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Abstract

The organization of region-to-region functional connectivity has major implications for understanding informa-
tion transfer and transformation between brain regions. We extended connective field mapping methodology
to 3-D anatomic space to derive estimates of corticocortical functional organization. Using multiple publicly
available human (both male and female) resting-state fMRI data samples for model testing and replication
analysis, we have three main findings. First, we found that the functional connectivity between early visual re-
gions maintained a topographic relationship along the anterior-posterior dimension, which corroborates previ-
ous research. Higher order visual regions showed a pattern of connectivity that supports convergence and
biased sampling, which has implications for their receptive field properties. Second, we demonstrated that
topographic organization is a fundamental aspect of functional connectivity across the entire cortex, with high-
er topographic connectivity between regions within a functional network than across networks. The principle
gradient of topographic connectivity across the cortex resembled whole-brain gradients found in previous
work. Last but not least, we showed that the organization of higher order regions such as the lateral prefrontal
cortex demonstrate functional gradients of topographic connectivity and convergence. These organizational
features of the lateral prefrontal cortex predict task-based activation patterns, particularly visual specialization
and higher order rules. In sum, these findings suggest that topographic input is a fundamental motif of func-
tional connectivity between cortical regions for information processing and transfer, with maintenance of to-
pography potentially important for preserving the integrity of information from one region to another.
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Significance Statement

Quantifying spatial patterns of region-to-region functional connectivity provides an avenue for testing theo-
ries of corticocortical information transformation and organization. This work demonstrates that this quanti-
fication is feasible not only in early visual cortex, but even in highly multimodal regions where spatial
topography is less clear. Overall, we show that topographic relationships as a common motif functional con-
nectivity across the cortex between regions within the same functional network and that analyzing the lateral
prefrontal cortex in terms of topographic connectivity reveals organizational features that voxel-wise con-
nectivity analysis misses.
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Introduction
One primary goal of systems neuroscience is to under-

stand how integration occurs across cortical areas in order
to support complex behavior (Cavada and Goldman-
Rakic, 1991; Hoover and Strick, 1993; Haber et al., 2000).
As different brain regions display spatially specific patterns
of long range and short range connections to their target
regions (Van Essen and Gallant, 1994; Kravitz et al., 2011,
2013), it is believed that the particular properties of brain
circuitry must provide a foundation for brain function and
information processing, and that connectivity profiles from
one region to another allows for the potential understand-
ing of information transfer/transformation. Topographic, con-
vergent, and divergent connectivity have been postulated to
support different computational needs of a given neural net-
work (Thivierge andMarcus, 2007). For example, systematic
convergent connectivity in the visual hierarchy has been
shown to be responsible for object processing, from lines
(Hubel and Wiesel, 1962) to complex objects (Tanaka,
1997), while divergent connectivity has been theorized in
motor systems for complex feedback mechanisms, such as
motor efference copies (Wolpert and Flanagan, 2001).
Neuroimaging studies of brain connectivity, while indi-

rect, have the benefit of their exhaustive sampling across
the entire anatomic space, which complement the inter-
pretations from the sparse sampling of rigorous anatomic
tracing in animals. This is evident in functional connectiv-
ity studies using resting state fMRI data, from which a low
dimensional structure of large scale networks has been
consistently observed as a key organizational feature of
the cortex (Fox et al., 2005; Biswal et al., 2010; Yeo et al.,
2011; Di et al., 2013). Indeed, decomposing the whole
brain into its fundamental gradients have revealed a struc-
ture for the organization of large scale networks, with the
primary gradient trending from unimodal networks to mul-
timodal networks (Margulies et al., 2016). However, de-
spite the overwhelming focus on large scale brain
organization, detailing the particular patterns of connec-
tivity from one region to another remains a challenge.
Region-to-region topographic connectivity has been ob-

served between early visual areas, which show retinotopic
organization (Dumoulin and Wandell, 2008; Wang et al.,
2015). By systematically seeding functional connectivity
from known functional gradients, it has been shown that
functional connectivity within a visual region, and between
visual regions seem to follow along known eccentricity or-
ganization, along the anterior-posterior axis (Arcaro et al.,
2015). In other words, certain parts of a visual region that
represent certain eccentricities are more likely to connect
to the specific parts of other visual regions that represent
similar eccentricities. While this type of systematic seeding
is possible in areas with a known and measurable sensory

topography, a more general model, such as connective
field mapping (Haak et al., 2013), is useful for studying the
connection topography of higher order regions. The previ-
ous connective field mapping technique fits 2-D surface
based population receptive fields (pRFs) using cortical sig-
nal from one region as the input to another region (Haak et
al., 2013). This method has been used to model early visual
areas, and demonstrate maintenance of retinotopic organi-
zation across these visual regions (Haak et al., 2013;
Gravel et al., 2014).
It is unclear whether the linear pattern of connectivity

observed in early visual cortex is dependent on a shared
sensory topographic organization, or whether it is present
in any highly connected network. In particular, for multi-
modal regions such as the prefrontal cortex, while it is
known that various subdivisions are closely connected,
the exact functional organization remains controversial
(Ungerleider et al., 1998; Goldman-Rakic, 1999; Petrides,
2005). In theoretical models, spatial topography in con-
nectivity is postulated to serve the function of ensuring
the fidelity of information transfer across a network
(Thivierge and Marcus, 2007). Topographic organization
of connectivity also has the potential to generate complex
abstract representations by virtue of topographic overlap
(Tinsley, 2009). This suggests that abstract computations
can be performed by biases in spatial connectivity and fil-
tering between regions of a large scale network, in the
same way that has been suggested in the visual system
(Van Essen and Gallant, 1994; Tinsley, 2009).
In this study, we have modified and extended the con-

nective field model, allowing for the estimation of topogra-
phy of functional connectivity between regions using
resting-state fMRI data in order to infer potential fidelity of
information transfer between regions within and across un-
imodal and multimodal networks. This method fits a 3-D
isotropic Gaussian to the connectivity pattern in the map-
ping region from individual voxels in the seed region (Fig.
1A). This fitting procedure produced four parameters, three
location parameters describing the preferred locus of con-
nectivity and a spread parameter, and the fitted Gaussian
acts like an encoding model for time courses of BOLD ac-
tivity (Fig. 1B). We further estimated the degree of topo-
graphic mapping from one region to another by performing
Procrustes analysis. The degree to which the rank ordered
parameters can be fit to the rank ordered coordinates
using a linear transformation provides the estimation of the
topographic mapping between regions. We first examined
the degree of topography connectivity in the visual system,
as the literature is relatively established, and then exam-
ined whether it is simply a specific case of a general motif
of brain functional connectivity across various networks,
and finally used this approach to examine prefrontal cortex
functional organization.

Materials and Methods
Subjects
We used three publicly available datasets: one sample

of healthy controls with well validated resting state fMRI
data, which is the Cambridge Buckner subset of the 1000
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functional connectomes project (Biswal et al., 2010), and
two smaller samples more well suited for test-retest reli-
ability studies. The first small sample being the intrinsic
brain activity test retest (IBATRT) dataset (Zuo et al.,
2014), and the second being the midnight scan club
(MSC) dataset (Gordon et al., 2017).
For the Cambridge Buckner data sample there were

a total of 198 subjects (123 female), ages 18–30
(M= 21.03, SD= 2.31), with all subjects included in the
final analysis. For the IBATRT data sample, there were a
total of 36 subjects (18 female) ages 19–48 (M=27.33,
SD= 7.86) with two sessions and each with two runs.
Four IBATRT subjects were excluded due to excessive
motion in at least one of the four runs, leaving 32 sub-
jects with data in the two runs of session 1 (16 female;
ages 19–48, M=26.03, SD= 7.24). For the MSC dataset,
there were a total of 10 subjects (five female), ages 24–
34 (M=29.1, SD= 3.3), and all included in the final
analysis.

fMRI parameters
Cambridge Buckner data (Siemens 3T Trim Trio): T1-

weighted images were collected with MPRAGE with the

following image parameters: slices=192, matrix size =
144 � 192, voxel resolution=1.20 � 1.00 � 1.33 mm3.
Resting state fMRI data were T2p-weighted images acquired
using EPI with the following parameters: 47 interleaved axial
slices, TR=3000ms, voxel resolution=3.0� 3.0� 3.0 mm3

(119 volumes).
IBATRT data (Siemens 3T Trim Trio): T1 weighted im-

ages were collected with MPRAGE with the following
image parameters: slices =176, matrix size = 256 � 256,
voxel resolution =1.0 � 1.0 � 1.0 mm3. Resting state fMRI
data were T2p-weighted images acquired using EPI with
the following parameters: 29 ascending axial slices,
slice gap=0.36 mm, TR=1750ms, voxel resolution=
3.4� 3.4 � 3.6 mm3 (343 volumes each run). While there
were up to four runs across two sessions for subjects, we
only used the two runs in the first session.
MSC Data (Siemens 3T Trim Trio): Four T1 weighted im-

ages were collected: slices = 224, voxel resolution=0.8 �
0.8 � 0.8 mm3. Four T2 weighted images: 224 slices,
voxel resolution 0.8 � 0.8 � 0.8 mm3. Resting state fMRI
were T2p-weighted images acquired using EPI: 36 inter-
leaved axial slices, TR=2200ms, voxel resolution= 4 �
4 � 4 mm3 (818 volumes each session). A gradient echo
field map was collected with the same parameters as the

Figure 1. 3-D connective field modeling. A, Gaussian fitting procedure. Each seed voxel’s time course (dotted bracket inside the
matrix on the left represents the time course of one voxel of the seed region) is correlated to every voxel’s time course in the map-
ping region and then Fisher’s z transformed. For each seed voxel, the corresponding Fisher’s Z matrix is then fitted to the 3-D
Gaussian model, by minimizing the correlation distance between the Fisher’s Z matrix and the Gaussian distribution. The fitted
Gaussian parameters, location, and standard deviation (SD) parameters, for each seed voxel are used in subsequent quantitative
tests, such as topography and convergence. Validation of the statistical models used to assess topography are provided in
Extended Data Figures 1-1, 1-2. These two metrics, topographic connectivity and convergence, have a negative nonlinear relation-
ship (Extended Data Fig. 1-3). B, Time-series prediction model. For each time point, the overlap between the actual activation in the
mapping region [A(x,y,z,t)] and the fitted Gaussian distribution in the mapping region [gv(x,y,z)] for that particular seed voxel produce
the expected level of activity in the corresponding seed voxel. The first arrow points to a period of low overlap, and thus a period of
low expected level of activity, while the second arrow points to a period of high overlap, and thus a period of high expected level of
activity. This procedure was used to evaluate the performance of the 3-D connective field model.
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BOLD EPI images for each session. There were 10 ses-
sions for each subject, all used in the analysis.

Image preprocessing
For each individual in the Cambridge Buckner and

IBATRT data samples, preprocessing was performed
using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/
spm12/). The functional images were first corrected for
slice timing, and then realigned to the middle volume ac-
cording to a six-parameter rigid body transformation.
Structural images were coregistered with the mean func-
tional image, segmented, and then normalized to the MNI
template using both linear and nonlinear transformations.
Functional images were normalized using the same pa-
rameters as the structural normalization.
Further preprocessing was performed following the

standard procedures of resting-state fMRI analysis either
using CONN (Whitfield-Gabrieli and Nieto-Castanon,
2012) or custom MATLAB (2015b) scripts. A nuisance
regression was constructed with the following confound-
ing variables: six motion parameters up to their second
derivatives, scans with evidence of excessive motion
[framewise displacement (FD). 0.5 or DVARS. 5], ses-
sion onset, estimated physiological signal generated
through aCompCor (a temporal PCA of the white matter
and CSF voxels with the number of components included
determined individually on the basis of a Monte Carlo null
model; Behzadi et al., 2007), and a linear drift component.

For the Cambridge Buckner data the residuals from the
nuisance regression were filtered using a bandpass be-
tween the frequencies of 0.008 and 0.09Hz, while for the
IBATRT data, the bandpass filtering and nuisance regres-
sion were done simultaneously (Hallquist et al., 2013).
Finally, the resultant data were despiked using a tangent
squashing function.
For the MSC data, we used their release of preprocessed

data which includes slice intensity correction, mode 1000 in-
tensity normalization, realignment, transformation into
Talairach space and FSL’s field distortion correction (Smith
et al., 2004). These data also came with additional prepro-
cessing for resting-state analysis. Censored volumes were
determined by an FD threshold of 0.2 mm. The data were
first demeaned and detrended, then a nuisance regression
was performed removing the following factors, with cen-
sored volumes ignored: global signal, white matter mean
signal, CSF mean signal, and motion regressors with the full
Volterra expansion. The data were then interpolated across
the censored volumes using least squares spectral estima-
tion followed by bandpass filtering between 0.009 and
0.08Hz. The censored volumes were removed in the final re-
sultant data samples for analysis (for full description of proc-
essing pipeline, see Gordon et al., 2017).

Regions of interest (ROIs)
The initial analyses of 3-D connective field mapping

were conducted using the visual areas as ROIs. For the

Figure 2. Group results of the 3-D connective field modeling in dorsal and ventral visual cortex using the Cambridge Buckner rest-
ing-state fMRI dataset. A, Examples of the resulting Gaussian model are shown for two seed voxels (red dots), plotted in red among
other voxels (black circles) in dorsal visual cortex (red masked area in the right hemisphere), and their associated group level
Gaussian fit (color scale ranged from blue to yellow) in ventral visual cortex (green masked area). For full visualization, each two col-
umn shows two plots of the seed voxel’s fitted map rotated by 180° from each other. B, Preferred location of connectivity of each
seed voxel is plotted as a vector with the origin in the seed location, and the vector direction showing the fitted x0, y0, and z0 param-
eters. The vectors are colored coded with blue to red representing low to high Euclidean norm of the vector. While unclear in the
current data, in higher resolution data, these vector fields are slightly deformed by the cortical surface (Extended Data Fig. 2-1).
Extended Data Figure 2-2 shows the vector fields of dorsal and ventral visual cortex subregions. Further, we demonstrate the reli-
ability of this result in Extended Data Figures 2-3, 2-4, 2-5. C, Group average of the Gaussian model’s SD parameter. Left, Each
voxel within the seed region, dorsal visual cortex, is plotted with the data point’s color scaled by the SD parameter of their connec-
tive field model. Cooler to warmer colors represent smaller to larger SDs. Right, This plot shows the correlation between the ante-
rior-posterior extent of the seed voxel and their associated SD parameter, suggesting that SD increases along more anterior voxels.
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early visual areas, we used the probabilistic visual atlas
(Wang et al., 2015), selecting all voxels with any probabil-
ity of either dorsal or ventral visual cortex, with no overlap
between the two ROIs (Fig. 2A). To determine whether the
finding from the overall visual cortex mask was a general
property of early visual areas, we also defined more selec-
tive masks of the dorsal and ventral portions of V1, V2,
and V3, each with probability.30% to reduce overlap be-
tween the masks. We then applied the same connective
field mapping analyses across each visual region’s dorsal
and ventral portions.
In an additional analysis, we created slightly more leni-

ent V1 mask selecting any voxels that have a.15% prob-
ability of being V1. We used this V1 ROI as a mapping
region for the right fusiform face area (FFA) and the right
parahippocampal place area (PPA), both FFA and PPA
were derived using Neurosynth meta-analyses, with
“faces” and “place” as keywords, respectively (Yarkoni et
al., 2011).
For the whole-brain topographic connectivity analy-

sis, we made use of a previously published whole-brain
parcellation atlas of 400 regions. The parcels were gen-
erated by maximizing correlations within a parcel while
minimizing local changes in correlations within a parcel
(Schaefer et al., 2018). For time and computational fea-
sibility, we only used the 200 parcels of the right
hemisphere.

3-D connective field mapping andmodel parameters
The 3-D connective field mapping analysis has been re-

leased in the form of a MATLAB toolbox, with a simple
GUI wrapper to help guide analysis (www.nitrc.org/
projects/r2r_prf/).
For both the “seed” and “mapping” regions, the mean

time course of the ROI was subtracted from each voxel’s
time course, so as to reduce the influence of correlation at
the mean signal level, although in practice the results are
similar with or without removing the means. Then, for
each voxel within the seed region, we calculated its corre-
lation with every voxel within the mapping region and
transformed the resulting correlation values using Fisher’s
Z transformation. Each distribution of Fisher’s z values
(for each seed voxel) was fitted with a 3-D isotropic
Gaussian distribution (Fig. 1A):

gv x; y; zð Þ ¼ 1

s 3 2pð Þ3=2
exp

� x� x0ð Þ21 y � y0ð Þ21 z� z0ð Þ2
2s 2

Initial values for the x0, y0, and z0 parameters during the
optimization procedure were the x-, y-, and z-locations of
the maximum Fisher’s z value, and an arbitrarily small
number (floating-point epsilon) for the SD. The optimiza-
tion procedure had lower bounds of the smallest location
parameters within the mapping region and the floating-
point epsilon for the SD, while the upper bounds were the
maximum location parameters and the smallest range of
the three dimensions for the SD. The parameters of the

Gaussian were estimated by minimizing the correlation
distance between the Fisher’s z values and the Gaussian
probability density function using the interior-point algo-
rithm (Byrd et al., 2000), implemented by MATLAB’s fmin-
con function (MathWorks Inc, 1995–2019). Predicted time
series for each voxel v in the seed region were estimated
as the degree of overlap between the estimated Gaussian
function and the activation pattern of the mapping region
for each time point t (Fig. 1B):

pv tð Þ ¼
X

x

X

y

X

z

A x; y; z; tð Þgv x; y; zð Þ

Both the predicted time series and the actual data time
series were z-scored to remove any arbitrary scaling fac-
tors. Fit was assessed by comparing the distribution of
correlations between each voxel’s fitted model and the
true data to the distribution of correlation between each
voxel’s true data and every other voxel’s fitted model.

Metrics of region-to-region organizational patterns
Topographic organization of functional connectivity be-

tween the seed and mapping region was estimated as
rank linearity: estimated using the Procrustes method by
fitting the three rank-ordered space parameters of the
Gaussian model to the three rank-ordered space parame-
ters of the seed locations (Kendall, 1989). The 3-D esti-
mated parameters from the 3-D connective field model
where first rank ordered, and then a transformation matrix
with translation, rotation, and scale components was esti-
mated that minimizes the normalized sums of squares
error (SSE) between the rank ordered parameters and
their spatial origin. The complement of the normalized
SSE between the transformed parameters and the actual
seed locations was used as a measure of the degree of
topographic connectivity between two regions.
In order to determine whether the topographic arrange-

ment of a region’s functional connectivity is above and
beyond the base topography expected due to chance
(given BOLD data characteristics), we formulated a way to
examine what it means for a region to be topographically
organized. Given the probability of a voxel (in a volume of
randomly distributed data) having a data rank order equal
to its spatial rank [p(r)] is the inverse of the volume (V) of
the seed:

p rð Þ ¼ 1
V

Then, the expected rank linearity of a volume is the av-
erage probability of this occurrence across the volume,
which is simply the inverse of the volume of the seed
again:

E Linð Þ ¼
X

p rð Þ
V

¼
X 1

V
V

¼ 1
V

then, understanding the effect of smoothing on this ex-
pected value is understanding the extent to which
smoothing reduces the number of independent
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observations in the spatial field, as defined by the number
of resels in the volume:

E Linsmoothnessð Þ ¼ 1
V=FWHMD

where FWHM is the estimated smoothness of the volume,
and D is the dimensionality of the data (three in the case
of fMRI data). Statistical inferences can be made by evalu-
ating the 95% confidence intervals of this probability on a
binomial distribution given the number of voxels in the
volume.
To examine whether the process described reflects the

behavior of our rank linearity estimations, we simulated vol-
umes of randomly distributed data while manipulating both
the number of voxels in the volume and the smoothness.
First, we showed that the expected value of rank linearity is
approximately equal to the probability of a rank, which is
the inverse of the voxels in a volume (Extended Data Fig. 1-
1A). Second, we found that the effect of smoothing follows
from the approximate number of independent observations
(i.e., number of resels) within the volume (with the 95%
confidence intervals well approximated by evaluation on
the binomial; Extended Data Fig. 1-1B). However, we
noted that there seemed to be some divergence of the
model from the simulated data at higher smoothing val-
ues. We then conducted more simulations to test
whether the deviance was related to the total number of
independent observations in the volume, by manipulat-
ing the number of voxels in the volume. If the deviance is
due to the total number of independent observations (re-
sels) then this data should diverge from the model with a
lower smoothing FWHM in simulations with fewer voxels.
We found that this was roughly the case [Extended Data
Fig. 1-2A(volume= 729 voxels) vs Extended Data Fig. 1-
2B(volume= 125 voxels)]. We selected a rule of thumb to
flag inferences that may be inappropriate, where the
number of resels in a ROI is less than or equal to 10.
In addition to topographic connectivity, we also estimated

convergence of functional connectivity. Convergence is the
logical counterpart to topographic connectivity, and was
calculated using a 3-D form of the Kolmogorov–Smirnov
(KS) test (Fasano and Franceschini, 1987). The convergence
metric was defined as the deviance of the Gaussian param-
eters from uniform distribution across the voxels in the map-
ping region. This provides a relatively distribution insensitive
measure of convergence (Fasano and Franceschini, 1987).
To correct for regional differences in spatial correlations and
number of voxels, we used the KS value corrected for the
KS value at the 5% a level. The relationship between con-
vergence factor and rank linearity is shown in Extended
Data Figure 1-3.
Further, vector fields were constructed to visualize the

connectivity organization between two regions, with each
vector originating at each seed voxel, and the orientation
and length of the vector determined by the centered
Gaussian parameters, its preferred location in the map-
ping region in relation to the center of mass of the map-
ping region (Fig. 2B).
However, corticocortical relationships are likely to be

obfuscated in 3-D space due to cortical folding. While

previous attempts to examine this have aligned data to
the cortical surface to avoid this problem, we did not use
cortical sheets for several reasons. First and foremost,
since the data are acquired in volumetric space, most op-
erations aligning to a cortical surface model results in ad-
ditional smoothing to the data (e.g., through averaging). In
addition, unfolding the cortical sheet is an arbitrary pro-
cess, with distortions added in different forms depending
how it is done. Therefore, constructing objective 2-D co-
ordinates is intractable. Our measures of topography pro-
vided novel information in the original space, but are likely
influenced by the different folding patterns of the cortex to
some extent. Therefore, we also visualize the relationship
between regions by constructing a vector field. The vector
field allows the researcher to observe when spatial rela-
tionships from one cortical region conform to the cortical
surface, as the vector field should bend along sulci and
gyri (for an example in a single subject, and group vector
field on how vectors are distorted when constrained to
the cortical sheet, see Extended Data Fig. 2-1).
We assessed test-retest reliability using the IBATRT

and MSC datasets. For the IBATRT dataset, we examined
the spatial correlation between the patterns of parameters
in run 1 and run 2, within individual subjects and across
session means. For the MSC dataset, we examined
potential effects of added scan time to the stability of the
3-D. Gaussian parameters for individual subjects. We split
each subjects’ sessions into two groups, a test and a re-
test group. We varied the number of sessions in each
group, with a maximum of 5 session per group, and calcu-
lated the test-retest reliability for each subject. We also
performed 3-D connective field mapping for each subject
with all their sessions to demonstrate the stability of the
group effect at the level of individual subjects.

Examining connectivity profiles in higher order visual
regions
To study how the patterns of connectivity from early vis-

ual cortex to higher order visual regions, such as FFA and
PPA (for ROI selection, see above, Regions of interest),
may predict their complex response properties, we fit 3-D
connective field models seeding from these areas, map-
ping into primary visual cortex. We compared convergence
and topographic connectivity between PPA/FFA and V1,
and compared the model parameters to those of the intrin-
sic convergence and topographic connectivity within V1.
We expected both regions to have higher convergence

than the relationships between dorsal and ventral V1.
Given the observed retinotopy in PPA (Arcaro et al.,
2009), and the relatively weaker observed retinotopy in
FFA (Saygin and Sereno, 2008), we also expected PPA to
demonstrate a higher amount of topographic connectivity
and a lower amount of convergence with V1 relative to
FFA connectivity relationships with V1.

Whole-brain characterization of topographic
functional connectivity
We performed 3-D connective field mapping on each

unique pair between all possible pairs out of the 200
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parcels in the right hemisphere of the Shaefer atlas for
each subject in the MSC data. For each fitted pair, we cal-
culated the rank linearity of connectivity using Procrustes
analysis. We selected several seed regions to test
whether topography is maintained through specific net-
works or generally across the brain. We selected several a
priori networks and examined whether their topographic
characteristics follow network like behavior, namely that
their within-network topographic connectivity is stronger
than between network topographic connectivity.
As a higher order summary, and to compare with previ-

ous whole-brain gradient decompositions (Margulies et al.,
2016; Murray et al., 2018), we performed nonmetric multi-
dimensional scaling on the rank linearity matrices from all
parcel pairs to estimate the gradients of topographic con-
nectivity across the right hemisphere. The far ends of these
gradients were considered to represent which regions
maintain linear information across the brain. We produced
a two mode solution, on the basis of an elbow in the plot of
the rank correlation of the produced distance and the ob-
served distance matrices (Extended Data Fig. 6-1A), and
visualized the gradients across the brain.

Lateral prefrontal cortex analysis
We selected the subset of parcels (see above, Regions

of interest) within the lateral prefrontal cortex, and per-
formed a similar gradient decomposition analysis specifi-
cally on prefrontal functional connectivity topography. We
estimated two gradients (for rational, see Extended Data
Fig. 6-1B) of the lateral prefrontal cortex and then examined
whether the discovered organization reflects principles of
prefrontal cortex organization described in the literature
(Goldman-Rakic, 1987; Koechlin et al., 2003). For compari-
son, we further examined the gradients resulting voxel-wise
functional connectivity (Extended Data Fig. 7-1).
Each participant of the MSC data sample also went

through three tasks in the scanner, an incidental memory
task in which participants judged various characteristics
of faces, scenes, and words, a motor task in which partici-
pants were instructed to move various parts of their body,
and a mixed block task design in which participants had
to either discriminate between nouns and verbs, or coher-
ently and incoherently moving dots, with a cue on the
onset and offset of each block (Gordon et al., 2017). We
used two contrasts to examine sensory specialization
(memory: face – scene, mixed: visual – semantic discrimi-
nation) and one to examine abstract rules [mixed: discrim-
ination (visual and semantic) – cue effects].
In order to examine how the organizational features of

the lateral prefrontal cortex observed in the resting state
scans relate to spatial patterns of task activation, we con-
structed three multiple regressions, one for each contrast,
predicting task activation from each topographic gradient
and average convergence.

Results
Mapping functional connectivity in the visual cortex
To replicate previous findings from 2-D modeling on the

surface (Haak et al., 2013; Gravel et al., 2014), we first

used 3-D connective field modeling to show that dorsal
and ventral portions of the visual cortex have a topo-
graphic organization in their functional connectivity.
Figure 2A illustrates the group average 3-D connective
field maps in the ventral visual cortex for two selected
seed voxels in the dorsal visual cortex using the
Cambridge Buckner dataset. Figure 2B summarizes these
results as a vector field in the seed region, with a vector
originated from each seed voxel displaying the location of
its preferred connectivity as the relative displacement
from the center of the mapping region (Fig. 2B). This vec-
tor field of the dorsal visual cortex revealed a strong con-
nectivity mapping to the ventral visual cortex along the
predicted anterior-posterior organization (Arcaro et al.,
2015), which was also supported quantitatively by the
high correlation between the seed’s y-location and the
mean modeled y-location of the Gaussian fit in the map-
ping region, with r(394) = 0.71, p=1.63 � 10�62 (r=0.83,
with outliers removed). The spread or SD parameter of
the Gaussian model also increased along the seed re-
gion’s y-axis (Fig. 2C, left), which was supported quantita-
tively by the correlation between the seed’s y-location
and the modeled SD parameter, with r(394) = 0.61, p=
5.45 � 10�42 (Fig. 2C, right). This relationship was simi-
larly evident between the dorsal and ventral portions of
V1, V1, and V3, using a set of more restricted masks
(Extended Data Fig. 2-2). These results together sug-
gested that the inter-regional connectivity in early visual
areas mirror the organization of eccentricity representa-
tion, with region-to-region connectivity ordered spatially
along similar eccentricity locations, and the spread of
that connectivity potentially following the increase in re-
ceptive field sizes toward more anterior visual cortex.
While the group averaged data can provide qualitative
aspects of the organization of regions, the averaging
procedure can introduce various biases (and average
out individual differences to produce an optimistically
simple output).
To quantify the organization at an individual subject

level, we first quantified whether or not these measures
are stable at the individual subject level data, and further
we moved to a data sample that has much longer BOLD
collections to ensure high-quality estimations (MSC). The
median test-retest reliability within subjects increases
with more scan time per subject, with the 150min in each
split leading to a test-retest reliability of 0.81 (Extended
Data Fig. 2-4C). A vector field of dorsal-ventral connectiv-
ity mapping for the visual cortex was generated for each
individual and each session, and the anterior-posterior re-
lationship was observed in every subject (Extended Data
Fig. 2-5). Quantitatively, the correlation between y-loca-
tion modeled Gaussian parameter and seed y-location
was high: ranging from 0.5 to 0.72 across the 10 individu-
als. In addition, topographic connectivity estimates for
the entire dorsal and ventral visual cortex for each MSC
individual ranged between 13.77% and 18.27% (all
pFWE’s,0.05). Similarly, topographic connectivity esti-
mates of V1d!V1v were highly replicated in each MSC
subject, ranging from 24.62% to 34.71% (only one ses-
sion of MSC02 and one session of MSC08. aFWE).
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We also evaluated the model validity and stability in
several ways. First, we examined the distribution of corre-
lations between the predicted time courses from the
model and the actual BOLD time courses (Fig. 1B) for
each voxel in the large dorsal visual cortex mask
(Extended Data Fig. 2-3, left). The distribution of r values
across all subjects and all their correspondent time
courses when using the matching prediction was strictly
positive, with a mean of 0.55, whereas the distribution of
correlations produced by nonmatched pairs is much
wider with a mean of close to zero (Extended Data Fig. 2-
3, right). Second, also evaluated the stability of the 3-D
connective field model within individual subjects and
across mean results for the dorsal and ventral visual cor-
tex, using the IBATRT dataset. For each subject, the esti-
mated y-location parameters from the first and second
runs were correlated across voxels (Extended Data Fig. 2-
4A). The resulting distribution of r values had a median of
0.60, demonstrating moderate to good reliability at the in-
dividual subject level. At the group level, the mean param-
eters for each run correlated across voxels strongly, with
r=0.98 (Extended Data Fig. 2-4B).

Connectivity bias in higher-order visual areas
Higher order visual regions have been characterized as

complex filters of early visual region information (Van
Essen and Gallant, 1994), with this type of model shown
to predict FFA activation during a task (Kay and Yeatman,
2017). We thus examined to what extent the pattern of re-
gion-to-region functional connectivity reflect this filtering
process. Using the MSC data, we applied the 3-D

connective field mapping method to model the pattern of
right FFA connectivity with V1 and compared its connec-
tivity profile with that of PPA, a region which is selective to
stimuli that have more peripherally distinctive features.
Because of initial poor r2 of the Gaussian fits, we com-
bined the sessions into two distinct sessions, allowing for
better estimation across each. In comparison to the PPA,
the FFA showed more connectivity with posterior and lat-
eral V1 (t(9) = �7.04, p=6.04 � 10�5 and t(9) = 3.36,
p=0.008, respectively; Fig. 3A). This is consistent the FFA
receiving information from V1 areas with more foveal re-
ceptive fields. For visualization, we plotted group aver-
aged vectors from each seed region to V1. From these
vector fields, FFA seems to share more convergent and
less topographic connectivity with V1 (Fig. 3B). We quan-
tified this in individual subjects and compared across re-
gions, with V1d to V1v connectivity for reference. When
compared with PPA, the FFA has both significantly higher
convergence and significantly lower topographic connec-
tivity with V1 (t(9) = 5.25, p=5.27 � 10�4 and t(9) = �4.33,
p, 0.002, respectively; Fig. 3C). PPA, when compared
with measures within V1, in turn, shows lower linearity
and higher convergence.

Topographic connectivity organization across the
cortex
While the early visual system demonstrated large topo-

graphic relationships in functional connectivity between
regions, a fundamental question left unanswered is
whether this is a special property of the early visual cortex
or it is a general motif of corticocortical functional

Figure 3. Pattern of functional connectivity between higher order visual regions and V1 corresponds well with their visual response
properties from previous studies. A, Compared with the PPA, FFA showed a more posteriorly located and narrower range of con-
nectivity with V1. Thin lines represent kernel density plots of individual subjects of the MSC dataset, while thick lines represent the
kernel density plot of the group average data. B, Another representation of the biases of FFA to V1 connectivity (left) in comparison
to PPA to V1 connectivity (right). The black points represent voxels within the seed region and the green points represent voxels
within the mapping region, with the vectors connecting them represent the seed voxels’ preferred connectivity location along the
mapping region. The mean vector fields provide information about quantitative features of the connectivity (such as the relatively
more focal and mixing connectivity seen in FFA vs PPA) but to quantify these results requires computation on individual subject vec-
tor fields. C, Estimations of topographic connectivity show higher topography with V1 maintained in PPA, and higher convergence
with V1 in FFA. Both of these metrics are shown next to dorsal and ventral V1 (within V1) estimates for reference.
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connectivity. To address this issue, we calculated the line-
arity of connectivity between all unique pairs of the 200
right hemisphere parcels in the Schaefer parcellation. We
used the MSC dataset for this analysis to ensure stable
parameter estimates, given the long scan time for each
session. For each subject of the MSC dataset, the aver-
age percentage of connections that surpassed a = 0.05
threshold across all sessions and all pairs of parcels was
20.60% (range across subjects: 13.30� 25.69%). Note
that the subject with the lowest number of significant
topographic relationships, MSC08 (with 13.30% of con-
nections surpassing 0.05 a), was identified by the original
investigators to have a significant proportion of time in a
drowsy state, affecting this individual’s BOLD data
(Gordon et al., 2017). Therefore, on average, each brain
region maintains a detectable topographic relationship
with ;20% of the rest of the brain, at a liberal threshold
for detection. Eliminating parcels which likely do not fol-
low the assumptions of our model (due to low number of
resels) increases this average percentage (to 23.54%,
ranging from 14.25% to 29.64%).
Figure 4 illustrates the linear organization for three se-

lected seed regions’ connectivity with other regions

across the entire right hemisphere. The flatmaps show a
clear segregation of linearity values within and across
the different networks, exemplified by seeding from ante-
rior and posterior visual cortex demonstrating stronger
linearity with other visual areas, middle frontal gyrus dem-
onstrating stronger linearity with lateral prefrontal and pa-
rietal regions, and lower linearity between regions from
different networks. In Extended Data Figure 4-1, we pres-
ent MSC01’s session by session seed rank linearity maps,
presented with -log(p) values to demonstrate the stability
of the statistical inference.
To visualize and quantify the network basis of topographic

organization of region-to-region connectivity, we con-
structed a graph representation of our rank linearity maps
(Fig. 5A). We then quantified within and between network
linearity for each of the 10 MSC subjects across three differ-
ent networks (VisCent, VentralAttenB, DorsalAttenB). For
each of the six possible comparisons, the within network
rank linearity was significantly higher than the between net-
work rank linearity (t(9) =9.52, t(9) =3.80, t(9) =9.26, t(9) = 3.19,
t(9) =9.75, and t(9) =6.75; p=5.38 � 10�6, p=4.00 � 10�3,
p=6.76 � 10�6, p=1.10 � 10�2, p=4.40 � 10�6, and
p=8.33� 10�5; Fig. 5B).

Figure 4. Topographic connectivity as a general rule of functional connectivity between cortical regions. Topographic connectivity
estimates are shown from three seed regions (shown as asterisk in each map), posterior visual cortex, anterior visual cortex, and
dorsolateral prefrontal cortex. The color scale from darker to brighter color represents lower to higher topographic connectivity for
the seed regions’ connective field in the other brain regions. This whole-brain illustration demonstrates that while topographic con-
nectivity is a general phenomenon for region-to-region connectivity, it is maintained within specific networks, suggesting function in
maintaining integrity of information transfer across regions within a network. Extended Data Figure 4-1 shows each of these seeded
maps in a single subject of the MSC data.
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To examine whether there are any higher order (supra-
network) organizational features of topographic connec-
tivity, nonmetric multidimensional scaling was applied to
produce two dimensions that maximally reproduce the
nonlinearity matrix (as a distance matrix) the 200 parcels
in the right hemisphere (Extended Data Fig. 6-1; Fig. 6).

The resulting primary mode was similar to large scale
whole-brain decompositions observed in previous studies
of normal functional connectivity and genetic expression
data (Margulies et al., 2016; Murray et al., 2018). This
mode described a segregation lower order unimodal regions
and higher order multimodal regions, with the negative end
exemplified by visual and somatomotor networks and the
positive end exemplified by default mode network. The sec-
ond mode seemed to be a fractionation of the primary
mode, potentially representing communication of informa-
tion across these lower order/higher order boundaries.

Connectivity organization of the lateral prefrontal
cortex
After illustrating the ubiquity of topographic organization

of functional connectivity across visual cortex and large net-
works, we specifically examined how gradients of linearity
express in a highly multimodal structure such as the lateral
prefrontal cortex. We found two gradients (Extended Data
Fig. 6-1B). Gradient 1 demonstrates a rostral-caudal axis
that segregates posterior middle frontal gyrus/inferior pre-
central sulcus and anterior inferior frontal gyrus/frontal pole
(Fig. 7A, top left). Gradient 2 demonstrates a diagonal axis,
segregating posterior superior frontal gyrus and anterior in-
ferior frontal gyrus (Fig. 7A, top right). These two topo-
graphic connectivity gradients closely resemble the two
prominent frameworks described in the literature to simplify
the overall functional organization of the frontal cortex. One
is often referred to as the domain specialization framework,
suggesting that the dorsal and ventral lateral prefrontal cor-
tices are preferentially organized to process spatial and
nonspatial (e.g., objects) information, respectively, due to
their differential connectivity with the dorsal and ventral vis-
ual streams (Goldman-Rakic, 1987). The second is an

Figure 5. Network analysis. A, Graph description of our topographic network analysis using the 17 network labels from the
Schaefer atlas. Node position was determined by performing classical multidimensional scaling on the full linearity matrix, and then
an edge was drawn if it surpassed a linearity threshold of 20%. Node size was scaled linearity in relation to the node’s degree in the
thresholded network. B, Quantification of the network like organization of linearity with three example networks, visual (central), ven-
tral attention B, and dorsal attention B. The within network linearity is universally higher than the between network linearity in these
three networks, as can be seen in A by the relative closeness of nodes within a network. Note: Schaefer atlas used for network la-
bels (for more details, see Schaefer et al., 2018).

Figure 6. Gradient decomposition of whole-brain linearity (for ra-
tional for number of estimated gradients, see Extended Data Fig.
6-1). Whole-brain region-to-region linearity matrix was decom-
posed using nonmetric multidimensional scaling in order to ex-
amine organizational patterns of topographic connectivity across
the brain. The gradients are color scaled from red to blue, with
red-yellow colors representing one side of the gradient, and
blue-green colors representing the other side of the gradient.
Top, First whole-brain linearity gradient, demonstrates a segre-
gation of unimodal sensory areas and multimodal association
areas. Bottom, Second whole-brain linearity gradient, the fractio-
nated nature suggests potential integration of information across
unimodal sensory areas and multimodal association areas.
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increase in abstraction along the rostral-caudal axis, with
the more rostral regions linked to more abstract facets of
behavioral control (e.g., sensory perception ! context !
rule; Koechlin et al., 2003). In addition, we performed non-
mentric MDS on the standard voxel-wise resting-state
functional connectivity of the lateral prefrontal cortex, and
found two gradient decompositions that mainly segregate
middle frontal gyrus and inferior frontal gyrus from the rest
of the frontal cortex (Extended Data Fig. 7-1).
We examined whether the average task activation pat-

terns for sensory specialization and level of abstraction from
the MSC data sample (Fig. 7B) can be predicted by these
organizational features. We found that a linear model with
each topographic gradient and convergence predicts each
of the activation patterns from each of the contrasts (face-
scene: R2 = 0.37, p=0.003 0.01; visual-semantic: R2 = 0.24,
p=0.046; discrimination-rule: R2 = 0.41, p=0.002). The
strongest predictor of face-scene contrast was the gradient
2 value (b = 0.55, p=8.74 � 10�4), while the strongest pre-
dictor for the discrimination-rule contrast was the gradient 1
value (b = �0.56, p= 6.34 � 10�4; Fig. 7C; Table 1). This
supports the above interpretation of the two gradients of
topographic connectivity as relating to domain specializa-
tion and abstraction, respectively.

Discussion
Using a 3-D Gaussian modeling approach with whole-

brain resting-state fMRI data, we found that closely con-
nected cortical regions exhibit a relatively strong topo-
graphic organization of their functional connectivity. This
topographic organization of region-to-region functional
connectivity was highly reliable in early visual regions, fol-
lowing an order along the anterior-posterior axis for ec-
centricity representation, as predicted by the literature
(Haak et al., 2013; Gravel et al., 2014; Arcaro et al., 2015).
In higher order visual regions, such as the FFA and PPA,
the estimated connectivity profile seemed to reflect com-
plex filtering of information, such that FFA connectivity to
V1 produced the hypothesized patterns of bias towards
the part of V1 that has more foveal representations.
Further, the PPA shows a more maintained topography
with V1 in comparison to PPA. These results are consistent
with previous attempts to compare these two higher order
regions using a different multivariate method to estimate
voxel level patterns of connectivity from one region to an-
other (Baldassano et al., 2012), where it was found that
FFA shows connectivity bias to more foveal resources,
while PPA shows a connectivity bias to more eccentric re-
sources. In the whole brain, topographic connectivity again

Figure 7. Patterns of functional connectivity within lateral prefrontal cortex. A, The decomposition of the bivariate rank-linearity of
the lateral prefrontal cortex revealed two gradients. Gradient 1 demonstrates an organization from posterior middle frontal gyrus/in-
ferior precentral sulcus to anterior inferior frontal gyrus/frontopolar cortex, while gradient 2 demonstrates an organization from pos-
terior superior frontal cortex to anterior inferior frontal gyrus. The average convergence factor demonstrates a peak along the frontal
pole (for similar gradient decomposition of voxel-wise functional connectivity, see Extended Data Fig. 7-1). B, Three different con-
trasts were examined to correlate to frontal organizational features: face-scene to examine visual specialization, visual-semantic dis-
crimination to examine sensory specialization, and discrimination-rule to examine levels of abstraction. C, First-order correlation
demonstrating the most highly associated organizational feature with each contrast (for full regression analysis results, see Table 1).
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emerged as a primary organizational feature for functional
connectivity among regions within large-scale networks,
including the default mode and frontoparietal networks,
while such relationships were much weaker between re-
gions across different networks. Lastly, we found that the
topographic and convergence patterns of connectivity in
the lateral prefrontal cortex supports the two prevailing
frameworks of prefrontal cortex functional organization,
domain specialization and abstraction. Our overall findings
thus suggest a ubiquitous nature of topography in spatial
organization of functional connectivity among closely re-
lated functional regions in the human brain.

Eccentricity-dependent functional connectivity in
early visual cortex as a special case of linear
communication
We found that the early visual cortex demonstrates or-

derly region-to-region functional connectivity that main-
tains the organization of eccentricity representation
across regions. This result replicates previous work that
used resting state fMRI data and phase-locking fMRI task
data in studies of retinotopic organization of the visual
system (Haak et al., 2013; Gravel et al., 2014; Arcaro et
al., 2015). The orderly functional connectivity likely con-
tributes to the maintenance of retinotopic organization
across the posterior cortical regions for multiple levels of
visual processing. We also demonstrated that this motif
breaks down for connectivity between early and higher
order visual cortices (Fig. 4). The pattern of FFA connec-
tivity demonstrates predicted qualities given its receptive
field properties, that is, its convergence and selection of
foveal resources (Kanwisher et al., 1997). These findings
on region-to-region connectivity patterns provide a po-
tential structure for understanding what information is
maintained across regions, which would be useful for fu-
ture modeling of information transformation and transfer
from one region to another region (Thivierge and Marcus,
2007; Basti et al., 2018).
The topographic organization of functional connectivity

observed in the early visual cortices seems to be a special

case of a larger phenomenon. Our findings suggest that
such a spatial layout of functional connectivity is a proba-
ble general mode of communication across the brain
(Figs. 5, 6), likely at least partially for the purposes of high-
fidelity information transmission across regions within a
functional network (Thivierge and Marcus, 2007). In the
visual cortex, coincidental activity that drives plasticity
provides a potential mechanism for the generation and
maintenance a spatially linear organization of communi-
cation between nearby regions (Schoen et al., 1990;
Elliott and Shadbolt, 1996; Catalano et al., 1997).
However, activity dependent synaptic pruning is not the
only mechanism that drives organization in early visual
cortex. Recent studies have suggested a form of proto-
organization driven by genetic expression and their prod-
ucts (e.g., morphogens) in animal models of development
and in humans (Cheng et al., 1995; Crowley and Katz,
2000; Arcaro and Livingstone, 2017). This mechanism of
organization developing from molecular gradients is more
widely observed, pertaining to many brain systems. For
example, molecular signaling has been shown to be re-
sponsible for organization of thalamocortical connections
in and ordered spatial gradient, with Emx2 and Pax2 regu-
lating the anterior-posterior organization of cortical fields
and their thalamic afferents (Bishop et al., 2000). Using 3-
D connective field modeling, we found a strong linear
organization in lateral prefrontal areas despite a lack of
clear or consistent retinotopy in these areas (Hagler and
Sereno, 2006; Kastner et al., 2007). Strong linearity in the
absence of retinotopy suggests a potential link with
proto-organization. Indeed, our gradient decomposition
of linearity resembles gradients of genetic expression
(Burt et al., 2018; Murray et al., 2018) providing potential
convergent evidence for this interpretation.

Topographic connectivity and computation within and
across large-scale brain networks
Spatially linear organization of input-output relation-

ships is thought to maintain information across levels of
processing, allowing for precise action on continuous

Table 1: Organizational features of lateral frontal cortex relate to task activation

Face-scene contrast (incidental memory t): R2 = 0.37
Beta SE t value p value

Intercept 0.00 0.14 0.00 1.0000
Gradient 1 –0.06 0.15 –0.41 0.6822
Gradient 2 0.55 0.15 3.71 0.0009
Convergence 0.31 0.15 2.08 0.0469

Visual-semantic contrast (mixed task): R2 = 0.24
Beta SE t value p value

Intercept 0.00 0.16 0.00 1.0000
Gradient 1 –0.39 0.17 –2.34 0.0265
Gradient 2 0.26 0.16 1.60 0.1207
Convergence 0.26 0.17 1.56 0.1293

Discrimination, rule contrast (mixed task): R2 = 0.41
Beta SE t value p value

Intercept 0.00 0.14 0.00 1.0000
Gradient 1 –0.56 0.15 –3.83 0.0006
Gradient 2 –0.26 0.14 –1.85 0.0751
Convergence 0.28 0.15 1.89 0.0681
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sensory information (Thivierge and Marcus, 2007).
Topographic organization and projections from topo-
graphic space has been postulated to produce ordered
abstract space as shown in connectionist models
(Tinsley, 2009). With a continuous space of abstract rela-
tions, complex information transformation in abstract
space can be achieved by the same general mechanism
as filtering of visual information. For example, this is the
proposed mechanism underlying saliency map models,
where information from many independent channels are
combined topographically to represent the overall visual
salience of an image (Itti and Koch, 2000; Roggeman et
al., 2010). These saliency map models have been suc-
cessful in predicting eye movements to complex visual
stimuli, attentional load responses in parietal cortex,
and even working memory capacity (Foulsham and
Underwood, 2008; Knops et al., 2014).
With the simple assumption information is spatially seg-

regated, a tractable form of general computation in the
brain is through spatial biases in connectivity, which
would subsume the above description of topographic
connectivity. Spatial biases can, however, have vastly dif-
ferent scopes. With distinct information converging onto a
neuron giving rise to many potential combinations of that
information, it has been shown that the exact combination
is at least partially determined by spatial biases in conver-
gence along the dendritic compartment (Taylor et al.,
2000; London and Häusser, 2005). Higher order spatial
biases, from cortical column to cortical column, may be
responsible for higher order computation. Previous work
has examined information transformation more directly,
estimating linear transformations that map the represen-
tational dissimilarity matrices from one region to another
(Basti et al., 2018). Our 3-D connective field model pro-
vides an appropriate description of the proposed mecha-
nisms for these transformations, allowing for critical tests
of this theory in observational fMRI data.

Organization of the lateral prefrontal cortex using
spatial connectivity metrics
Gradient decomposition of topographic connectivity of

the prefrontal functional connectivity demonstrated evi-
dence for two gradients of functional organization. Gradient
2, particularly, seemed to predict task based activational dif-
ferences between face and scene perception. Previous
studies have consistently found differential projections from
dorsal and ventral visual stream nodes to dorsal and ventral
prefrontal cortex, respectively (Kawamura and Naito, 1984;
Goldman-Rakic, 1987; Cavada and Goldman-Rakic, 1989).
Indeed, scene processing, while involving specialized re-
gions of the ventral visual pathway, does seem to also in-
volve the dorsal stream (Aminoff and Tarr, 2015). This
segregation of dorsal and ventral pathway input into the pre-
frontal cortex has been supported both structurally and
functionally in humans (Takahashi et al., 2013). This dor-
sal-ventral segregation of the prefrontal cortex has been
shown to be differentially responsible for spatial and ob-
ject working memory (Constantinidis and Qi, 2018).
Indeed, inactivation of dorsal prefrontal cortex impairs
spatial working memory, but not object working memory

(Chafee and Goldman-Rakic, 2000; Suzuki and Gottlieb,
2013; Clark et al., 2014). Thus, the differential input from
dorsal and ventral streams has functional consequences,
leading to the segregation of downstream dependence of
higher order functions depending on the type of informa-
tion being operated on.
While a prominent perspective of prefrontal organiza-

tion, the domain specialization hypothesis of lateral pre-
frontal functional organization is not the only studied
organizational principle. Accumulating evidence shows
another prominent gradient of prefrontal functional orga-
nization along the anterior-posterior axis related to the
level of abstraction, from the posterior representation of
sensorimotor response selection to the more abstract
representation of task goals/rules in the anterior portions
of the prefrontal cortex (Koechlin et al., 2003; Kouneiher
et al., 2009; Azuar et al., 2014). By varying the rules and
contexts of various tasks, it was found that areas related
to the stimulus response mapping were located more
caudally, while areas related to contexts and rules were
more rostral (Koechlin et al., 2003; Badre and D’Esposito,
2007; Azuar et al., 2014). While we found that conver-
gence follows a posterior to anterior gradient, there was
no evidence that it related to the rule contrast in the
mixed task. Patterns of convergence in the lateral pre-
frontal cortex were, however, associated with different
sensory information, likely relating to differential proc-
essing demands required. Topographic gradient 2, on
the other hand, did strongly related to the rule contrast in
the mixed task, suggesting that topographic connectivity
within the lateral prefrontal cortex delineates multiple
pathways of organization.
In sum, on the basis of these new metrics of the spatial

profile of functional connectivity, our data support both
frameworks of functional organization for the lateral pre-
frontal cortex. However, based on these results it may be
the case that these two functionally defined organizations
are a result of the same underlying neural organization,
driven by the differential topographic input within the lat-
eral frontal cortex. This is consistent with the previous lit-
erature examining functional connectivity which has
found evidence for both dorsal-ventral and rostral-caudal
organizations in the lateral prefrontal cortex (Blumenfeld
et al., 2013; Schumacher et al., 2019).

Limitations and future directions
Our estimations of topographic organization of connec-

tivity between across regions were likely subjected to par-
cel selection, which is a limitation for this type of analysis.
Given the multitude of parcellations and the multitude of
methods used to obtain parcellations, the results could
look slightly different if other justified parcellations were
used. It is likely that our estimations of linearity would be
even stronger with “true” parcels, given that more specifi-
cation in early visual cortex actually boosted the esti-
mated linearity (from ;40% to ;60%). In addition, the 3-
D. Gaussian model itself also has limitations and makes
certain assumptions. For one, it assumes a single focal
point of connectivity from one region to another, which is
probably overly simplified. However, the final R2 of the
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optimization procedure provides a marker for the fit of the
model to the data; if these values are too low in the analy-
sis, it would be inappropriate to make any conclusions
about the fitted values. As the R2 of the model tended to
increase with more scan time, a large proportion of the
misfit is likely due to noise. With the 30-min sessions of
the MSC data, the modal R2 tended around 0.30–0.60, in-
dicating a reasonable fit. Gaussian mixture models can be
developed in the future to account some conditions of
misfit, such as regions with multiple maxima.
It is important to note that the 3-D connective field

method has a high dependence on high signal-to-noise
ratio in single voxels, as opposed to the more convention-
al analyses that either use signal averaging within ROIs or
smoothing to increase the signal-to-noise ratio. Because
of this, higher resolution datasets may suffer from less
stability due to the increase of proportion of thermal noise
in each voxel (Edelstein et al., 1986), although the impact
on signal-to-noise ratio can potentially be counterbal-
anced by a reduction in physiological noise (Bodurka et
al., 2007). Further studies are needed to test our approach
on higher resolution data. Optimally, the goal is to achieve
a reliable connective field mapping at the size of function-
al columns of the ROIs, which may be feasible in the
frontal cortex, where columns may be as large as 800–
900 mm (Hirata and Sawaguchi, 2008; Masse et al., 2017).

Conclusions
By applying 3-D connective field modeling on resting-

state fMRI data, we demonstrated that topographic orga-
nization of functional connectivity is likely common mode
of communication across the cerebral cortex. This pattern
of connectivity organization is most evident within the
same functional network module, with the whole brain
illustrating a primary gradient of linearity of functional con-
nectivity comparable to two different data sources: rest-
ing-state functional connectivity and genetic expression.
By the same principles, the topographic connectivity of
the lateral prefrontal cortex seemed to be organized
around two axes: posterior superior frontal gyrus ! ante-
rior inferior frontal gyrus and posterior middle frontal
gyrus ! anterior inferior frontal gyrus/frontopolar cortex.
Both these axes segregated spatial patterns of activation
relating to domain specialization (spatial!object) and ab-
straction (S-R!rule). These findings show that deriving
finer scale (voxel level) spatial organization of region-to-
region connectivity in volumetric space seems to be use-
ful in resting-state fMRI data. Vector field representations
of region-to-region connectivity has the potential to be
an informative visualization for information transfer and
transformation from one region to another, with topo-
graphic connectivity and convergence of connectivity as
the quantitative metrics, especially if the voxel size can be
reduced to the size of a cortical column in the ROIs.
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