopic and
histopathological activity;
improvement in QoL in

UC patients

Kanauchi O et al., 2003 Active UC Germinated
barley foodstuff 21 with UC 24 weeks

Significantly decrease the
clinical activity of the UC in

the prebiotic group,
especially presence of blood

in the stools and
nocturnal diarrhea

Casellas F et al., 2007 Active UC Inulin and FOS 19 with UC 2 weeks

Significant decrease of stool
calprotectin after 7 days of

treatment in
intervention group

Hallert C et al., 1991 Inactive UC Ispaghula husk 29 with inactive UC 4 months
Significant clinical
improvement in

intervention group

Fernandez-Benares F et al., 1999 Inactive UC Plantago ovata seeds 105 patients with
inactive UC 12 months

Similar remission rates in
groups treated meslamine,
mesalamine and Plantago
ovada seeds and Plantago

ovada seeds alone;
significant increase of stool
butyrate level in Plantago

ovada seeds groups

Hanai H et al., 2004 Inactive UC Germinated
barley foodstuff

59 patients with
inactive UC 12 months

Significantly lower relapse
rate in GBF group compared

to group without
GBF treatment

The results of prebiotics studies are contradictory, but the main conclusion is that
they have no significant positive effect in patients with IBD. However, to date, published
controlled trials have been small. The administration of probiotics in acute stages of IBD may
also be connected with some gastrointestinal side effects, but it should also be considered
that the administration of prebiotics, especially in early childhood, may be crucial for
microbiome composition and preventing children from developing IBD in later life.

3. Probiotics

Probiotics are live microorganisms that have a positive influence on the gut due to
modulating immune response, increasing the production of mucosal IgA and competing with
pathological bacteria [44,45]. There are 10 to 100 trillion microbes in the human intestine, and
they are commensal organisms that play an important role in humans—for instance, vitamin
B synthesis and the digestion process [46,47]—but a modern lifestyle makes it difficult to
maintain a healthy gut flora due to stress, hygiene and antibiotic use causing dysbiosis [48].
The biggest group of intestinal bacteria is lactic acid-producing bacteria (LAB), which produce
lactic acid during the anaerobic digestion of saccharides. Lactobacillus spp. are a main group
of bacteria in fermented food such as pickles, soured milk and kefir and are considered to
be safe for humans [49]. Due to the development of refrigerated food storage, the need for
food preservation by fermentation is diminished, as its consumption could influence the gut
microbiota and even cause dysbiosis [48].

Probiotics as live organisms should be able to reach the intestine and help maintain
homeostasis. Their most important mechanisms of action are dependent on the strain
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and include the production of components with antibacterial activity, such as lactic acid,
hydroperoxides and bacteriocins; blocking binding sites on epithelial cells; the upregulation
of tight junction molecules in mucosal barrier; the degradation of toxin receptors; the
modification of pH and competition for essential nutrients [23,24,50,51].

One of the greatest benefits of probiotics is modulating immunity and supporting the
immune system’s defenses. In patients with inflammatory bowel disease (IBD), chronic
inflammation of the intestine is caused by abnormal activation of the immune system, but
with strong participation of genetic and environmental factors, including pathogens [52].
Dendritic cells in the intestinal mucosa are involved in the regulation of the immune
system and influence the differentiation of Treg and Th17 as well as the production and
switching of IgA classes. Their activation may lead to pro-inflammatory cytokine produc-
tion (IL-17, IL-23) [53]. Probiotics influence the immune system in the mucosa layer of
the intestine and stimulate antibodies’ production by activating Toll-like receptors and
T helper 1 differentiation. Deregulation of the immune system reduces the Th17 population
and affects the Th17/Treg balance. Probiotics also promote phagocytosis and NK activity,
induce T cell apoptosis, stimulate the production of anti-inflammatory cytokines (IL-10,
TGF-β) and reduce pro-inflammatory cytokines (TGF-α, If-γ) [36,54,55].

3.1. Recent Clinical Trials on Probiotics in IBD

Several clinical trials have evaluated the effectiveness of probiotics in both remission
induction and maintenance of IBD, as well as distinguishing between Crohn’s disease
(CD) and ulcerative colitis (UC). Selected randomized controlled trials (RCTs) published in
recent years are presented below. Tamaki et al. [44] published a randomized and double-
blind study performed on 56 patients with mild or moderate UC. Twenty-eight patients
received Bifidobacterium longum 536, and twenty-eight were in the placebo group. After
8 weeks of observation, significant decreases in clinical activity of the disease, assessed by
Ulcerative Colitis Disease Activity Index (UCDAI) score, were observed in the study group
(p < 0.01) and not in the control group (p = 0.88), but the difference between groups was not
significant (p = 0.5). However, clinical improvement in rectal bleeding was observed. In
an endoscopic examination after 8 weeks of treatment, a reduction in endoscopic activity
assessed by Mayo scale in the study group was also observed (p < 0.01), with no statis-
tically significant reduction in the placebo group (p = 0.078). A clinical report presented
by Yoshimatsu et al. described the influence of probiotic therapy for preventing relapse
of UC in patients in clinical remission. Sixty patients 13 years or older were included
in a single-center, randomized, double-blind, placebo-controlled study and divided into
two even groups—30 of them were treated with Bio-Three (containing Streptococcus faecalis
T-110, Clostridium butyricum TO-A and Bacillus mesentericus TO-A), and the rest received
placebo. The observation was performed for one year, and the relapse rate was lower in
probiotic group after 3 (0.0% vs. 17.4%), 6 (8.7% vs. 26.1%) and 9 months (21.7% vs. 34.8%),
but results were statistically significant only after 3 months (p = 0.036). After 12 months of
treatment, 69.5% of patients in the Bio-Three group and 56.6% in the placebo group were
still in remission, but this difference was not significant (p = 0.248) [56]. Another study
based on fermented milk was an open-label randomized control, single-center, prospective
study performed by Yilmaz et al. on a group of 45 patients with IBD. The patients were
divided into two groups, with 24 consuming kefirs with Lactobacillus spp. and 20 controls.
The study group was administered 400 mL of kefir per day for 4 weeks. After this time,
significant decreases in ESR and CRP and higher increases in hemoglobin level in patients
with CD using kefir than in controls (p = 0.024 vs. p = 0.029) were observed. Additionally,
levels of bloating (p = 0.012) and a subjective feeling good score (p = 0.032) were significantly
improved in the last two weeks in patients with CD, and the results of the feeling good
score (p = 0.049) and abdominal pain reduction (p = 0.019) were statistically better than in
the group with UC in the last two weeks of the study [57]. Another source of probiotic bac-
teria is yogurt, which was used by Shadnoush et al. Their randomized, placebo-controlled
study included 210 patients with IBD and 95 healthy controls. After 8 weeks, they observed
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increased amounts of Lactobacillus, Bifidobacterium and Bacteroides in the feces of study group
participants compared to the control group with IBD (p < 0.001, p < 0.001, p < 0.01) and to
the healthy controls (p < 0.01, p < 0.01, p <0.05) [58]. Palumbo et al. published a research
study based on a group of patients with moderate-to-severe UC who were treated with
mesalazine and the probiotic blend (Lactobacillus salivarius, Lactobacillus acidophilus and
Bifidobacterium bifidus BGN4) or mesalazine alone for 24 months. The researchers observed
improvement in both groups of patients, but the results in a group treated with probiotics
and mesalazine achieved statistically significant improvement compared to the group
with mesalazine alone in endoscopic activity as determined by the Mayo Disease Activity
Index (p < 0.05 after 6, 12, 18 and 24 months), a physician’s global assessment (p < 0.05
after 24 months), stool frequency (p < 0.05 after 6 and 24 months), endoscopic picture
(p < 0.05 after 18 and 24 months) and rectal bleeding (p < 0.05 after 6, 18 and 24 months).
The authors conclude that combined therapy with mesalazine and probiotics could be
a good alternative to steroid treatment [59]. Another study comparing drug alone to drug
and probiotic was a study conducted by Fan et al. on a group of 40 patients with IBD.
Twenty-one of them were treated with mesalazine and Bifico (containing Enterococcus
faecalis, Bifidobacterium longum and Lactobacillus acidophilus) and nineteen with mesalazine
alone. After 40 days, significant decreases in Enterobacteria, Enterococci, Saccharomyces and
Bacteroides in stool samples of patients from both groups (to a lower value in the study
group) and increases in Bifidobacteria and Lactobacilli (more significant in study group)
(all p < 0.05) were observed. The researchers also found differences in inflammatory mark-
ers between groups—in the probiotics group, there were significantly lower levels of CRP
and IL-6, and higher level of IL-4 than in the mesalazine-only group (all p < 0.05). Fur-
thermore, levels of fecal lactoferrin, alpha-1-antitrypsin and beta-2-microglobulin were
significantly lower in the study group (all p < 0.05). However, the researchers pointed to
the small size of the group, short follow-up and low compliance [60]. Su et al. randomized
83 patients with CD to study groups treated with probiotics (Bifidobacterium, Lactobacillus)
with sulfasalazine and prednisone and treated with sulfasalazine alone. Additionally,
40 healthy, untreated people were recruited to the study as a healthy control group. After
treatment, levels of CRP, TNF-α and IL-10 significantly decreased in both CD groups (to
a lower value in the probiotic group) and reached the values of the healthy control group.
In the study group, better therapeutic efficiency than in the control group was achieved
(p < 0.05), and the infection rate in the control group was significantly higher (p < 0.05) [61].
A study performed by Bjarnason et al. in a group of 81 patients with UC and 61 with
CD randomized patients into two groups: multistrain probiotic medicament (Symprove
containing Lactobacillus rhamnosus NCIMB 30174, Lactobacillus plantarum NCIMB 30173,
Lactobacillus acidophilus NCIMB 30175 and Enterococcus faecium NCIMB 30176) and placebo.
The study took 4 weeks, and the scientists measured changes in quality of life and labora-
tory findings. They observed statistically significant improvement only in fecal calprotectin
in patients with UC treated with probiotics; the other measured parameters showed no
differences between the groups [62]. In 2015, Fedorak et al. performed a multi-center, ran-
domized, placebo-controlled trial on a group of 120 patients with CD who had undergone
ileocolonic surgical resection with a small intestine-to-colon anastomosis. Patients were
divided into the study group with VLS#3 (containing 900 billion viable bacteria, comprising
four strains of Lactobacillus, three strains of Bifidobacterium and one strain of Streptococcus
salivarius subspecies thermophilus) and the control group with placebo. During the study,
any significant differences in endoscopic signs of recurrence between groups were noticed
(9.3% in VLS#3 group vs. 15.7% in placebo group, p = 0.19), but the recurrence rate in
the placebo group was significantly lower. After one year of observation, patients who
started the treatment after surgery had lower rates of severe endoscopic recurrence than
the control group, who started VSL#3 from day 91 (10% vs. 26.7%, p = 0.09). In addition,
significant reductions in mucosal inflammatory cytokine levels were observed in patients
receiving probiotics compared to the placebo group (p < 0.05) [63]. As fermented milk is
a source of Bifidobacterium breve, a study performed by Matsuoka et al. examined the effect
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of the Bifidobacterium breve strain Yakult (BFM) on relapse-free survival of patients with
UC. No differences between groups in relapse-free survival, incidence of relapse or time to
worsening were observed [64].

The probiotics studies in IBD are collected in Table 2.

Table 2. Studies evaluating probiotics in IBD patients.

Study Subject Intervention Number of Patients Duration of the Study Outcome

Tamaki et al., 2016 Remission induction
in UC

Bifidobacterium longum
536 vs. placebo 56 8 weeks

Significant
improvement in UCDAI

(p < 0.01) and MAYO
score in study group; no

improvement in
control group

Yoshimatsu et al., 2015 Inactive UC Bio-Three vs. placebo 60 12 months

Lower relapse rate in
probiotic group after 3,

6 and 9 months
(statistical significance
only after 3 months);

remission rate higher in
probiotic group

than placebo
(69.5% vs. 56.6%,

p = 0.248)

Yilmaz et al., 2019 IBD Kefir vs. no intervention 45 4 weeks

Significant decrease in
ESR, CRP; increase in
hemoglobin, reduced

bloating and increase in
well-being in
study group

Shadnoush et al., 2015 IBD
Lactobacillus acidofilus,

Bifidobacterium
vs. placebo

210 patients with IBD,
95 healthy individuals 8 weeks

Significant increase of
Lactobacillus,

Bifidobacterium and
Bacterodies population in
study group (p < 0.001,

p < 0.001, p < 0.01)

Palumbo et al., 2016 Moderate-to-severe UC

Lactobacillus salivarius,
Lactobacillus acidophilus

and Bifidobacterium
bifidus strain BGN4 with

mesalazine
vs. mesalazine

60 2 years

Better improvement in
study group compared
to the control group in
recovery time, disease

activity and
endoscopic picture

Fan et al., 2019 IBD
Probiotic (Bifico) with

mesalazine vs.
mesalazine alone

40 40 days

Significant decrease in
hs-CRP and IL-6,

increase of IL-4 and
decrease in

fecal lactoferin,
alfa-1-antitripsin and

beta-2-microglobulin in
study group compared
to control (all p < 0.05)

Su et al., 2018 CD

Bifidobacterium and
Lactobacillus with
sulfasalazine and

prednisone
vs. sulfasalazine

83 + 40 healthy
individuals ?

Level decrease of CRP,
TNF-α and IL-10 in

both groups,
significantly lower in
study group (p < 0.05);

significantly higher
treatment effect in study
group (p < 0.05); higher
infection rate in control

group (p < 0.05)

Bjarnason et al., 2019 CD and UC Multi strain probiotic
(Symprove) vs. placebo

81 with UC
and 61 with CD 4 weeks

No significant
differences in IBD QoL;
no significant changes

in laboratory tests;
statistically significant
improvement in fecal

calprotectin level in UC,
but not in CD
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Table 2. Cont.

Study Subject Intervention Number of Patients Duration of the Study Outcome

Fedorak et al., 2015

CD after ileocolonic
surgical resection with

a small intestine to
colon anastomosis

VSL#3 vs. placebo 120 (58 in a study group,
62 in a control group) 90 days and 365 days

No significant
differences between

groups after 90 days; in
one-year observation,

lower incidence of
severe endoscopic

recurrence in a group
with VLS#3 from

post-resection (p = 0.09);
reduction in

inflammatory cytokine
levels in probiotic group
after 90 days (p < 0.05)

Matsuoka et al., 2018 Maintaining
remission in UC

BFM fermented milk
vs. placebo 195 48 weeks

No significant
differences

between groups;
study discontinued

3.2. Meta-Analyses of Probiotic Studies in IBD

So far, there have been several meta-analyses made summarizing the current research
on probiotics in IBD and giving new quality to the included studies.

A meta-analysis performed by Asto et al. evaluated 18 placebo-controlled studies,
published between 1997 and 2018, involving 1491 patients with UC who were treated with
probiotics, prebiotics or synbiotics vs. placebo. They did not see any significant effect in
maintaining remission in either placebo- or mesalazine-controlled studies, but it is worth
noting that they noticed that probiotics could help achieve remission in the active phase
of the disease [65]. Another meta-analysis published by Zhang et al. covered 38 studies
concerning the effects of not only probiotics (26 studies), but also prebiotics and synbiotics.
The results of the analysis showed that probiotics, prebiotics and synbiotics are effective
in achieving/maintaining remission, and their use decreased the disease activity index
in UC but not in CD. The use of probiotics also increased the population of Bifidobacteria
in the gut, and the use of synbiotics was of greater benefit than probiotics and prebiotics
alone [66]. A meta-analysis published by Jia et al. summarized 10 studies published
between 1999 and 2013, most of which (4) concerned E. coli Nissle and (3) VSL#3. The
analysis showed that there were significant differences between E. coli Nissle and mesalazine
in the remission, risk of recurrence or occurrence of complications between groups. In
the remaining evaluated studies, a statistically significant effect of the intervention on
remission and risk of recurrence was demonstrated in the studies with VLS#3, while none
of the probiotics showed differences in the occurrence of complications [67]. Puvvada et al.
assessed the change in QoL in IBD patients taking probiotics. They analyzed three RCTs—
two of them showed a significant improvement in patients’ QoL, and one study found no
difference. The researchers concluded that the results of their analysis may indicate that
probiotics improve the QoL of patients with IBD [68].

Probiotics are usually administered orally, but this is not the only possible way to
apply them. Fecal microflora transplantation is a therapeutic method already used in
the treatment of Clostridium difficile infection, but it may also be a promising approach
in IBD patients. Shen et al. published a paper summarizing reports on the effectiveness
of fecal flora transplantation in UC [69]. Most studies were conducted on small groups,
and although their results were inconsistent (effectiveness ranged between 20 and 92%),
fecal flora transplantation, especially repeated, could be a good therapeutic strategy in IBD
patients, but some additional RCT studies on large groups are required [26].

3.3. Side Effects of Probiotics Focused on IBD

In 2015, Meini et al. presented the case of a 64-year-old female patient with severe UC,
treated with steroids (prednisone), in which the administration of a Lactobacillus rhamnosus
GG caused bacteremia due to the translocation of bacteria from the intestinal lumen to
the blood [70]. In 2019, Dore et al. presented a review of the incidence of side effects in
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IBD patients treated with probiotics. They evaluated nine trials involving 826 patients.
The meta-analysis showed a higher percentage of reported side effects in the group of
patients taking probiotics, and this effect was visible in patients with UC—in the group
of patients with CD, no significant differences were observed between the groups with
the probiotic and the placebo. Patients treated with probiotics more frequently reported
gastrointestinal side effects, but statistically significant results were only obtained for the
occurrence of abdominal pain [71]. In 2020, the same authors presented a retrospective
cohort study on 200 patients with IBD (100 taking probiotics and 100 controls) and assessed
their incidence of adverse events related to the underlying disease, such as the need for
systemic steroids, hospitalization, and surgery. Most of the patients were administered
VSL#3, Lactobacillus reuteri (DSM 17938) and a mixture of S. thermophilus, L. acidophilus,
B. breve and B. animalis ssp. lactis. The assessment was performed depending on the disease
(UC or CD) and the duration of probiotic use (<24%, 25–75% or >75% disease duration).
The best results, lowering the risk of adverse events, were seen in patients taking probiotics
during >75% of disease course and were more evident in patients with UC [72].

Although probiotics are considered safe, it must be remembered that in people with
reduced immunity, side effects may occur, such as bacterial translocation and sepsis. The
benefits of probiotics, however, seem to outweigh the risk of possible side effects in IBD
patients, and they may be protective against the side effects of the IBD.

4. Synbiotics

Synbiotics are combined probiotics and prebiotics which can show a synergistic bene-
ficial effect on host health [73,74]. Probiotics and prebiotics in combination are considered
a promising novel approach, and there is currently an opportunity to evaluate their efficacy
and potential use in IBD in humans. However, only a few studies have already been
published supporting the use of synbiotic supplementation in IBD. The most frequent syn-
biotic formulae include Lactobacillus GG and/or Bifidobacteria with fructooligosaccharides
and/or inulin.

Steed et al., in their randomized, double-blind and placebo-controlled study on
35 subjects with active CD in an intervention group, evaluated the influence of synbi-
otics consisting of Bifidobacterium longum and a mix of inulin and FOS. Initially, 35 patients
were enrolled to the study, but only 13 patients in the synbiotic group and 11 in the placebo
group finished the study and were analyzed. Patients with active CD were randomized to
receive 6 g per day of either a synbiotic comprised of a mix of inulin and FOS (Synergy 1)
or placebo for 6 months, outside of conventional therapy they received before the enroll-
ment. Clinical response, serum inflammatory markers, cytokine concentrations in mucosal
biopsies and probiotic concentrations on the intestinal mucosa were assessed. Authors
reported significant improvement in clinical outcomes and decreases in the clinical and
histopathological activity of CD, as well as increases of Bifidobacteria species in the intestine
in synbiotic patients compared to the placebo group, accompanied by a significant decrease
in TNF-α in mucosal specimens after 3 months, but not after 6 months [75].

Furrie et al., in a randomized, double-blind and placebo-controlled study, evaluated
the same mix of probiotic and prebiotics (Synergy 1) in active UC patients. They enrolled
18 patients with active UC and randomized them to receive a synbiotic including the
probiotic Bifidobacterium longum and Synergy 1 (mix of inulin and FOS) twice daily for
a period of a month. Authors reported no significant differences between clinical activity
(p = 0.06) but a significant reduction in the endoscopic and histopathological activity in
the rectal mucosal specimens. Additionally, the significant decrease in serum CRP and
mucosal human beta defensins 2, 3, 4, TNF-α and IL-1 α were found in the synbiotic group
compared to the placebo group [76]. Chermesh et al., in a randomized, double-blind and
placebo-controlled study, assessed Synbiotic 2000, a synbiotic consisted of four probiotics
(Pediacoccus pentosecens, Lactobacillus affinolactis, Lactobacillus paracasei susp paracasei 19 and
Lactobacillus plantarum 2362) and four prebiotics (β-glucan, inulin, pectin and resistant
starch). The study included 20 patients in an intervention group treated with Synbiotic
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2000 once daily for 24 months and 10 patients in a placebo group. There were no significant
differences between the synbiotic and placebo groups in clinical symptoms, laboratory
markers or endoscopic activity [77]. Fujimori et al., in their randomized, controlled trial,
assessed the efficacy of the probiotic, prebiotic and synbiotic treatments in improving the
QoL in patients with UC. There were 120 patients with active and inactive UC enrolled to
the study. They were randomized into three groups, the first one treated with probiotic
Bifidobacterium longum, the second one with prebiotic psyllium and the third one with
synbiotic consisted of B. longum and psyllium for 4 weeks. At the end of the study, the
authors observed significant improvement in the QoL in the synbiotic group compared to
the probiotic and prebiotic groups. Additionally, serum CRP significantly decreased in the
synbiotic group [78]. Another study published by Ishikawa et al. assessed the efficacy of
Bifidobacterium breve strain Yakult and GOS treatment in UC patients. There were 41 patients
with mild-to-moderate UC enrolled to the study, then they were divided to two groups, one
with standard therapy and synbiotic treatment for one year and one with standard therapy
alone. The results of the study showed a decrease in clinical and endoscopic activity after
one year of the synbiotic treatment compared to the non-synbiotic group. Moreover, the
amount of myeloperoxidase in the rectal lavage assessed after the treatment also decreased
compared to the baseline amount in the synbiotic group [79]. Studies evaluating synbiotics
in IBD patients are summarized in Table 3.

Table 3. Studies on synbiotics in IBD.

Study Subjects Intervention Number of Patients Duration of the Study Outcome

Steed H et al., 2009 Active CD

Bifidobacterium longum
and a mix of inulin and

FOS vs. placebo
(Synergy 1)

35 with CD 6 months

Significant decrease of
clinical and histological

activity of CD;
significant reduction of

TNF-α in mucosal
specimens after

3 months

Furrie E et al., 2005 Active UC

Bifidobacterium longum
and a mix of inulin and

FOS vs. placebo
(Synergy 1)

18 with UC 1 month

No significant
differences between
clinical activity, but

significant reduction of
endoscopic and

histopathological
activity in the

mucosal specimens,
accompanied by

decrease of hBD 2, 3, 4,
TNF-α and IL-1 α

Chermesh I et al., 2006 CD patients after
surgical resections Synbiotic 2000 30 with CD 24 months

No significant
improvement in clinical,

laboratory or
endoscopic activity

Fujimori S et al., 2009 Active and inactive UC

Bifidobacterium longum
and psyllium alone and

their combination
as synbiotic

120 with UC 4 weeks

QoL significantly
increased in synbiotic

group compared to
probiotic and prebiotic

groups; CRP
significantly decreased

in synbiotic group

Ishikawa H et al., 2011 Maintaining remission
in UC

Bifidobacterium breve
strain Yakult and GOS 41 with active UC 12 months

Significant reduction of
clinical and endoscopic
UC activity in synbiotic

group; decrease of
myeloperoxidase

amount in rectal lavages
as disease activity

However, the approach of investigating the effects of synbiotics on the pathogenic
mechanisms of gut inflammation, perhaps to find a potential treatment for IBD and other
gut-related disorders, is a new area of research [80]. Therefore, more human and animal
studies are needed to collect convincing data and provide a better understanding of their
direct effects on health, particularly in IBD.
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5. Paraprobiotics

The use of probiotics can be dangerous for some people, for example those with
reduced immunity, an impaired intestinal barrier, sepsis and premature babies [81,82].
Hence, the concept of administering inactivated bacterial strains, bacterial fragments and
products of their metabolism to obtain similar therapeutic effects is highly useful [83,84].
The dead probiotic microbial cells and cell constituents are presently called paraprobiotics.
The term paraprobiotics was first used by Taverntiti et al. in 2011 [85].

Paraprobiotics are non-viable and thus easier to store and manufacture, and their
mechanism of action is more predictable than probiotics [86,87]. The commercial production
process consists of cultivating selected strains of microorganisms and then inactivating
them. In the process of their inactivation, methods such as ionizing radiation, ultraviolet
rays, high pressure drying and pH changes are used [87]. The subsequent production
steps include cleaning processes, e.g., by centrifugation, extraction, and column purifi-
cation. Their advantages also include the lack of risk of bacterial translocation, a lack
of risk of transferring antibiotic resistance genes and being easier to produce, transport
and store [88]. Due to the lack of bacterial multiplication, paraprobiotics are adminis-
tered in strictly adequate amounts, so their therapeutic effects are more precise and re-
producible. For all these reasons, paraprobiotics were successfully used even in preterm
neonates’ treatment, in which the immune system was compromised [89]. Among the
thousands of microorganisms that make up the intestinal microbiome, a dozen or so strains
of particular health-promoting importance have been selected and used as paraprobiotics,
namely Bifidobacterium lactis Bb12, Bifidobacterium longum, Lactobacillus gasseri OLL2716,
Saccharomyces cerevisiae, Lactobacillus brevis SBC8803 and Lactobacillus delbrueckii subsp. bul-
garicus OLL1073R-1 [86]. The action of paraprobiotics is multidirectional, but the most
important of them is their immunomodulation [90]. Proteins and peptides; polysaccharides,
including glucans; and fragments of genetic material in the form of AT DNA (e.g., derived
from Lactobacillus spp.) have such an effect. For instance, proteins and peptidoglycans of
lactic acid bacteria and lipoteichoic acid from Gram-positive bacteria can stimulate the im-
mune system or inhibit the excessive response of monocytes [91]. There are no direct studies
in IBD patients, but several in vitro studies showed potentially beneficial immunomod-
ulatory effects of paraprobiotics in this group of patients. Fang et al. [92] demonstrated
a reduction in the expression of monocyte chemoattractant protein 1 (MCP-1) (p < 0.05) and
regulation of the expression of TNF-α and IL-12 (p < 0.05) in an in vitro model of intestinal
mucositis using Caco-2 cells and inactivated L. rhamnosus. Additionally, Lopez et al. [93]
showed anti-inflammatory properties in Caco-2 cells by ultraviolet-inactivated Lactobacil-
lus rhamnosus GG (LGG). UV-inactivated LGG decreased IL-8 production induced with
flagellin (p < 0.05), and flagellin induced NFκB nuclear translocation, so stimulation of
this pro-inflammatory cytokine synthesis was diminished [94]. In addition, some of the
paraprobiotic proteins can help regenerate the mucosa and intestinal walls [95], and yeast
cell wall components such as β-(1,3)-D-glucan, β-(1,6)-D-glucan, chitin and mannoproteins
improve digestion [96–100].

In summary, the use of paraprobiotics, for which there is no risk of inducing side effects
related to compromised immunity, may be a good alternative for IBD patients, combining
the benefits of probiotics and eliminating the possibility of adverse events. Paraprobiotics
have been proven to have anti-inflammatory, immunomodulatory, anti-proliferative and
antioxidant properties in in vitro studies which seem to be very promising in preventing
and alleviating the symptoms of IBD in humans.

6. Postbiotics

The term postbiotics, sometimes also not-quite-correctly called metabiotics, has been
recently limited to metabolites/CFS (cell-free supernatants) and soluble factors (products
or metabolic byproducts) secreted by live bacteria [89]. The term metabiotics refers to
the structural components of probiotic microorganisms and/or their metabolites and/or
signaling molecules with a determined chemical structure that can optimize host-specific
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physiological functions and regulatory, metabolic and/or behavior reactions connected
with the activity of host indigenous microbiota [101,102]. They are found in any fermented
food, e.g., kefir, kimchi, sauerkraut, tempeh, yogurt and certain pickles, as well as inside
the human body. The most important postbiotics are organic acids, short chain fatty acids
(SCFA), tryptophan (Trp) and bacteriocins. The benefit of using postbiotics may be direct or
indirect [102]. Direct benefits result from the action of postbiotics on the host cells. Indirect
benefits are the promotion of the expansion of microbial strains considered beneficial to
health and the inhibition of the development of negative strains. The mechanisms of action
are discussed later in the article. Depending on the type of microorganism, the strain and
the metabolism product, the effects of postbiotics are very different, as is the case with
prebiotics. The most important beneficial effects of postbiotics, SCFA in particular, are their
anti-inflammatory and antioxidant properties [103].

6.1. SCFA

SCFAs are produced by the fermentation of non-starch polysaccharides (NSP), dietary
fiber and resistant starch in the human intestine [104,105]. A particularly important role is
assigned to dietary fiber [106]. The composition of SCFA depends on the substrates and the
microorganisms digesting these substrates. The resulting products have two to six carbon
atoms in the aliphatic chain [103]. There are three main SCFAs: acetic acid (AA), propionic
acid (PA) and butyric acid (BA). Those SCFA are produced in almost all parts of the intestine,
but mainly in the proximal part of the large intestine [103]. The proportions between SCFAs,
as well as the total concentration of SCFA, are not constant. They depend on the diet, age
and disease of the patient [107]. The optimal acetate, propionate and butyrate ratio in the
large intestine is 60:25:15, and the SCFA total concentration is between 70 and 140 mM [108].
A correct SCFA ratio helps maintain immune system homeostasis. The interaction of SCFA
with cells of the immune system takes place through the free fatty acid receptors (FFAR),
a group of G protein-coupled receptors presented on the cell membrane. The majority (95%)
of SCFAs are absorbed into the portal vein and transported to the liver, where they are
further transformed or degraded. Less than 5% of SCFAs are excreted with the feces [109].
SCFAs as organic acids have the potential to acidify the environment. Some researchers claim
that it is beneficial, having improved the bioavailability of metals and provided a protective
barrier against the colonization of pathogenic microorganisms [110,111]. However, others
suppose that the acidification of intestinal contents may damage the intestinal barrier [112].

6.1.1. Butyric Acid (BA)

BA is one of the most potent SCFAs despite making up a relatively low percentage
of SCFA (around 15%). In humans, BA acts in two ways: intestinal and parenteral. The
intestinal effects of BA are multidirectional. BA serves as one of the primary energy sources
for colonocytes and has a protective effect by increasing the expression of mucin genes
such as MUC2 and, consequently, increasing mucin production [113]. BA has a stimulating
effect on the proliferation of enterocytes and inhibits the growth of colon cancer cells. This
effect is called the “butyrate paradox”. It results from the inhbition of histone deacetylase
(HDAC) [114]. Butyrate inhibits the activity of the NF-κB complex in cells of the immune
system. In this way, the expression of genes responsible for the synthesis of the major pro-
inflammatory cytokines TNFα, IL-1β, IL-2, IL-6, IL-8 and IL-12 is reduced. Some important
qualities of BA are its antioxidant potential and its ability to increase the amount of reduced
glutathione [115]. Attempts have been made to support IBD treatment with rectal infusions
of butyric acid or to administer it orally in the form of various preparations [116–118].
However, the results of the studies are inconclusive. Doubts exist with respect to the effects
of treatment, the sample size and the poor availability of preparations with a standardized
release of butyric acid [119]. The parenteral effect of BA is also based on the inhibition
of HDAC and contributes to the improvement of anemia, common in IBD, by promoting
hemoglobin synthesis and increasing the number of reticulocytes [120]. Most butyrate is
metabolized by the colonic epithelium, resulting in low levels of butyrate in the portal
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vein, ranging in humans from 1.3 to 14.4 µM [121–124]. BA binds specifically to the
GPR109A receptor. The receptor is expressed in adipocytes and cells of the immune system
(dendritic cells, macrophages, monocytes, neutrophils) [125]. Activation of the receptor
causes the secretion of anti-inflammatory IL-10 and aldehyde dehydrogenase (ALDH1).
It also supports the detoxification process and removal of electrophilic compounds in
addition to enhancing Treg lymphocyte differentiation [126].

6.1.2. Propionic Acid (PA)

Propionic acid is comprised of three carbonic acids and occurs naturally in milk and
other dairy products. It is produced in the process of natural fermentation by Propionibac-
terium. It is also added as a food preservative. It has antibacterial and antifungal properties.
However, PA delivered with the diet is a small amount as compared to PA produced in
the intestine [127]. In the colon, PA is produced by the fermentation of polysaccharides
and oligosaccharides and the degradation of long chain fatty acids, proteins, peptides and
glycoproteins by the anaerobic microbiota [104]. In contrast to BA, most of the PA produced
in the intestines is absorbed and transported through the portal vein. Then, about 90% of
the absorbed PA is metabolized by the liver [128]. The protective action of PA is based on
preventing colonization of the intestinal lumen by pathogenic bacteria from the Salmonella
family. It is carried out by inhibiting the genes of invasive bacteria [129]. PA also inhibits the
activity of COX enzymes by inhibiting the formation of prostaglandins or prostacyclin and
inhibiting the development of local inflammation [130]. The anti-inflammatory properties
of PA are seen at high concentrations, above 3 mM, which may be present in the intestine.
At such concentrations, PA inhibits lymphocyte proliferation and activates the secretion
of anti-inflammatory resistin in adipose tissue. In addition, a high concentration of PA
inhibits LPS-stimulated TNF-α release by human neutrophils and endothelial cells [131].
PA is the most potent ligand of GPCR43. This receptor is strongly exposed to cells of the
immune system, which proves a strong relationship between the PA produced by bacteria
and the immune system [132].

6.1.3. Acetic Acid (AA)

There is also a lot of controversy around AA. Elevated concentrations of AA may
promote the growth of neoplastic tissue. During hypoxia, AA is an epigenetic modulator
that promotes lipid synthesis in neoplastic cells [133] and thus blunts tumor proliferation.
The mechanism of this reaction is not fully understood, but it is related to histone h3 hyper-
acetylation in hypoxic cells. Another study showed that elevated AA levels promote the
onset of metabolic syndrome. It has been proven in an animal model that activation of the
parasympathetic system by an excessive amount of AA produced by the intestinal micro-
biome causes an increase in insulin and ghrelin secretion and, consequently, hyperphagia
and obesity [134]. AA functions based on interaction with the GPR43 receptor [135,136].

6.2. SCFAs in Treatment of IBD

SCFAs are considered a promising adjuvant therapy in the current clinical manage-
ment of patients with active IBD. Various approaches have been used, including butyrate
enemas and combinations of different SCFAs.

In 2002, Lührs et al., in their study, compared the effectiveness of a butyrate enema
versus a placebo. Their patients used enemas twice daily for 8 weeks. The enemas consisted
of 60 mL of 100-mM sodium butyrate. Eleven people with UC were qualified for the study.
Six patients received butyrate enemas and five received placebo. Patients treated with
sodium butyrate displayed a significant reduction in the number of macrophages with the
expression of NF-kB. At first, a colonoscopy was performed, and mucosal biopsies were
obtained. Follow-up examinations after 4 and 8 weeks included a rectosigmoidoscopy. In
this study, two biopsies were taken from the rectum (10 cm from the anal verge) and an-
other two biopsies from the rectosigmoid junction (20 cm from the anal verge). In addition,
butyrate significantly reduced the number of neutrophils in crypt and surface epithelia and
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the lamina propria lymphocytes/plasma cells. The results correlated with a decline in the
Disease Activity Index (DAI). In patients not treated with butyrate, NF-kB was observed in
all macrophages [113]. Senagore et al. in 1992 compared the effectiveness of corticosteroid,
mesalazine and SCFA enemas in patients with proctosigmoiditis (in the course of UC). They
received SCFA mixed in a ratio of 46% acetate to 23% propionate to 31% butyrate in enemas
twice daily for 6 weeks. The total concentration was 130 mM, with a volume of 60 mL.
This study performed a randomized, prospective comparison of corticosteroid (enemas of
100 mg of hydrocortisone, n = 12) and mesalazine enemas (4 g of mesalazine, n = 19) with
SCFA (n = 14). Recovery occurred in a similar proportion in patients of these three groups.
This study indicates that SCFA enemas are equally efficacious as CS or mesalazine enemas
for the treatment of UC [137]. Vernia et al., in their research from 1995, used enemas twice
daily for 6 weeks with a mix of SCFA in the proportion of 53% sodium acetate, 20% sodium
propionate, 27% sodium butyrate. The total concentration was 150 mM, with a volume of
100 mL. Nineteen patients participated in the study, fourteen were treated with SCFA and
five received a placebo. In the SCFA-treated group, health benefits such as decreases in in-
testinal bleeding (p < 0.05) and urgency (p < 0.02), as well as a raised patient self-evaluation
score (p < 0.05) compared to placebo-treated group, were observed. No group displayed
a difference in the number of bowel motions [138]. In 2010, Hamer et al. used 60 mL of
rectal enemas containing 100-mM sodium butyrate (n = 17) or saline (n = 18) for 20 days
in patients with distal UC in clinical remission. Butyrate enemas induced minor effects
regarding colonic inflammation and oxidative stress. Only a significant increase of the
colonic IL-10/IL-12 ratio was found within butyrate-treated patients (p = 0.02), and colonic
concentrations of CCL5 were increased after butyrate compared to placebo treatment
(p = 0.03). Furthermore, the effect of butyrate on colonic glutathione levels has been proven,
but in general, butyrate did not affect glutathione levels in colonic biopsies [115]. In 1992,
Scheppach et al. enrolled 10 patients with distal UC treated with oral corticosteroids or
mesalazine in whom conventional therapy was unsuccessful for 8 weeks. They were treated
for 2 weeks with sodium butyrate (100 mM) enemas and 2 weeks with placebo in a random
order (single-blind trial). After butyrate irrigation, stool frequency (n/day) decreased from
4.7 +/− 0.5 to 2.1 +/− 0.4 (p < 0.01), and discharge of blood ceased in 9 of 10 patients.
The authors developed a scale against which they assessed the endoscopic and histolog-
ical results. The endoscopic examination was based on the appearance of the intestinal
mucosa, while the histological examination was based on H&E staining for inflammatory
changes. The endoscopic score fell from 6.5 +/− 0.4 to 3.8 +/− 0.8 (p < 0.01). The histo-
logical degree of inflammation decreased from 2.4 +/− 0.3 to 1.5 +/− 0.3 (p < 0.02). There
were no such changes in the placebo group [139]. Scheppach et al., also in 1996, conducted
another study on the effects of SCFA on IBD. They administered 60-mL enemas of 130-mM
SCFA (46% acetate, 23% propionate, 31% butyrate), 100-mM butyrate or saline placebo to
47 patients with active distal ulcerative colitis twice daily for 8 weeks. The effects were
assessed immediately and after 4 and 8 weeks of therapy. The DAI was decreased but
not statistically significant. The endoscopic appearance of the mucosa and the histologic
degree of inflammation were not different among the groups. After eight weeks, fewer
colonic segments were affected endoscopically following butyrate treatment than placebo.
This study showed trends towards a beneficial effect of SCFA [140]. Steinhart, in 1996,
examined 38 patients with distal ulcerative colitis who were randomly assigned to receive
nightly 60-mL enemas of butyrate at a concentration of 80 mM (n = 19) or placebo (n = 19)
for 6 weeks. Patients were assessed clinically and endoscopically at baseline and 3- and
6-week follow-ups. Pre- and posttreatment mucosal biopsies were assessed histologically.
Clinical improvement was seen in seven subjects treated with butyrate and nine subjects
treated with placebo. The efficacy of treatment with butyrate enemas was not proven [141].
Additionally, in 1997, Breuer et al. did not notice any improvement after using SCFA ene-
mas. In their study, 103 patients with distal ulcerative colitis were entered into a six-week,
double-blind, placebo-controlled trial using 100 mL of 150-mM SCFA enemas (53% acetate,
20% propionate, 27% butyrate) twice daily for 6 weeks. Of the 91 patients completing the
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trial, 33% of patients in the SCFA-treated and 20% in the placebo-treated group improved
during the study. The difference suggests a trend but was not statistically significant.
Those treated with SCFA also had better, but also statistically insignificant, reductions in
every component of their clinical and histological activity scores. Only patients with colitis
dating back less than 6 months responded more to SCFA than to placebo (48% vs. 18%,
p = 0.03) [142]. The results of SCFA studies are summarized in Table 4.

Table 4. SCFAs in the treatment of IBD.

Author/Year Study Clinical Group Relevance

Lührs H. et al., 2002 60 mL of 100-mM sodium butyrate enemas
twice daily for 8 weeks 6 with UC

Butyrate treatment for 4 and 8 weeks
resulted in a significant reduction in the
number of macrophages being positive

for nuclear translocated NF-kappaB.

Senagore AJ et al., 1992
60 mL of 130-mM SCFA (46% acetate,

23% propionate, 31% butyrate) enemas
twice daily for 6 weeks

40 with UC SCFAs equally efficacious to
corticosteroids or 5-aminosalicylic acid

Vernia P. et al., 1995
100 mL of 150-mM SCFA (53% acetic,

20% propionate, 27% butyrate) enemas
twice daily for 6 weeks

14 with UC Low intestinal bleeding, urgency, rise
patient self evaluation score

Hamer HM. et al., 2010 60 mL of 100-mM sodium butyrate enemas
for 20 days 17 with UC

A significant increase in the colonic
IL-10/IL-12 ratio was found within

butyrate-treated patients

Scheppach W. et al., 1992 100 mL of 100-mM butyrate enemas twice
daily for 2 weeks 10 with UC Low stool frequency and endoscopic

and histological scores

Scheppach W. et al., 1996

60 mL of 130-mM SCFA (46% acetate,
23% propionate, 31% butyrate) vs. 100-mM

butyrate vs. placebo
60 mL twice daily for 4–8 weeks

47 with UC No differences between groups.

Steinhart AH 1996 60 mL of 80-mM butyrate enemas
for 6 weeks 38 with UC No differences in the study group

Breuer RI 1997
100 mL of 150-mM SCFA (53% acetate,
20% propionate, 27% butyrate) enemas

twice daily for 6 weeks
103 with UC No therapeutic value

Most of the research described supplementation of SCFA in active phases of UC.
The results are inconsistent; some studies have described the beneficial effect of SCFA on
clinical parameters as well as patients’ well-being, while other studies have not found any
significant improvement [143].

6.3. Tryptophan (Trp)

One of the main elements of the immune balance in the gut is tryptophan and its
metabolites [144,145]. Tryptophan is a critical regulator of inflammation involved in the fine-
tuning of adaptive immunity, mucosal barrier function and the maintenance of intestinal
homeostasis [146]. The metabolism of Trp in the intestine consists of three main pathways:
(1) direct metabolism by the intestinal microbiome, (2) kynurenine pathway in the host’s
cells and (3) enzymatic transformation to serotonin (5-HT). The intestinal microbiome
metabolizes tryptophan, which regulates the amount of tryptophan available to the host,
influencing serotonin and the immune system [147]. Many products of the microbial
metabolism of tryptophan, such as indole-3-acetic acid, tryptamine, indole-3-aldehyde
(I3A), indole-3-acid-acetic (IAA), indole-3-propionic acid (IPA), indole-3-acetaldehyde
(IAAl) and andindoleacrylic acid, are ligands for the aryl hydrocarbon receptor (AhR). AhR
is a transcription factor that mediates the expression of genes involved in the metabolism
of xenobiotics, including dioxins or drugs metabolized by the cytochrome P450 complex.
Tryptophan metabolites produced by microorganisms such as AhR ligands are crucial
in protecting the mucosa against inflammation. The AhR can directly promote specific
genes, including IL-6, IL-22, PTGS2 VEGFA and cytochrome P450 1A1, which is a direct
AhR transcription target providing a feedback loop for AhR signaling [148,149]. AhR
signaling is considered a key component of the immune response at barrier sites and is
thus crucial for intestinal homeostasis by acting on epithelial renewal, barrier integrity
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and many immune cell types, such as epithelial lymphocytes, Th17 cells, innate lymphoid
cells, macrophages, dendritic cells and neutrophils. Metabolism of tryptophan by the
intestinal microbiome leads to the production of bioactive postbiotic derivatives such as
indole acetate and propionate indole. These compounds have proven anti-inflammatory
effects [150]. This suggests that decreased Trp metabolism among gut microbes may
adversely affect IBD [151,152]. In an animal model, decreased concentrations of indole
acetate and indole propionate have been demonstrated in the course of IBD. Host enzymes
involved in tryptophan metabolism have a beneficial effect in relieving IBD symptoms. The
IDO1 enzyme is involved in the regulation of acquired immunity. The enzyme catalyzes
the conversion of tryptophan by kynurenine. Overexpression of IDO1 is observed locally
in the gut and systemically. This hypothesis is confirmed by the higher activity of IDO1
in IBD compared to inactive IBD patients and the negative correlation between the levels
of Trp and C-reactive protein [153]. The presence of the enzyme is observed in intestinal
mononuclear cells such as T lymphocytes. These cells are present in inflammatory infiltrates
located in the intestinal wall [154]. The role of the IDO1 receptor in immunosuppression is
multifaceted and includes the suppression of CD8+ T effector cells and NK cells, as well as
the increased activity of TregCD4 + regulatory cells [155]. Patients with IBD have elevated
levels of tryptophan metabolites (kynurenine and kynurenic acid) and a decreased level
of tryptophan in plasma. Similar findings are seen in the GI tract. It is suggested that
pro-inflammatory cytokines such as IL-2, IL-6 and TNF-α promote the catalytic conversion
of tryptophan to its metabolites. In patients with IBD, increased expression of IDO1
has been observed on peripheral blood lymphocytes and lymphocytes present in the
colon [156]. Moreover, these patients have elevated levels of serotonin in the intestinal
mucosa. This has been suggested to be of importance in the development of intestinal
inflammation [157]. About 1–2% of ingested Trp is metabolized to serotonin. Serotonin
affects not only the CNS but also the gastrointestinal tract. Approximately 90% of total
serotonin is produced in enterochromatophilic cells. 5-HT is an important gastrointestinal
signaling molecule that transmits signals from the gut’s neurons and influences gut motility,
vasodilatation, secretion and nutrient absorption [158]. Changes in Trp and its metabolites
in the disease suggest that they may be therapeutic targets. For example, the administration
of Lactobacillus, which naturally produces AhR agonists, alleviates colonic inflammation
in mice with genetically induced dysbiosis, suggesting potential therapeutic applications
in IBD [159]. Similarly, Lactobacillus reuteri, by producing the AhR agonist indole-3-lactic
acid, can reprogram intraepithelial CD4+ T cells into CD4+ CD8aa+ immunoregulatory
T cells [160]. When IDO1 is over-activated, such as in inflammatory bowel conditions, the
reduced availability of Trp may contribute to the lower production of AhR agonists by the
gut microbiota. In this situation, Trp supplementation helps to alleviate the symptoms of
colitis in mice and pigs with induced inflammation [161,162].

7. Conclusions

The majority of described studies have significant limitations, such as small study pop-
ulations and a lack of analysis with concomitant treatment, including immunosuppressants,
steroids and aminosalicylates, which can affect outcome.

Nevertheless, prebiotics have yet to be shown to have any positive effect in IBD, but
to date, published controlled trials have been small. The administration of probiotics may
pose some risk for the patients and should not be assumed to be innocuous, especially when
ingested by patients with an impaired intestinal barrier. Prebiotics may not be harmful but
may relate to some gastrointestinal side effects. Finally, the time of administration of prebi-
otics, especially in early childhood, may be important to shape the bacterial microbiome of
the gastrointestinal tract and its predisposition to or prevention of the development of IBD.
Finding ways to impact the gut microbiome to alter the course of IBD makes good sense
but should be undertaken in the setting of rigorously performed controlled trials to ensure
that the interventions are truly effective and well-tolerated.
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Research on the use of probiotics in IBD shows inconclusive results. There are indi-
cations that selected probiotics may be effective in inducing and maintaining remission,
but this effect is more pronounced in UC patients than in CD patients. Among the avail-
able probiotics, VLS#3 brings the greatest benefit from supplementation, although not
all studies confirm this effect. The use of multi-strain probiotics appears to bring more
benefits to patients than the administration of single-strain probiotics. Due to the large
number of probiotics whose effects are assessed by clinical trials, it is difficult to compare
the results between individual studies [56–64]. More research is needed to assess the effects
of individual probiotics in IBD patients.

Although synbiotics seem to have more health benefits for the host organism than
probiotics or prebiotics alone, it is impossible to draw definitive conclusions because of
the variation in their benefits, likely based on the different combinations of the types and
doses of prebiotics and probiotics.

Paraprobiotics are non-viable and thus easier to store and manufacture, and their
mechanism of action is more predictable than probiotics. Their advantages also include
the lack of risk of bacterial translocation, the lack of risk of transferring antibiotic resis-
tance genes, the effect on epithelial cells being more precise and being easier to produce,
transport and store. The use of paraprobiotics, for which there is no risk of inducing side
effects related to compromised immunity in patients with IBD, may be a good alternative,
combining the benefits of probiotics and eliminating the possibility of adverse events, but
this should be proven by RCT studies.

Research on postbiotics, especially SCFA, nowadays is not so common. Because studies
were not standardized, the results are inconsistent; however, most of them have described
the beneficial effect of SCFA. Extensive research is needed to link specific prebiotics to
specific probiotics and the resulting postbiotics in IBD patients.

A potential area for future research, besides properly designed studies on parapro-
biotics and postbiotics in IBD patients, is the personalized combination of prebiotics and
probiotics or paraprobiotics and postbiotics, especially if patient-dedicated (personalized)
nutritional intervention in IBD patients is a very important part of modern IBD therapy.
Such personalized holistic therapy, biotics in combination with nutritional and pharmaco-
logical therapy, will increase the effectiveness of treatment while reducing side effects.

Author Contributions: Conceptualization, P.J.T. and A.W; methodology, P.J.T., A.W., S.S., A.M.,
A.M.-P.; data search, A.M.; A.M.-P.; formal analysis, A.M., A.M.-P.; A.W., P.J.T., S.S.; writing—original
draft preparation; A.M., A.M.-P.; writing—review and editing, A.W., P.J.T., S.S.; supervision, P.J.T.,
A.W.; project administration, P.J.T. and A.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
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