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Simple Summary: Despite significant advances in immunotherapy seen in the last decade, melanoma
accounts for 2500 deaths a year in the UK. There remains an unmet clinical need to improve melanoma
treatment. Melanoma is known as the “archetypal immunogenic tumour”, with a dense immune
infiltrate. Chemokines are chemoattractant cytokines, essential for the positioning of all immune
cells. This review outlines how the interplay of chemokine networks can enable melanoma tumours
to survive, grow, metastasise, and evade anticancer immune responses. By better understanding how
melanomas can exploit chemokine pathways, new targets to therapy may be revealed.

Abstract: The incidence of cutaneous malignant melanoma is rising globally and is projected to
continue to rise. Advances in immunotherapy over the last decade have demonstrated that manip-
ulation of the immune cell compartment of tumours is a valuable weapon in the arsenal against
cancer; however, limitations to treatment still exist. Cutaneous melanoma lesions feature a dense cell
infiltrate, coordinated by chemokines, which control the positioning of all immune cells. Melanomas
are able to use chemokine pathways to preferentially recruit cells, which aid their growth, survival,
invasion and metastasis, and which enhance their ability to evade anticancer immune responses.
Aside from this, chemokine signalling can directly influence angiogenesis, invasion, lymph node, and
distal metastases, including epithelial to mesenchymal transition-like processes and transendothelial
migration. Understanding the interplay of chemokines, cancer cells, and immune cells may uncover
future avenues for melanoma therapy, namely: identifying biomarkers for patient stratification,
augmenting the effect of current and emerging therapies, and designing specific treatments to tar-
get chemokine pathways, with the aim to reduce melanoma pathogenicity, metastatic potential,
and enhance immune cell-mediated cancer killing. The chemokine network may provide selective
and specific targets that, if included in current therapeutic regimens, harbour potential to improve
outcomes for patients.

Keywords: chemokines; melanoma; tumour pathogenicity; immunotherapy; biomarkers; targeted therapy

1. Introduction: Melanoma and Associated Chemokine Networks

Melanoma treatment has been revolutionised in the last decade, with the introduc-
tion of small molecule inhibitors, targeting the MAPK pathway, and immunotherapy, in
the form of checkpoint inhibition. The success of checkpoint inhibition, whereby mon-
oclonal antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and
the programmed cell death-1 axis (PD-1/PD-L1), has demonstrated that the manipulation
of the immune system can provide a valuable therapeutic avenue for treating immuno-
genic tumours such as melanoma [1,2]. Despite doubling the 5-year survival rate of
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advanced melanoma to ~50%, melanoma remains the most aggressive form of skin cancer:
2500 patients die from melanoma every year in the UK, with the incidence increasing, and
projected to continue increasing, for the next 15 years [3].

Melanomas arise from melanocytes that have acquired multiple pathogenic mutations
bestowing upon the tumour the ability to proliferate, grow, resist apoptosis, and invade
local structures, as well as eventually metastasise [4]. Underpinning these hallmarks of
cancer is the establishment of a permissive tumour microenvironment (TME), a site akin to
aberrant chronic inflammation, with a dense infiltrate of immune cells. Chemokines control
the migration and location of all immune cells [5]. Their function is not only necessary for
the recruitment of immune cells in inflammation and anti-tumour immune surveillance but
also essential for immune cell development and tissue homeostasis [5]. Different subsets
of immune cells express distinct chemokine receptors, thus allowing them to respond to
precise combinations of chemokines secreted in specific tissues in response to particular
infectious, inflammatory, or injury signals [5]. These mechanisms of cell migration are
essential to drive effective antitumour immunity. However, chemokine pathways can be
co-opted by tumour cells to drive “protumour effects”, such as the recruitment of immune
suppressor cells and remodelling of the TME, and the promotion of tumour growth and
metastasis [6].

Currently, a significant proportion of patients with melanoma fail to respond to check-
point inhibition; in addition, 50% of treated patients experience adverse effects [7]. In
particular, toxicities associated with immune activation and autoimmunity require medical
treatment [8], with some long-term side effects (principally endocrinopathies) likely to
be underrepresented in clinical trials [9]. The chemokine network represents a promising
pathway for therapeutic interventions tailored to both enhancing antitumour immunity by
promoting the recruitment and infiltration of tumour tissue by effector cells and blocking
protumour functions by restricting the recruitment of immunosuppressive cells. Under-
standing and eventually manipulating the key axes controlling these processes may be of
significant therapeutic relevance, particularly in the treatment of the archetypal immuno-
genic tumour melanoma by enabling immune cell-targeted interventions to be refined,
thus creating treatments that carry fewer adverse effects and greater clinical efficacy.

In this review, we discuss the current knowledge of how cutaneous melanoma can
exploit chemokine axes, and we will explore the latest and potential future roles for
chemokine networks in melanoma therapy.

2. Tumour Establishment and Recruitment of Innate Immune Cells Which Aid
Melanoma Growth

The ability of melanomas to grow and locally invade is key to their pathogenicity,
demonstrated by the current staging system taking into account tumour thickness and local
invasion [10,11]. The establishment and growth of melanoma tumours rely on a permissive
TME able to recruit immune cells that support melanoma growth through the factors
they secrete. Many chemokines are involved in the process, as outlined in Table 1 and
graphically in Figure 1. Most of our knowledge of chemokine networks in melanoma come
from animal models, whereby chemokines are blocked or genetically knocked out, or from
immunohistochemical analyses of patient tissue samples throughout disease development
and treatment.
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Figure 1. Chemokine networks in cutaneous melanoma. Immune cells are recruited via the networks outlined on the
left of the figure. Chemokines enable an immunosuppressive microenvironment (TME) to be created via the preferential
recruitment of immunosuppressive cells such as MDSCs, TAMs, and T-regs, which reduce the T-cell effector function and
enhance the further recruitment and expansion of immunosuppressive cells. Cancer growth, invasion, and angiogenesis are
promoted by the factors secreted by cells recruited to the TME via chemokines such as neutrophils and TAMs, as well as
directly via CXCL8; lymphangiogenesis and lymph node metastasis are enabled through CXCL5/CXCR1-2 signalling, and
cancer cells are able to migrate to lymph nodes using the CCL21/CCR7 pathway. EMT-like processes are enabled through
CCL5 and CXCL5 signalling through their respective receptors. Transendothelial migration is promoted via the CXCL9-
10/CXCR3 pathways, and cancer cells are able to move to specific sites using chemokine networks, e.g., CCL25/CCR9 to
the gut, CCL22/CCR4 to the brain, and CXCL12 CXCR4 to the liver and lungs.

2.1. CCR2 and Tumour Establishment

Chemokines demonstrate their importance in tumour growth from the very first steps
of tumour initiation. Most melanomas are caused by UVB radiation inducing DNA damage
and mutagenesis [4]; however, UVB is also able to activate melanocytes to upregulate their
expression of ligands of chemokine receptor CCR2 [12]. In a study using neonatal mice
exposed to UVB, Zaidi et al. [12] demonstrated that melanocytes exposed to UVB upreg-
ulated the expression of chemokines, including CCL2 and CCL7. This, in turn, recruited
CCR2+ immune cells, most notably macrophages and myeloid-derived suppressor cells
(MDSCs), which are able to support melanoma growth through multiple mechanisms.

Macrophages are a highly diverse and plastic class of tissue-resident phagocytes
that are derived either during embryonic development from foetal liver or bone marrow
precursors or following monocyte recruitment to adult tissues [13]. Monocyte-derived
macrophages express multiple chemokine receptors, including CCR2, allowing their re-
cruitment into the TME [14–18]. Tumour-associated macrophages (TAMs) can be polarised
by the melanoma TME towards a subset that aids melanoma growth. TAMs secrete growth
factors, such as macrophage inhibitory factor (MIF), which is able to retard cell cycle
progression, as well as inhibit stress-induced apoptosis [19], and immunosuppressive
cytokines, such as IL-10 [16]. TAMs can also contribute to feedback loops that further the
recruitment of protumour innate cells: CCR6 is expressed by monocytes and dendritic cells
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(DCs) and is an important chemokine receptor mediating their infiltration into inflamed
tissues, where CCL20 is produced in response to inflammatory stimuli [5]. Melanoma
cells, which upregulate CCR6, are able to establish a paracrine loop between themselves
and CCL20-expressing TAMs, promoting tumour growth and survival, likely in part due
to TAMs promoting protumour immune cell infiltration [20]. CCL20+ TAMs can also
secrete tumour necrosis factor-alpha (TNFα) and vascular endothelial growth factor-A
(VEGF-A), contributing to tumour growth and angiogenesis. The presence of CCL20+

TAMS in melanoma tumours is associated with a poorer prognosis and reduced patient
survival [21,22].

2.2. CXCL8 and Tumour Establishment

As well as the ligands of CCR2 being important in melanomagenesis, UV radiation
has been shown to increase the secretion of CXCL8 (formerly known as IL-8), perhaps one
of the most important chemokines for melanoma growth and survival [23]. CXCL8 is a
ligand of the chemokine receptors CXCR1 and CXCR2. Immunohistochemical analyses of
patient samples show an increased expression of CXCL8 and its receptors as melanomas
transition from a radial (early stage) to vertical (later stage) growth phase [24], with
CXCR1 upregulation being a key genetic difference between benign naevi and malignant
melanoma [25]. CXCR1 and CXCR2-overexpressing tumours show an increased prolif-
eration of melanoma cells and increased microvessel density, with evidence of reduced
apoptosis in both cell lines in in vitro and in vivo models [26–29]. One mechanism un-
derlying this is the ability of CXCL8 to promote melanoma cell survival via activating
the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)
signalling pathways, key signalling pathways involved in tumour cell survival and prolif-
eration. This has been demonstrated using small molecule inhibitors of CXCR1/2, which
are able to abrogate melanoma cell motility and to induce apoptosis by inhibiting the
Akt pathway [30–32]. Aside from its direct effect on melanoma cells, CXCL8, along with
other ligands of CXCR1 and CXCR2, namely CXCL1-3 and CXCL5-7, recruit innate cells,
most notably neutrophils, which express the receptors CXCR1 and CXCR2 and are the
“first responders” to tissue injury and damage [33]. Although there are few studies that
have assessed the function of neutrophils within melanoma tumours, their presence is
correlated with poorer prognosis and poor response to checkpoint inhibition [34,35]. They
likely have a complex role in the TME, with both anti- and protumour functions. In other
solid cancers, neutrophils support tumour growth by contributing to genetic instability
by releasing reactive oxygen species (ROS) and secreting growth factors, such as epider-
mal growth factor (EGF), hepatocyte growth factor (HGF), and platelet-derived growth
factor (PDGF) [36,37]. Tumour-associated neutrophils are also able to produce CXCL8,
thus creating a feedback loop for further neutrophil recruitment. When this chemokine
axis is inhibited in mouse models, melanoma infiltration by neutrophils is reduced, and
reduced tumour growth, angiogenesis, and metastasis is seen, suggesting that neutrophils
contribute to the protumour properties of CXCL8 and its receptors [26,27].
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Table 1. Chemokines in melanoma: chemokines, their receptors, the cells on which they are expressed, and their pro- and
antitumour functions in melanoma. Citations refer to preclinical studies that have determined the expression and role of
chemokines and their receptors in a melanoma context.

Chemokine Receptor Ligand
Expressed by

Receptor
Expressed by Protumour Effects Antitumour

Effects Refs

CXCL1-3

CXCR1
CXCR2 Melanoma

Neutrophils
MDSCs

Transduced TILs

Tumour growth
and survival

Innate cell recruitment
EMT

Innate cell recruitment
Lymphangiogenesis

Lymph node metastasis

TILs recruitment
(if transduced)

[23,24,26,27,31,
35,38–44]

CXCL5-7

CXCL8
(IL-8)

Tumour initiation
Tumour growth

and survival
Innate cell recruitment

Angiogenesis
Invasiveness

CXCL9-11 CXCR3 DCs
Melanoma

T eff cells
NK cells

Melanoma
Transendothelial

metastasis
TILs recruitment
NK recruitment [5,45–48]

CXCL12 CXCR4 Melanoma

T eff cells
DCs

Hepatocytes
Melanoma

Metastasis—lung and
liver [49–56]

CCL2 CCR2 Melanoma
Monocytes

TAMs
MDSCs

Tumour initiation
Tumour growth and

survival
Recruitment of innate

cells

[12,16,18]

CCL3
CCL4
CCL7
CCL5

CCR1
CCR3
CCR5

Melanoma MDSCs
T cells

Immune evasion
EMT [57–62]

CCL17
CCL21 CCR4 Brain

Melanoma
Melanoma
T eff cells

T regs
Immune evasion

Metastasis—brain TILs recruitment [63–68]

CCL20 CCR6 TAMs
Melanoma

TAMs
MDSC

Innate cell recruitment [20–22]

CCL19
CCL21 CCR7

HEVs
LECs

Melanoma

Melanoma
T cells
DCs

Lymph node metastasis
Antigen

presentation
TILs recruitment

[69–77]

CCL1 CCR8 Melanoma T regs Immune evasion [63–67]

CCL25 CCR9 Small bowel Melanoma Metastasis—bowel [78]

CCL27 CCR10 Melanoma Melanoma
T eff cells

Tumour cell survival
Immune evasion TILs recruitment [79,80]

CX3CL1 CX3CR1 Melanoma T eff cells Angiogenesis TILs recruitment [81]

3. Chemokine Signals Enabling Immune Evasion

Once a melanoma tumour is established, its survival is dependent on its evasion of the
antitumour immune response by recruiting melanoma-promoting, immunosuppressive
immune cells and reducing the infiltration, activation, and proliferation of proinflammatory
antitumour immune cells. The prognostic value placed not just on the degree of immune
infiltration but the immune cell profile present in the TME reflects the importance of this
selective recruitment. For example, a large scale study by Weiss et al. [82] demonstrated
tumours with a “brisk” lymphocyte response where tumour-infiltrating lymphocytes (TILs)
were present throughout the vertical growth phase, predicts better patient outcomes than
“non-brisk” tumours, where TILs were present in fewer loci or “absent”. This classification
has now been incorporated into the melanoma-reporting dataset. On the other hand, the
presence of innate cells such as TAMs and neutrophils can predict poorer outcomes, as
already mentioned, and indeed, the ratio of lymphocytes to innate cells is being explored
as a marker of disease progression [83–85].
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The main function of chemokine axes is to induce the recruitment and retention of
immune cells within tissues, and melanoma cells are able to secrete selective chemokines
that target immunosuppressive immune cells, including tumour-associated neutrophils,
MDSCs, and regulatory T cells (T-regs), to preferentially recruit such cells over proinflam-
matory effector cells such as cytotoxic T-lymphocytes (CTLs).

3.1. Myeloid-Derived Suppressor Cells

CCR5 is a well-documented marker for Th1-type CD4+ T cells [86]. However, recent
studies have also emphasised its role as a marker for immunosuppressive cells, including
MDSCs, which produce inhibitory molecules, such as adenosine, nitric oxide, ROS, IL-10,
transforming growth factor-beta (TGFβ), and PD-L1 [57]. In a series of studies in both
mouse models and patients, Blattner et al. demonstrated the importance of CCR5 as a nega-
tive predictor of survival for melanoma [58]. CCR5+ MDSCs are found at high frequency in
the melanoma TME, where the CCR5 ligands, CCL3-5, are also expressed. CCR5+ MDSCs
are strong inhibitors of CD8+ CTLs [59], and their presence is associated with melanoma
progression: patients with melanoma have a significantly increased frequency of circulating
CCR5+ MDSCs compared with healthy volunteers [60]. Alongside, MDSCs and CCR5
ligands are expressed at higher frequencies in the TME when compared to the serum of the
same patients [58]. Neutralising CCR5 in mouse models of melanoma leads to an increased
survival time, reduced total numbers of MDSCs, and reduced immunosuppression by
MDSCs, without diminishing the number of effector T cells infiltrating the tumour. A
tumour-promoting function of CCR5 has also been established in preclinical models: CCR5
knockout mice have significantly smaller tumours than CCR5+/+ mice when inoculated
with B16 melanoma cells, with an increased infiltration of CTLs and natural killer (NK)
cells in tumours [61].

3.2. Regulatory T Cells

The recruitment and expansion of T-reg populations within the TME of melanoma
is associated with a poor prognosis [63]. T-regs are able to contribute to the immuno-
suppressive environment by secreting cytokines, such as TGF-β, IL-10, and IL-35, and by
consuming IL-2 and expressing immune checkpoint inhibitors, thereby decreasing effector
T-cell functions [66]. Their expansion can be promoted by factors secreted by immune
cells within the TME, such as IL-10 secreted by MDSCs and TAMs [13,60], or they can be
recruited via chemokine pathways.

Both CCR4 and CCR8 are prominent chemokine receptors expressed by T-regs: CCR4
is broadly expressed on T-regs in healthy tissues throughout the body, whereas CCR8
is more selectively expressed by cutaneous T-regs and those present in the TME [64,87].
CCL1 and CCL22, the main ligands for CCR8 and CCR4, respectively, have been shown to
be upregulated both at the gene and protein levels in the TME of melanoma, suggesting
that melanoma cells are able to actively recruit T-regs [66,67]. The anti-CCR4 monoclonal
antibody mogamulizumab can reduce the number of circulating T-regs in patients with
solid tumours [88], although, due to its broad expression in T-regs and conventional T cells,
treatment is associated with autoimmune toxicity [89]. A large study by Plitas et al. [64]
demonstrated that CCR8 is upregulated on highly suppressive T-regs in the TME of breast
cancer and melanoma and suggest that CCR8 could prove to be a useful target. Interestingly,
CCR8 appears to be expressed on T-regs after TCR-mediated activation [90], and yet, it does
not appear to be required for recruitment into melanoma tissues. Indeed, systemic CCR8
ablation had no effect on the infiltration and immunosuppressive function of T-regs in
murine melanoma, contrary to previously held assumptions [91]. For more details, please
consult the article written by B Moser for this Special Issue.

3.3. Creation of an Immunosuppressive TME

The manipulation of chemokine axes in melanoma can also be used to create a more
immunoregulatory environment independent of immune cell recruitment. CCR10 has



Cancers 2021, 13, 5625 7 of 20

been implicated in directly providing melanoma with resistance to cytotoxic immune cells.
This is in sharp contrast to its usual role as an important receptor for T-cell homing to
cutaneous tissue, with its ligand, CCL27, produced by keratinocytes in the skin but also
expressed by melanoma cells [79]. Simonetti et al. [80] observed that the expression of
CCR10 and its ligand CCL27 are associated with thicker tumours and a reduced density
of infiltrating lymphocytes, with CCR10 overexpression enhancing tumours’ potential to
grow and evade host immune responses. When CCL27 was added, signalling through
CCR10 led to activation of the Akt and PI3K pathways, enabling melanoma cells to resist
Fas-mediated apoptosis, a key mechanism in tumour cell clearance. This mechanism may
also lead to the internalisation of CCL27, perhaps thereby reducing the chemoattraction of
effector T cells.

4. Angiogenesis

The oxygen and nutrients essential for tumour growth are only able to penetrate
tissues about 100–200 µm deep from existing capillaries; therefore, a rich vascular net-
work is essential for continued local tumour growth, especially in the vertical growth
phase [92]. The most significant chemokine in angiogenesis in melanoma is CXCL8, which
can have paracrine and autocrine effects when it binds to CXCR1 and CXCR2, expressed
on melanoma cells and endothelial cells within the TME [24,31]. CXCL8 can promote the
proliferation of endothelial cells, their ability to form capillary tube-like structures, and
their migration. By signalling through CXCR1 and CXCR2 expressed on endothelial cells,
CXCL8 is also able to upregulate VEGF expression, as well as upregulate the expression
of metalloproteinases (MMPs). MMPs are able to degrade the extracellular matrix (ECM),
which not only contributes to tissue remodelling and growth but leads to the release of
ECM-bound growth factors, aiding further growth and angiogenesis [92]. Several studies
have demonstrated that, in addition to CXCL8, the ligands CXCL1-3 can induce angio-
genesis by involving the thrombin pathways [39,40]. When the CXCR1/CXCR2 signalling
pathway is blocked, new vessel formation is greatly reduced, and melanoma growth is
inhibited [26,28,40].

Angiogenesis can also be promoted by innate cells following their recruitment into the
TME. Both TAMs and neutrophils can contribute to angiogenesis directly via the secretion
of VEGF, the most potent angiogenic factor, and MIF [19,37,93]. TGFβ, also secreted by
TAMs and abundant within the TME, can promote the upregulation of VEGF and the
expression of CXCL8 [94], as can macrophage-derived TNFα and IL-1, further contributing
to angiogenesis [95].

5. Invasion and Metastasis

Metastasis is the main cause of death from human cancer [96,97]. Metastasis is a
process that requires several steps: the invasion of local adjacent tissue by tumour cells,
migration into the lymphatic system, intravasation of tumour cells into blood vessels,
survival and circulation through the blood, extravasation at distant sites, and finally, the
initiation of secondary tumours in distant organs, which requires appropriate conditions for
proliferation and neo-vascularisation, the so-called establishment of a metastatic niche [96].

5.1. Invasion

CXCL8 plays a key role in promoting melanoma motility [23], and when CXCL8 is
blocked, melanoma invasiveness is greatly reduced [41]. CXCL8 signalling through CXCR1
stimulates phospholipase C signalling, which, in turn, leads to regulation of the actin
cytoskeleton through the phosphorylation of protein kinase C; aside from this, CXCR1
signalling causes Rho-GTPase-induced polymerisation of actin cytoskeletons [31], both of
which promote cell motility. Immune cells recruited to the TME via chemokine pathways
can also promote invasion through the factors they secrete. For example, TAMs upregulate
urokinase-type plasminogen activator (uPAR) and secrete MMPs, such as MMP-9, which
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enable the remodelling of the ECM [98] and increase the invasiveness of melanoma, or they
upregulate such factors in melanoma cells through the secretion of TNFα and IL-1α [98].

5.2. Lymphangiogenesis and Lymphatic Metastasis

Lymph node metastasis represents one of the first key steps in the dissemination of
melanoma to distant sites. Lymphangiogenesis, as measured by lymphatic vessel density
(LVD), is associated with increased lymph node metastasis, with several studies supporting
the hypothesis that new lymph vessel formation can be actively induced in melanoma and
that this promotes metastasis to lymph nodes [99].

The mechanisms behind lymphangiogenesis in melanoma are complex and still to be
precisely defined. However, it is clear that the excretion of VEGF isotypes VEGF-C and
VEGF-D, and their binding to VEGFR-3 on lymphatic endothelial cells (LECs), is essential
for the formation of new lymphatic vessels. Within the TME of melanoma, sources of
VEGF include TAMs and neutrophils, recruited via the chemokine pathways outlined
above [16,37].

Chemokines may also play a more direct role in the development of new lymph
vessels: in immortalised human lymphatic endothelial cells, CXCL5 signalling through
CXCR2 was able to induce lymphatic sprouts to a similar extent as VEGF-C [42]. When
studying this effect further, Soler Cardona et al. [42] noted that CXCR2 is expressed by
human lymphatic endothelial cells, and the expression of CXCL5 correlates with increased
neutrophil density and an increased risk of locoregional metastasis. Neutrophils appear
to aid tumour intravasation into lymphatic vessels, with a 3.5-fold increase in tumour
cell migration when neutrophils were present in an in vitro model [42]. Although the
exact mechanisms are yet to be elucidated, the presence of neutrophils in predicting the
likelihood of locoregional metastases is being widely studied [84].

The CCR7/CCL21 pathway coordinates the migration of melanoma cells towards
and into lymphatic vessels. It is well-established that immune cells use CCR7 to migrate
into lymph nodes [100]. This mechanism applies to both circulating naïve and central
memory T cells entering lymph nodes via high-endothelial venules (HEVs), as well as to
tissue-derived memory T cells and DCs via the draining lymphatic system [5]. CCL19
and CCL21, the ligands for CCR7, are strategically expressed by LECs, HEVs, and stromal
cells within lymph nodes [69,70]. The CCR7 axis enables the co-localisation of mature,
antigen-presenting DCs, and T cells bearing cognate T-cell antigen receptors and, thus,
provides a core mechanism for the initiation of cellular and humoral immunity in response
to specific antigenic challenges [5,69]. Melanoma cells exploit this same chemokine axis by
upregulating CCR7 expression, enabling migration towards CCL21-producing LECs [71].
The overexpression of CCR7 on melanoma cells caused a greater migration of these cells to-
wards LECs, and the use of a CCL21-neutralising antibody stopped their migration in vitro.
In vivo models have replicated these findings with CCR7-transduced B16 melanoma cells
demonstrating greater metastasis to lymph nodes [72,73].

5.3. Epithelial to Mesenchymal Transition

Epithelial to mesenchymal transition (EMT) is a process by which tumour cells lose
their tissue residency, cell polarity, and cell–cell junctions and upregulate mesenchymal
markers, gaining a mesenchymal-like phenotype that enhances migration, invasiveness,
and resistance to apoptosis. EMT leads to the disruption of the integrity of the basement
membrane and the ability to tumour cells to migrate to other tissues [101]. Several tran-
scription factors and signalling pathways have been implicated in controlling EMT, and
chemokines have been demonstrated to influence these signalling pathways in a variety of
solid tumours.

In melanoma, although it is not an epithelial tumour, an EMT-like process may still
occur, referred to as “phenotype switching”. The signalling of CCL5 through CCR5 has been
shown to positively regulate TGFβ, which, in turn, induces EMT through PI3k/AKT/GSK3b
signalling [62], maintaining a mesenchymal phenotype and the metastatic properties of
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melanoma cells. CXCL5 has been shown to contribute to EMT in several solid tumours,
including gastric, colorectal, and hepatocellular, by enhancing the signalling pathways
required by EMT [102,103] but, also, by recruiting and activating neutrophils, which are
then able to enhance the invasive properties of cancer cells via the factors they secrete [104].
Similarly, in melanoma, MDSCs recruited via CXCL5 have been shown to induce EMT by
producing factors such as TGF-β, EGF, and HGF, and when depleted, the rate of metastasis
in animal models is greatly reduced [43].

5.4. Transendothelial Metastasis

Chemokine signalling is also involved in intravasation, a process whereby mobilised
tumour cells directly access blood via reverse transendothelial migration [105]. The work
by Amatschek et al. [47] on excised melanoma metastases demonstrated that tumour
microvessel endothelial cells express high levels of CXCL9 and CXCL10 and confirmed
that melanoma cells express CXCR3. CXCR3 is important for the migration of NK cells
and has an important role in CD4+ Th1 cell priming and the recruitment of CD4+ and
CD8+ effector T cells [5]. Using a series of in vitro migration assays, Amatschek et al.
showed that melanoma cells can migrate towards the CXCL9 gradients created by tumour
endothelial cells and through endothelial monolayers, a process accelerated by additional
soluble CXCL9. Upon stimulation with CXCL9, melanoma transmigration led to the
formation of “holes” in the endothelium, caused by the disruption of cell–cell contact.
This process was blunted by anti-CXCL9 and anti-CXCR3 antibodies, suggesting that
the CXCR3-CXCL9/10 axis plays a crucial role in this step of cancer dissemination, with
further studies demonstrating that CXCL10/CXCR3 co-expression is associated with early
metastatic disease progression and poor overall survival [45,48].

Once in the blood, melanoma cells again depend on chemokines for their recruitment
to specific organs. The location of secondary tumour growth depends upon the chemokine
receptors expressed on tumour cells and the chemokine expression that is specific to
certain tissue sites. For example, the CXCR4–CXCL12 axis has been associated with
pulmonary, as well as liver and bone marrow, metastases [49,55]. The expression of CXCR4
by melanoma cells in patient samples has been correlated with the likelihood of pulmonary
metastasis [50,51] and increased pulmonary metastasis has been seen in mice inoculated
with melanoma cells overexpressing CXCR4 [52–54], with CXCR4 inhibition reversing this
effect [56]. The binding of chemokines to their receptors induces inside-out signalling,
leading to affinity changes in integrins, which is a prerequisite for cell attachment and
subsequent transendothelial migration [106]. This mechanism may explain the recruitment
of CXCR4-expressing tumour cells in response to CXCL12 displayed on the inner walls of
the microvessels via the engagement of β-integrins with VCAM-1 (vascular cell adhesion
molecule 1) expressed on endothelial cells [107]. In mouse models, the blockade of CXCR4
or CXCL12 in the early course of metastasis reduced the number of pulmonary metastases;
however, if the blockade happened later, the sizes of the metastases were reduced. These
findings suggest that CXCR4 may also play a role in the early stages of the establishment
and growth of metastases.

As CXCR4 is thought to promote migration to the lungs, liver, and bone marrow, other
chemokines are associated with metastasis to specific organs: functionally active CCR9
facilitates metastasis of mouse tumour cells to the small bowel [78], and CCR4 appears to
play an important role in metastasis to the brain [68], the site at which CCL22, one of its
ligands, is expressed.

6. How Can Chemokines Be Exploited Therapeutically?

Chemokines could prove to be useful tools in the therapeutic arsenal against melanoma.
Specifically, by: (1) aiding in the stratification of treatment and “personalised medicine”,
(2) improving the efficacy of current cellular therapeutics, and (3) directly targeting spe-
cific subsets of cells or tumour-promoting migratory pathways. Monoclonal antibodies
and small molecule inhibitors have been developed to block the interactions between
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chemokines and their receptors. For example, the anti-CCR4 monoclonal antibody moga-
mulizumab is already clinically approved to treat haematological malignancies [88] and
may also be applied to the treatment of melanoma. On the other hand, where appropri-
ate, an increased chemokine expression may help achieve antitumour immune activation
by local administration, for example, as an adjuvant to DNA vaccines [75], and where
chemokine receptor expression is desirable, chemokine receptors can be transduced in cells
used for autologous transfer [44].

6.1. Diagnosis, Disease Stratification, and Monitoring

As this review clearly outlines, melanoma cells differ from healthy tissue in the
chemokines they express. Immunohistochemistry and genetic studies, as well as anal-
yses of patient serum, have highlighted these differences and could be incorporated
to aid diagnosis. For example, malignant melanomas express higher levels of CXCL1,
CXCL2, and CXCL8 and receptors CXCR1, CXCR4, CCR10, and CCR7 compared with
benign naevi [108–111]. The expression of chemokines such as CXCL8 and its recep-
tor CXCR2 increase as the tumour transitions from the radial to the vertical growth
phase [24]. Chemokine expression also correlates with prognosis; the expression of CXCR3
by melanoma cells is associated with a poorer prognosis and increased chance of metasta-
sis [48], whereas CCL27 expression in the supra-tumoral dermis is associated with longer
progression-free survival, perhaps due to the recruitment of CCR10+ lymphocytes [112].
The contradictory results to Simonetti et al.’s work demonstrate the complex nature of
chemokine pathways; CCR10 expression by melanoma cells appears to be associated with a
poorer prognosis due to signalling through CCR10 enabling the evasion of apoptosis [113],
whereas the expression of its ligand CCL27 likely promotes the recruitment of CCR10+

effector T cells [112], underscoring the context dependence of chemokine functions.
As well as this, chemokine expression can be used to monitor responses to treatment.

Increasingly high dimensional techniques, such as CyTOF and single-cell RNA-Seq, allow
multiple chemokines to be analysed in a large number of cells from individual patients.
Some groups have already conducted such studies using publicly available datasets of
the transcriptomes of skin cancers [114,115], and chemokine profiles are being included
as secondary outcomes in clinical trials to identify biomarkers of responses to treatment
(see Table 2). Evidence is emerging for a role for chemokines as prognostic and predictive
biomarkers of therapy responses; CXCL5 has been postulated as a biomarker for the
response to anti-PD-1 therapy, with high baseline levels associated with the response to
treatment [116], and serum CXCL8 has been shown to decrease in patients who develop
good responses to immunotherapy [117]. CXCL8 has been shown in many studies to
correlate with tumour burden; the levels of CXCL8 in the serum of tumour-bearing mice
and humans fall following surgical excision [118], patients with brain metastasis express
high levels of CXCL8 in cerebrospinal fluid [119,120], and CXCL8 has been shown to be
higher in models of BRAF inhibitor (BRAFi)-resistant melanoma [121].

Changes in chemokine expression have been studied in mouse models of BRAFi-
treated melanoma. When melanomas are sensitive to BRAFi treatment, CCL2 expression
and production is reduced, which correlates with a reduction in MDSC infiltration [122].
Similar studies have shown that increases in CXCL9 and CXCL10 correlate with an en-
hanced infiltration of T cells, which decreases as tumours become resistant to BRAFi
treatment [123].
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Table 2. Current clinical trials targeting and monitoring chemokines in melanoma.

Targeting Chemokines

Target Agent name Type of agent Melanoma
Type Phase Aims/Outcomes Trial

Number

CXCR1/CXCR2 SX-682 Small molecule
inhibitor Stages 3 or 4 1 Blocking recruitment of

MDSCs NCT03161431

CXCR2 Autologous TILs
CXCR2-

transduced
autologous TILs

Stages 3 or 4 Pilot Increased recruitment of TILs NCT01740557

Chemokine
modulation

DCs, celecoxib,
IFNa2b,

rintatolimod

Autologous DCs
+ chemokine
modulation

PD1/PD-L1-
resistant 2 Increased immune response NCT04093323

Monitoring chemokines/chemokines as biomarkers

TLR CMP-001 +
pembrolizumab

TLR9 agonist +
anti-PD-1
antibody

Recent or
current

PD1/PD-L1
therapy

1b

Activate DCs to augment
immunotherapy

Measuring CXCL10 as
biomarker for response to

treatment

NCT02680184

BRAF Dabrafenib +
trametinib

Neoadjuvant
BRAFi

Stage 3 BRAF
V600 mutant 2

Improve pathological
response

Measuring chemokines in
tumour and peripheral blood

to identify biomarkers for
response to treatment

NCT01972347

Immune
checkpoint

Immune
checkpoint
inhibitors

Immune
checkpoint
inhibitors

Stages 3 or 4
Current
immune
therapy

N/A

Measuring chemokines and
immune profile in tumour and

peripheral blood to identify
biomarkers for response to

treatment

NCT04576429

TILs TBX-3400 AT-MYC fusion
protein

Stages 3 or 4
Immune
therapy-
resistant

1

Activate cytotoxic T cells
Measuring chemokines in

peripheral blood to identify
biomarkers for drug activity

NCT03385486

PD-1 Anti-PD-1
antibody

All stages
Treatment naive 2

Measuring chemokine profiles
to identify biomarkers for

response to treatment
NCT04928365

TILs IL-2 IL-2 Any stage
Pretreatment 3

Increase TILs recruitment
Assess immune cell

infiltration and systemic
immune response to IL-2

therapy, including measuring
peripheral chemokines

NCT03233828

BRAF + immune
checkpoint

Cobimetinib +
vemurafenib +
atezolizumab

BRAFi + anti-PD-
L1-antibody +

surgery

Stages 3 or 4
Resectable
BRAF V600

mutant

2

Measuring chemokines and
immune profile in tumour and

peripheral blood to identify
biomarkers for response to

treatment

NCT04722575

6.2. Improving the Efficacy of Current Treatments of Melanoma

Chemokines could be used to improve current therapies for melanoma, and as men-
tioned, there remains a need for alternatives or adjuvants to current treatments. Adoptive
cell therapy, (ACT), and, specifically, chimeric antigen receptor (CAR-) T-cell therapy,
whereby autologous T cells are genetically transduced with a tumour-specific CAR, ex-
panded and reinfused in the patient, has shown great success in haematological malignan-
cies but is still being developed in solid tumours such as melanoma [124]. The transduction
of chemokine receptors may overcome the current issues of ACT, namely by increasing
the T-cell infiltration of tumours whilst maintaining antigen selectivity, thus reducing the
burden of autoimmune side effects. CXCR1 and CXCR2 have been shown to improve the
infiltration of CTLs [44,125], and CXCR2-transduced T cells are being trialled in a clinical
pilot study [NCT01740557]. CXCR3 is not only essential for T-cell trafficking to melanoma
but can improve NK-cell infiltration of CXCL10-producing tumours [126]. Additionally,
the ex vivo expansion of NK cells can itself increase NK expression of CXCR3, which is
further enhanced by exogenous IFN-α [127]; thus, the process of generating NK cells for
ACT increases their ability to infiltrate tumours. Chemokine modulation may also improve
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DC-based ACT and is currently being explored in a phase 2 clinical trial (NCT04093323)
(see Table 2).

Further to this, direct chemokine administration could also be a useful adjunct to
current therapies. CXCL10 secreted by DCs can recruit effector T cells into the TME [46].
CXCL10 is also secreted at higher levels by PBMCs in patients in remission [128]. When
CXCL10 is administered via an adenovirus vector in mouse models of melanoma, reduced
tumour growth is seen [128]. These data raise the possibility that CXCL10 could increase
the frequency of CXCR3+ TILs and could act as an adjunct to current treatments, including
ACT and checkpoint inhibition.

We have already discussed how melanoma is able to exploit the CCR7/CCL21 axis,
but efforts have also been made to use this axis for therapeutic benefit. CCR7 is used by
immune cells to enter lymph nodes, the site of antigen presentation and initiation of T-cell
responses [70]. An enhanced cytotoxic activity of adoptively transferred T cells is seen
when T cells are expanded ex vivo in the presence of CCL21. This has been shown to result
in improved infiltration of these T cells into tumours and in increased tumour suppression
in in vivo models [77]. In addition to this work, several groups have demonstrated that
CCL21 administration increases the frequency of TILs: Yamano et al. [75] used CCL21 as
an adjuvant to promote the effect of a melanoma DNA vaccine, and Chen et al. [76] used
an adenovirus vector expressing CCL21 in combination with paclitaxel and demonstrated
that the combination was better than either treatment alone. Using CCL21 as an adjunct
was associated with increased tumour infiltration by immune cells, improved tumour cell
apoptosis, and reduced blood vessel formation in the tumour tissue, but this is yet to be
repeated in combination with more recent treatments, such as checkpoint inhibition or
MAPK inhibitors.

Recruiting cytotoxic immune cells is one strategy to improve current therapies;
however, preventing the recruitment of immunosuppressive cells could be another. A
CXCR1/CXCR2 small molecule inhibitor is currently in a phase 1 clinical trial in combina-
tion with checkpoint inhibition (NCT03161431) to reduce innate immune cell recruitment.
In preclinical trials, anti-CCL2 in combination with BRAF-targeted therapy reduced tu-
mour sizes [122], as did anti-CXCR4 peptides when used alongside PD-1 [129], and both
demonstrated a reduction in MDSCs and T-regs. Furthermore, based on the key roles
of CCR5 on both melanoma cells and MDSCs, blocking CCR5 may help to: (a) limit the
metastatic potential of melanoma cells, (b) reduce the number of immunosuppressive cells
within the TME, and (c) enhance the infiltration of CTLs into tumours. Although these
pathways have not yet been successfully targeted in clinical trials in patients with cancer,
and there is a paucity of clinical trials targeting chemokine pathways in patients with
melanoma (see Table 2), there are clinical trials targeting chemokines for many other cancer
types in cancers where checkpoint inhibition alone has failed to achieve the revolution seen
in melanoma therapy. The blockade of CCR5 is being extensively explored in colorectal
cancer (NCT04721301) and triple-negative breast cancer (NCT03838367), CCR2 blockade is
being explored in pancreatic (NCT03767582) and lung cancer (NCT04123379), and CXCR4
antagonists in haematological malignancies (NCT01740557).

6.3. Direct Targeting of Specific Migratory Pathways

Targeting chemokines could be a therapeutic approach in its own right. As mentioned
above, several treatment approaches, including small molecules, peptides, or antibodies
against CXCR4, have shown great promise at reducing the burden of metastasis in pre-
clinical studies [129]. In a similar vein, Emmett et al. showed that blocking CCR7 can
reduce melanoma migration towards and infiltration of lymph nodes [73]. This appears
to be in contrast with the above idea of using CCL21 as an adjunct to promote the re-
cruitment of CTLs, which also express CCR7. Indeed, in a mouse model of melanoma,
Wetzel et al. [130] delivered CCR7 via a parvovirus, which led to the increased activation
of T cells and NK cells and tumour shrinkage. This is a clear example of how melanomas
can be targeted therapeutically through the same chemokine pathways that are known to
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increase melanoma pathogenicity and cancer metastasis. In a therapeutic setting, manipu-
lating these chemokine networks can be finetuned to instead activate immune responses
and enhance cancer killing. For instance, when melanoma cells express the receptor CCR7,
they are able to migrate along the same ligand gradients as circulating immune cells to enter
lymph nodes; however, when CCL21 is expressed by melanoma, immune cell recruitment
to the TME via CCL21 gradients is magnified. The manipulation of such axes therefore
requires great care in order to prevent the disruption of tissue homeostasis and preserve
the important functions of such networks.

CCR4 is a second target with potential dual effects; CCR4 contributes to melanoma
metastasis to the brain [68], and it is also expressed on the most suppressive tumour-
infiltrating T-regs [66,131]. As already mentioned, the anti-CCR4 antibody mogamulizumab
has been shown to deplete these highly suppressive T-regs and is used to target malignant
T cells in adult T-cell lymphoma. CCR4, however, is not selective for T-regs and is also
expressed by Th17 and Th2 cells, thought to be important in enhancing the antitumour
CTL response [132]. Although anti-CCR4 treatment has the potential to reduce T-regs and
their immunosuppressive effects, CCR4 blockade also has the potential to impair effector
T-cell responses by reducing the Th17 induction of CTLs. The lack of specificity and redun-
dancy in the chemokine network is highlighted by this potential target and reiterates the
importance of striving to gain a thorough understanding of the distinct cellular responses
controlled by chemokines.

As mentioned, CCR8 is thought to be a more selective marker for tumour-infiltrating
T-regs, but the blockade of CCR8 does not appear to impact the number of T-regs infiltrating
melanoma. Despite this, there is currently an anti-CCR8 monoclonal antibody in phase 1
clinical trials in solid tumours refractory to other treatments (NCT05007782).

7. Discussion: Challenges in Studying of Chemokine Networks and Implications for
Clinical Translation

Although this review covers a significant body of work and some excellently crafted
studies, it is important to iterate that most of these studies have been conducted in mouse
models, some using mouse melanoma cell lines and others using human melanoma cell
line xenografts in rodent models. It is well-established that murine and human chemokine
networks differ and that murine and human chemokines do not always interact with each
other [133]. This is particularly important in experiments where the interaction between
a murine chemokine and human receptor or vice versa is being explored. Added to this,
the anatomical structures of human and mouse skins differ, and indeed, laboratory mice
in clean conditions have different resident immune cells in the skin when compared to
humans [65,122]. How these cells contribute to the reaction towards a skin malignancy
may not be fully replicated by solely interrogating such animal models.

As discussed above, it is important to recognise that a multitude of cells with different
functions can express the same chemokines or receptors. Therefore, blocking a receptor may
have unforeseen consequences. In many studies where the blockade of a chemokine axis has
demonstrated an effect, transfected cells that overexpress the chemokine in question have
been used. Although this technique is useful to help better explore the functions of certain
chemokines, these experiments do not adequately recapitulate the patient setting, and the
effect of the blockade can often be exaggerated. As we have discussed, the chemokine
network is highly complex, and even if the blockade of overexpressed chemokines has an
effect, this may not fully translate to the clinical setting.

Another challenge comes from chemokines not being selective for tumour-associated
receptors. For example, targeting chemokines contributing to tumour-associated angiogen-
esis could also have an impact on normal vasculature and the blood vessel formation seen
in wound healing [40,134,135], potentially causing toxicities. Using chemokines to block
the recruitment of cells such as neutrophils and monocytes, which contribute to tumour
growth, could also have an impact on the recruitment of such cells in inflammation or
affect immune surveillance, and enhancing antitumour effector T-cell functions or blocking
immunosuppressive T-reg functions could have unwanted autoimmune consequences,
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as seen with the adverse side effects of mogamulizumab treatment; for a more detailed
discussion of CCR4-targeted treatments, please consult the article by O. Yoshie in this
Special Issue. Autoimmunity is already an issue in immunotherapy, and although one of
the ideas we have touched on is how targeting chemokines may make immunotherapy
more selective, care is needed when manipulating such important signalling networks. Un-
derstanding the functions of chemokines in tissue homeostasis will not only help prevent
adverse effects of chemokine manipulation but may also shed light on new ways in which
the normal function of chemokines could be used for therapeutic gain.

All of these factors have most likely contributed to the lack of clinical translation of
chemokines and their receptors as targets for cancer therapy. However, there are other
issues that may be more specific to melanoma. For example, an area that is underexplored
is how the chemokine profile of melanoma changes temporally as the disease progresses.
Melanoma metastases preferentially target the same sites: brain, liver, and skin. The role
of chemokines in metastasis is undeniable, but little is known about how the expression
of chemokines and their receptors are regulated as melanomas gain metastatic potential.
Secondly, cancer stem cells, a subset of self-renewing cancer cells that are able to initiate
tumour growth, may play an important role in resistance to therapy [136]. Although
under-researched, the role of chemokines in the maintenance and positioning of these cells
may unearth new targets for inhibiting the tumorigenic functions of these cells [137]. In
addition, melanoma is the most immunogenic tumour and appears to be reliant on the
recruitment of immune cells for its progression, and yet, it appears to be a cancer with the
fewest clinical studies of chemokine manipulation. This may be due, in part, to the success
of checkpoint inhibitor therapies; most clinical trials in melanoma are aimed at enhancing
these successes of checkpoint inhibition, whereas, in malignancies that have not benefitted
from checkpoint inhibitors, new therapeutic avenues appear to be being explored more
widely. Perhaps, it may be beneficial to revisit chemokine targets that were neglected as a
consequence of the substantial progress achieved with checkpoint inhibitors.

8. Conclusions

The interplay of chemokine axes is essential for the growth, survival, invasion, and
metastasis of melanoma. The successful manipulation of the key chemokine pathways
alone or as part of treatment combinations by clinicians could provide novel tools to
overcome this disease.
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