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Abstract: The first fully integrated 2D CMOS imaging sensor with on-chip signal 
processing for applications in laser Doppler blood flow (LDBF) imaging has been designed 
and tested. To obtain a space efficient design over 64 × 64 pixels means that standard 
processing electronics used off-chip cannot be implemented. Therefore the analog signal 
processing at each pixel is a tailored design for LDBF signals with balanced optimization 
for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages 
over conventional sensors, viz. the analog signal processing at the pixel level carries out 
signal normalization; the AC amplification in combination with an anti-aliasing filter 
allows analog-to-digital conversion with a low number of bits; low resource implementation 
of the digital processor enables on-chip processing and the data bottleneck that exists 
between the detector and processing electronics has been overcome. The sensor demonstrates 
good agreement with simulation at each design stage. The measured optical performance of 
the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. 
Images showing blood flow changes with arterial occlusion and an inflammatory response 
to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood 
flow signals from tissue. 
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1. Introduction 

Laser Doppler blood flow measurements [1–3] have been used as a clinical tool for measuring 
microcirculation in superficial tissue for many years. Its wide range of clinical applications includes 
studies of allergic reactions [4], burn depth assessment [5], skin cancer diagnosis [6], assessment of 
skin diseases [7] and investigating the effects of transdermal drug delivery [8]. Blood flow is a velocity 
dependent parameter which has been defined as 

ω ω ω
ω

ω
 (1)

where ωi = 2πfi, i = 1,2, f1 and f2 are typically 20 Hz and 20 kHz respectively [2]. P(ω) is the power 
spectrum of the photocurrent fluctuations. The integral is often normalized by the power of the DC 
signal to remove the effects of laser power fluctuations and skin reflectance variations. 

The first skin blood flow measurement was performed by Stern [1] over 30 years ago, using a low 
power collimated beam to illuminate a small area of skin. In clinical applications such as studies of 
burn depth assessment and plastic surgery the spatial variations in blood flow are important, tissue 
perfusion should therefore be assessed by an imaging technique rather than a single point method. 
Some solutions use a single laser beam scanning over an area of interest to build up a flow image [9,10], 
however, the acquisition time is relatively long due to the necessary mechanical scanning. For example 
a typical commercially available system [11] can take up to 5 min to obtain a 256 × 256 image  
(4 ms per pixel). For this reason a line scanner utilizing a 64 × 1 photodetector array has been 
developed which can provide 64 × 64 pixel images in 4 s [12]. 

An alternative technique for blood flow imaging is Laser Speckle Contrast Analysis (LASCA) [13–15], 
in which a full frame CCD camera is employed to acquire speckle images and a block of pixels is used 
to calculate the speckle contrast. According to the theory the measured speckle contrast is proportional 
to the velocity of the moving blood cells. Although LASCA provides a cost effective method for real-time 
blood flow imaging the measurement results are exposure time dependent [16] and the spatial 
averaging performed across a sub-array (often 5 × 5 or 7 × 7 pixels) [15] results in a reduction in spatial 
resolution. Furthermore a model linking measurement and flow has been demonstrated for laser 
Doppler blood flow (LDBF) [17] for quantitative blood flow analysis [18] whereas such models are 
still a subject of research at present for LASCA [16]. It has been demonstrated that multi-exposure 
LASCA provides more accurate quantitative flowmetry [19]. Self-mixing interferometry [20] offers 
the potential for full field Doppler flow imaging although to date this has been performed with low 
density (12 × 1) vertical cavity surface emitting laser (VCSEL) arrays [21,22] and it has been 
suggested that signal to noise ratio is lower than with conventional sources [23]. 

In recent years with the development of high frame rate CMOS technology, an implementation of full 
field LDBF based on a commercial CMOS image sensor coupled with a digital signal processor (DSP) has 
been demonstrated [24–26]. The Doppler signal detected by the sensor at each pixel is multiplexed, 
digitized and then transferred off chip for signal processing. The advantage of this system over the 
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scanning laser Doppler imaging system is that the frame rate of the system is increased due to the 
absence of moving scanning components. However, because the flow processor requires a high 
number (typically 1024) of raw data frames to produce one flow image, a data bottleneck exists 
between the camera and the signal processing unit. This means that compromises have to be made to 
achieve acceptable performance. For example only 128 × 128 pixels of a 1024 × 1024 commercial 
CMOS array are used to form an image [25], and low resolution analog to digital converter (ADC) and 
lower sampling frequency [24] are used. In [25] the system requires 38 ms to capture 1024 raw frames, 
but takes 3096 ms to transfer the data from the camera to the PC and 998 ms for digital signal 
processing. The system described by Leutenegger et al. [26] combines a high speed commercial 
CMOS camera chip with a field programmable gate array and obtains Doppler blood images at 12–14 
frames per second by electronically scanning a 480 × 60 pixel area. The sampling frequency at each 
pixel is 14.9 kHz and a 128 point fast Fourier Transform (FFT) is used to calculate flow. Technology 
improvements in the future will almost certainly improve to allow the 40 kHz, 1024 point FFT 
achieved by scanning systems to be obtained in full field. An additional drawback is that as the 
commercial sensors are intended for a range of applications they are not tailored for LDBF. An 
important consequence of this is that there is no anti-aliasing filter at the pixel level of the sensor. 
Serov et al. have noted that the relationship between velocity and frequency is non-linear [24] for 
frequencies above 6 kHz, which is half of the sampling frequency, due to aliasing effects. General 
purpose CMOS cameras also have a dynamic range problem when faced with low modulation depth 
LDBF signals containing a large DC background and small AC variations, especially when a low 
resolution ADC is used. A summary of LDBF imaging devices is shown in Table 1. 

Table 1. Performance comparison of LDBF imaging systems. 

Name 
Operational 

Mode 
Image size 

(pixel) 
No. of FFT 

points 
Sampling 
frequency 

Frame rate 
(per second) 

Reference 

MoorLDI Point scan 256 × 256 1024 40 kHz 0.004 [11] 
MoorLDLS Line scan 64 × 64 1024 40 kHz 0.25 [12] 
TOPCAM Full field 128 × 128 1024 27 kHz 0.2 [25] 
Serov et al. Full field 256 × 256 512 14 kHz 0.1 [24] 

Leutenegger et al. Full field 480 × 480 128 14.9 kHz 14.5 [26] 
DOPCAM Full field 64 × 64 1024 40 kHz 1 presented here

DOPCAM 2 Full field 128 × 128 1024 40 kHz 16 proposed 

A custom made camera design offers several advantages over commercial cameras as the 
specifications can be tailored to the signals of interest. Such sensors based on on-chip lock-in detection 
have been developed for optical coherence tomography [27] and wide field sectioning microscopy [28]. 
For laser Doppler blood flowmetry, the pixel size, current to voltage conversion gain and number of 
digitization bits can be designed to best match those of typical signals. Appropriate anti-aliasing filters 
can also be added at the pixel level. Integration of the pixel front-end with on-chip processing enables 
each pixel to be sampled at a minimum rate of 40 kHz with a low data readout rate required, as the 
output is a processed flow image rather than a series of raw data images. In CMOS custom made 
designs there are considerable design constraints in terms of the silicon area of the processing 
electronics and the ratio between the areas of the pixel level electronics to that of the photo-detectors 
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(fill factor). The circuits used in the discrete electronics systems cannot simply be replicated on-chip as 
the relatively low frequencies used in LDBF means that on-chip component sizes are commensurately 
often large. Therefore moving from discrete electronics at a single point to a fully integrated sensor 
array is a challenging task and design optimizations and compromises need to be made. 

To the authors’ knowledge, this paper demonstrates the design and characteristics of the first fully 
integrated 2D laser Doppler imaging sensor. This 64 × 64 array iteration significantly contributes to 
the design of a high density array Doppler imaging system. Section 2 presents the pixel design  
and system configuration of the sensor and Section 3 the optical set ups. Section 4 describes the 
experimental results of pixel front-end characterizations, a modulated light source test, a rotating 
diffuser and in vivo blood flow imaging of arterial occlusion and an inflammatory response. Discussion 
and conclusions follow in Section 5. 

2. Sensor Design 

The analog signal processing at each pixel is a tailored design for LDBF signals in order to increase 
signal-to-noise ratio (SNR) and is optimized for silicon area. Figure 1a shows a block diagram of a 
single pixel on the 64 × 64 array. It consists of a photodiode, a current to voltage converter (I/V) with a 
source follower (SF), a hysteretic differentiator amplifier (HDA) [29], a transconductance-capacitance 
low pass filter (GMC) for anti-aliasing and two buffers. 

Figure 1. (a) Block diagram of the pixel; (b) Layout of the pixel (I/V for Current to 
Voltage Converter, SF for Source Follower, HDA = Hysteretic Differentiator Amplifier, 
GMC for Transconductance-Capacitance Low Pass Filter). 
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Doppler shifted light is detected by the photodiode, which is of size 25 µm × 25 µm and is an  
n-well-p-substrate type whose responsivity is approximately 0.3 A/W at a wavelength of 667 nm [30,31]. 
The current to voltage converter consists of a photodiode with a load of two diode-connected P-type 
MOSFETs (operating in subthreshold as logarithmic wide dynamic DC range detectors) feeding into a 
source follower. The AC gain of the logarithmic front-end is inversely proportional to the DC 
photocurrent and hence the bandwidth. Therefore, as the DC photocurrent increases, the bandwidth of 
the circuit will also increase. At a typical DC current of ~150 pA, the bandwidth of the current to 
voltage converter is ~20 kHz. The logarithmic current to voltage converter provides a natural 
normalization of the AC signal by the DC light level [32] as often required in laser Doppler 
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measurements. The output of the current to voltage converter can be observed through a buffer  
for more detailed sub-circuit characterization. The subsequent HDA consists of an operational 
transconductance amplifier (OTA) with an inverted CMOS inverter and an NMOS transistor capacitor 
circuit. It amplifies the AC signal by a factor of 30 [33] without DC amplification to increase the 
modulation depth of the signal before digitization. The GMC circuit is used as an anti-aliasing filter 
before the signal is digitized by the ADC, in which the cut-off frequency is set to 20 kHz as the 
Doppler frequency is typically in the range from 20 Hz to 20 kHz. Figure 1b shows the layout of the  
55 µm × 55 µm pixel. The photodiode, I/V, SF, HDA and GMC are highlighted with individual black 
boxes for clarity. 

Figure 2a shows a block diagram of the 64 × 64 pixel array which is divided into four identical  
32 × 32 arrays, each with a dedicated multiplexer and 10-bit successive approximation register (SAR) 
ADC running at a sampling rate of 1.28 MHz. The pixel output voltages in each sub-array are multiplexed 
into the dedicated ADC. Each ADC samples a row of 32 pixels at a time and the effective sampling rate at 
each pixel is 40 kHz. The digitized data are then transferred to the on chip digital signal processor. 

After acquiring 1024 samples for each pixel in the row, the ADC samples the next row. Therefore 
blood flow images are formed at ~1 frame per second by electronically scanning each row of the four 
32 × 32 pixel arrays in parallel. The digital back-end provides control signals to control the operation 
of the whole system and processes digitized data to produce flow parameters according to Equation (1). 
The digital signal processing unit employs digital filters and 512 × 32 memory bits (SRAM) to store data 
to be processed. The standard method of implementing the frequency weighted filter described in 
Equation (1) is to perform a 1024-point fast Fourier transform (FFT). However, this is not feasible  
on-chip due to space constraints. Infinite impulse response (IIR) filters with a low number of taps are 
used as low resource implementation of the data processing. Compared to the 1024-point FFT, the 
error in the flow calculation with IIR filters is only 0.7% [34]. The Verilog-A models of the analogue 
front-end and ADC were simulated in Agilent Advanced Design System (ADS) and the  
full-chip mixed-signal simulation was performed in Cadence AMS simulator. 

Figure 2. (a) Block diagram of the sensor (MUX for multiplexer, ADC for analog to 
digital converter); (b) Sensor layout (reproduced from [35] with permission). 
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The chip layout shown in Figure 2b is of size 6 mm × 6 mm and was fabricated in a 0.35 µm four metal 
layer CMOS process (Austria microsystems, Unterpremstaetten, Austria). Areas of the chip other than the 
photodiodes are covered by a metal layer to prevent illuminating parts of the chip that are not intended to 
be light sensitive. 

3. Experimental Setups 

This section describes four optical setups used to investigate the performance of the sensor array. 
Each setup progressively builds up the complexity of the detected signals. The first utilizes a 
modulated laser to control the illumination with different DC light level, AC amplitude and frequency 
to characterize the performance of the pixel analog front-end. The second configuration uses  
light-emitting diodes (LEDs) and an aperture to simulate predictable laser Doppler signals. The third 
configuration has a rotating diffuser producing more complex laser Doppler signals which are similar 
to real blood flow signals. Finally blood flow in a human finger with arterial occlusion and a forearm 
showing an inflammatory response is imaged. 

3.1. Chip Characterization Setup 

The experimental setup shown in Figure 3 uses a 7 mW (635 nm) modulated laser diode (IQ1A, 
Power Technology, Little Rock, AR, USA) to characterize the AC and DC responses of the analog 
pixel front-end. The power and modulation depth of the laser are controlled by a signal generator 
(TG1304, Thurlby-Thandar, Huntingdon, UK). The diverging beam from the laser passes through a 
neutral density (ND) filter and is focused on a diffuser (ED1-S20, Thorlabs, Newton, MA, USA) by 
lens A (Bi-Convex, f = 20 mm). By selecting different levels of optical attenuation using the ND filter, 
different levels of optical signal power can be produced. The scattered light is collected by lens B  
(Bi-Convex, f = 20 mm) and uniformly illuminates over both photodetectors via a beam splitter. The 
reflected laser beam illuminates our 2D CMOS array while the transmitted laser beam passes through 
an aperture whose diameter is 2 mm and onto a reference photodiode (PDA520, Thorlabs, Newton, 
MA, USA) with a known transimpedance gain of 106 V/A. The reference photodetector is used to 
calculate the amount of light falling on the 2D array. 

Figure 3. Optical setup for characterization of the pixel analog front-end (ND for Neutral Density). 
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The resultant output voltages from both detectors are then recorded using a PC based 16-bit ADC 
card (6034E, National Instruments, Austin, TX, USA) with a sampling duration of 1 s and stored on a 
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PC. As the transimpedance gain of the reference photodetector is known, the reference photocurrent 
can be used to obtain the pixel AC and DC photocurrents and corresponding pixel AC transimpedance 
after appropriate scaling for detector area. 

3.2. LED Phantom 

The LED phantom provides predictable modulated signal to mimic a light level obtained from 
tissue. As shown in Figure 4, an array of eight light-emitting diodes (LED L53SRDG, Kingbright, 
Taipei, Taiwan) provides 640 nm constant light onto the sensor and a modulated LED connected to a 
signal generator (TG2000, Thurlby-Thandar, Huntingdon, UK) is used to produce modulated 
illumination at different frequencies and amplitudes. An aperture is used to control the size of the area 
with AC illumination over the sensor. By varying the aperture diameter, modulation depth and 
frequency, an inflammatory response which changes in flow and area can be simulated. 

Figure 4. Experimental setup of the LED illumination. 
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3.3. Rotating Diffuser 

The setup of the rotating diffuser test shown in Figure 5 allows different Doppler frequencies to be 
detected and analyzed by the system at different angular velocities (ω) of the diffuser. Laser light  
(λ = 780 nm, power = 40 mW) illuminates the surface of a static diffuser (diameter = 25 mm) placed in 
front of a rotating diffuser (diameter = 50 mm). The static diffuser is used to simulate a static layer of 
skin overlying moving red blood cells, from which the light scattered back is at optical frequency of f. 
Light scattered from the rotating diffuser is a frequency shifted signal (f + Δf) where Δf is the mean 
Doppler shifted frequency which is proportional to the angular velocity. The interference of these two 
backscattered signals at the sensor array allows the beat frequencies (Δf) to be detected. 

Figure 5. Experimental setup of the rotating diffuser. 

 



Sensors 2013, 13 12639 
 

 

3.4. In Vivo Blood Flow Measurements 

Figure 6a shows the setup of the in vivo blood flow experiments. Uniform illumination of  
25 mm × 25 mm over the tissue is generated by a 40 mW diode laser (λ = 780 nm) and a diffuser 
(ED1-S20, Thorlabs). The illumination power density over the tissue is 64 µW/mm2. The 
backscattered light is then collected by an achromatic doublet lens (focal length = 25 mm) and imaged 
onto the sensor where there are ~140 speckles at each pixel (speckle diameter = ~2.1 µm). The speckle 
size is given by 2.44fλ(1+M)/D where f is the focal length, λ is the wavelength, M is the magnification 
and D is the clear aperture of the imaging lens [36]. Although this speckle size is not optimum in terms 
of spatial sampling and modulation depth, it allows sufficient light allow a 40 kHz sampling rate to be 
achieved. Problems associated with the low modulation depth are overcome by the on-chip processing. 
The whole optical system is embedded into a box, which connects to power supplies and a laptop for 
image display, as shown in Figure 6b. Studies in healthy participants have been approved by 
Southampton and South West Hampshire (UK) Research Ethics Committee (REC059/04/w). For 
calibration, measurements are made on a static tissue phantom and the baseline flow value (6 × 103 a.u.) 
is subtracted from the measured flow. 

Figure 6. (a) Experimental setup of in vivo blood flow measurements; (b) Internal view of the device. 
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4. Experimental Results 

This section describes the results obtained with the experimental setups shown in Section 3. 

4.1. Chip Characterization 

Characterization of the sensor array was carried out using the system shown in Figure 3 in which 
the DC response of the current to voltage converter and AC responses of the current to voltage 
converter, HDA and GMC are characterized and compared with simulations. Figure 7 shows the 
characterization results for the current to voltage converter. Four main characteristics of AC gain, 
bandwidth, DC response and noise current are investigated. Figure 7a demonstrates that the AC gain is 
dependent on the DC photocurrent as expected from the logarithmic response described in Section 2. 
The error bars indicate the standard deviation of the AC gains for the 4096 pixels of the array. Typical 
simulation results obtained from a VLSI design tool, Cadence (Spectre, San Jose, CA, USA), are also 
plotted for comparison. Both measured and simulated AC gains are similar. 
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Figure 7. Measured and simulated results of the current to voltage converter 
characterization (a) AC gain (b) Frequency response at 150 pA DC photocurrent  
(c) DC response (d) Integrated noise current (rms). 
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(c) (d) 

Figure 7b shows the measured and simulated frequency response of the current to voltage converter 
at 150 pA DC photocurrent with the gain normalized to 0 dB at DC. This DC photocurrent is selected 
because the cut-off frequency of the I/V converter is dependent on the DC photocurrent and an  
Idc = 150 pA provides a cut off frequency that is close to the 20 kHz required for LDBF imaging.  
The −3 dB cut-off frequency from simulation is 22 kHz while that from measurement is 21 kHz. Figure 7c 
shows the measured DC output voltage of the current to voltage converter as the DC photocurrent is 
varied. The measured results are 200 mV higher than the simulated results which is due to the offset 
voltage of the buffers which drive the signal off chip. However this is acceptable because the DC 
output voltage is within the range of 1.4 V to 1.9 V which is within the input range of the HDA at the 
next stage. The HDA provides high amplification and a relatively flat response when the DC input 
voltage lies between 0.8 V to 2.2 V [33]. The standard deviation of 1.6% is shown by the error bars. 
Figure 7d shows that the measured noise is higher than that from simulations which is due to the amplitude 
fluctuations in the laser, power supply noise and other noise sources on the PCB. At 150 pA DC 
photocurrent, if the modulation depth is 1%, an SNR of 1.03 is obtained. If the modulation depth is 10% 
then the SNR = 10.3. 

The frequency response of the HDA is characterized and shown in Figure 8. The lower cut-off 
frequency is 20 Hz while the simulation result is at 100 Hz which is likely to be due to the “inverted 
inverter” structure in the HDA which is not accurately modeled by the simulator. 
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Figure 8. Measured and simulated frequency response of the HDA. 

 

Figure 9 illustrates the frequency responses of the GMC when the bias currents flowing through the 
external resistor are 8 µA and 25 µA respectively. It can be seen that in order to achieve a 20 kHz cut-off 
frequency from the GMC to avoid aliasing at a 40 kHz sampling frequency, the bias current of the 
GMC must be set at 8 µA. 

Figure 9. Measured frequency response of the GMC with the external bias currents of 8 µA 
and 25 µA. 

 

4.2. LED Phantom 

Figure 10a shows a flow image obtained with an aperture diameter of 2 mm and 5% modulation 
depth at 5 kHz using the setup illustrated in Figure 4. As expected the high flow (1.3 × 104 a.u.) at the 
central bright spot and the low flow (2 × 103 a.u.) in the outer region can be observed. Figure 10b 
shows an image at an aperture diameter of 3 mm, 8% modulation depth and frequency of 8 kHz. The 
central bright spot expands and flow values also increase by a factor of approximately 4 (4.8 × 104 a.u.) 
while the surrounding area maintains a low flow value. The results demonstrate that the sensor can 
discriminate between a modulated light signal in a relatively high DC background. As anticipated from 
Equation (1) the flow value increases linearly with modulation frequency and changes as the square of the 
modulation depth. The transition ring observed in Figure 10b was due to the edge effect of the aperture. 



Sensors 2013, 13 12642 
 

 

Figure 10. Simulated flow images (64 × 64 pixels) with (a) 5% modulation depth at 5 kHz 
and (b) 8% at 8 kHz. 

 
(a) (b) 

4.3. Rotating Diffuser 

Figure 11a shows higher flow values towards the edge of the diffuser as the Doppler shift varies 
with radial position since the flow is velocity dependent as in Equation (1). 

Figure 11. (a) Flow image of a rotating diffuser; (b) Flow averaged over all radial positions. 

 
(a) (b) 

Figure 11b shows the radial profile of flow values averaged over all radial positions with the error 
bars denoting the standard deviation of the measurements at each radial position. As expected the 
averaged flow increases linearly as the velocity increases. At very low speed (<1 mm/s) an offset due 
to the noise floor of the system can be observed. 

4.4. In Vivo Blood Flow Measurements 

Figure 12a,b shows blood flow images of a finger before and during arterial occlusion. The 
fingertip has higher blood flow (1.4 × 104 a.u.) than the intermediate phalange (0.7 × 104 a.u.). In 
Figure 12b the flow drops down to 0.3 × 104 a.u. during occlusion. To demonstrate the long-term 
measurement capability, Figure 12c shows a trace of the flow values at the center pixel on the finger 
images with arterial occlusion at 180 mmHg for 2 min using a pressure cuff placed around the base of 
the finger. The transient increase in flow above resting flow during the post occlusive reactive 
hyperemia response can be observed. 
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Figure 12. Blood flow measurements of a finger (the corresponding video clip is available 
online in the Supplementary Information for this paper). (a) Unoccluded; (b) Occluded;  
(c) Long-term blood flow trace of the center pixel. 

 
(a) (b) 

 
(c) 

Figure 13. (a) Immediately after the histamine skin-prick; (b) 10 min after; (c) 20 min after; 
(d) 30 min after (field of view = 2.5 cm × 2.5 cm). 

 
(a) (b) 

 
(c) (d) 
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Imaging of an inflammatory response is carried out in order to demonstrate the sensor’s ability to 
monitor gradually developing, sustained localized increases in blood flow. Ten mg/mL histamine was 
placed on the forearm, pricked gently with a sterile lancet (under ethical approval). The skin prick was 
performed as quickly as possible and imaging resumed immediately after. Figure 13a shows the blood 
flow image captured immediately after the histamine skin-prick. It has a relatively flat flow profile 
with an average of 4 × 103 a.u. The horizontal stripe pattern illustrates the influence of blood pulsations 
during the data collection (discussed in Section 5). After 10 min (Figure 13b) a 0.5 cm × 0.5 cm circular 
area centered on the site of the skin prick developed with high flow (8 × 103 a.u.). Figure 13c shows 
that after 20 min the inflammatory area expanded to 1 cm × 1 cm with increased flow of 9 × 103 a.u. and 
the flow over the surrounding area also increased to 7 × 103 a.u. After 30 minutes (Figure 13d) the size 
of the inflammatory area decreased to 0.6 cm × 0.6 cm with reduced flow of 8 × 103 a.u. 

5. Discussion and Conclusions 

A 64 × 64 pixel fully integrated CMOS sensor for blood flow imaging is demonstrated. The sensor 
efficiently integrates analog and digital processing electronics on a single chip, which provides 
advantages over the existing blood flow imaging systems. The logarithmic response current to voltage 
converter provides natural normalization therefore the resource consuming divider is not required. The 
HDA circuit selectively amplifies the AC signal and hence significantly increases the AC/DC ratio far 
more space efficiently than implementing a conventional high pass filter on-chip. The pixel level  
anti-aliasing filter attenuates the noise above the signal bandwidth. Locally processing the laser Doppler 
signal means that large amounts of data do not need to be transferred off-chip, which is presently a data 
bottleneck. The sensor achieves 1 frame per second for 64 × 64 pixel blood flow images. 

The analog subcircuits have been characterized individually and the results are consistent with 
simulations. The test results of the LED phantom and rotating diffuser demonstrate that the system can 
detect controlled modulated signals and show a linear relationship between the calculated flow and the 
Doppler shifted frequency. The changes of blood flow due to arterial occlusion can also be observed in 
the in vivo blood flow experiment. Finally the sensor images the blood flow changes due to the 
histamine skin-prick and shows the development of the inflammatory area with high flow. The images 
of tissue are influenced by blood pulsatile signals. This is because the sensor reads out the data by 
electronically scanning along the rows in each of the 32 × 32 pixel sub-arrays. As the overall frame 
rate is 1 fps (comparable to heart rate), there are positions during an image where blood volume is high 
(high signal in the rows) and where blood volume is low (low signal in the rows). This effect can be 
reduced by either averaging over frames or by employing a global shutter which will ensure that data 
at each pixel is obtained simultaneously. 

Due to the advantages of AC amplification in the analog stage, the 10-bit ADC implemented here 
could be redesigned as an 8-bit version which would halve the area and increase the data conversion 
rate by a factor of 2. This allows ×8, 8 bit ADCs to be implemented in the same footprint as the ×4, 10 bit 
ADCs. Coupled with the factor of two improvement in conversion this would allow the sensor to achieve 
four frames per second. As the 64 × 64 array design is scalable to larger arrays, a 128 × 128 pixel array is 
planned consisting of four identical 64 × 64 sub-arrays. Each sub-array has 32 8-bit ADCs and a digital 



Sensors 2013, 13 12645 
 

 

signal processor. The estimated silicon area is 12 mm × 13 mm and the sensor could achieve 16 frames 
per second. 
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