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Introduction

The world has been struggling with a major public health problem since December

2019: an infectious disease caused by a novel coronavirus called severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). Despite vaccination, people are still infected and

die because of COVID-19 since the virus mutates very quickly (1, 2). While the world

is struggling with the COVID-19 pandemic, a new virus called Monkeypox (MPXV)

alerts scientists about whether a new pandemic will arise. Monkeypox is a zoonotic,

neglected, and emerging disease caused by the MPXV belonging to the Orthopoxvirus

genus of the Poxviridae family. MPXV was first identified in Macaca irus wild monkeys

in 1958 in Denmark; it was the first time specified in humans in 1970 in the Democratic

Republic of the Congo in a 9-month-old boy (3, 4). However, several rodent species were

also reported as reservoirs of this virus (5). Monkeypox disease has been reported as an

emerging outbreak affecting 43 countries with 2103 confirmed cases (6).

The transmission ways of MPXV are direct contact with an infected animal

or infected person via body fluids, using contaminated objects, and inhaling virus-

containing respiratory droplets. The incubation time of the disease takes 5–21 days,

where the symptoms of MPXV infection are reported as headache, fever, muscle pain,

back pain, swollen lymph nodes, chills, adenopathy, maculopapular rash, especially on

the palms, and exhaustion. Lesions such as macules, papules, vesicles, pustules, and scabs

have been reported mainly in the palms of the hands and the soles of the feet. There is no

treatment for MPXV infection; however, smallpox vaccination is considered a treatment

option (7, 8). The MPXV infection begins like other viral infections with the entry of

the virus into the cells and replication, leading to the immune response in the host cells,

such as blocking the antiviral T-cell activation and inflammatory cytokine production.

However, cellular mechanisms of MPXV infection, host cell interactions, immune

responses, and destruction are not fully understood in humans despite animals (9).

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.1001666
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.1001666&domain=pdf&date_stamp=2022-10-20
mailto:nulusu@ku.edu.tr
mailto:daydemir16@ku.edu.tr
https://doi.org/10.3389/fpubh.2022.1001666
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.1001666/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Aydemir and Ulusu 10.3389/fpubh.2022.1001666

Metabolism of virally infected cells

Viral infection and replication are tightly associated

with the dysregulated immune system and inflammatory

response. Since humans have complicated defense mechanisms

against pathogens, viruses can quickly adapt to changing

conditions such as the host’s immune system and drug

treatments. For instance, viruses deregulate cellular signaling

pathways, including oxidative stress metabolism and cell death

mechanisms, to escape the host’s immune system (10, 11).

The crucial step for virus replication is escaping from the

cellular defense mechanism of the host cell (12, 13). Viruses

are disparate from all living things; they don’t inherently have

their metabolism. Major cytosolic and mitochondrial metabolic

pathways are altered in virus-infected cells (14, 15). Specific

anabolic pathways such as glycolysis, glycogenolysis, pentose

phosphate pathway (PPP), lipogenesis, cholesterol synthesis,

one-carbon metabolism, and various transporters such as

glucose and glutamine transporters are upregulated in virally

infected cells (16, 17). It has also been investigated that the

Warburg effect, which can be seen in cancer cells using glucose

and producing lactate under normoxia conditions, can also be in

the virus metabolism (18).

Importance of the antioxidant
defense and antioxidant molecules
in the viral infections

Various intrinsic and extrinsic factors regulate oxidative

stress metabolism by balancing reactive oxygen species (ROS)

and antioxidant capacity. Antioxidant metabolism is one of

the major defense systems in many pathological conditions,

including viral infections. PPP plays a vital role in antioxidant

defense by regulating different enzymes. Glucose 6-phosphate

dehydrogenase (G6PD) is the rate-limiting enzyme in the PPP

involved in glutathione metabolism, antioxidant response, and

bioenergetic and biosynthetic pathways (19–22).

The cytosolic hexokinase enzyme rapidly converts glucose

to glucose-6-phosphate (G6P) to trap the glucose inside the

cell by using an ATP molecule. This enzymatic reaction is not

just specific to glucose; the hexokinase enzyme phosphorylates

all the six-carbon sugars. After the phosphorylation of these

sugar phosphates, many cellular conditions, such as hormones,

energy status, infections, and all cellular signals, determine

the fate of the phosphorylated molecule. It would enter

breakdown or synthesis pathways according to the metabolic

signals (23–30). G6PD enzyme is found in all cells and

regulates the NADP+/NADPH ratio involved in fatty acid,

cholesterol, and neurotransmitter biosynthesis. Additionally,

NADPH is the essential coenzyme in detoxification reactions

via regulation of the balance between the oxidized glutathione

(GSSG)/reduced glutathione (GSH) by involving in the

glutathione reductase (GR)-catalyzed enzymatic and non-

enzymatic reactions (31–34).

Furthermore, the reduced form of NADPH is also vital

in cytochrome p450 superfamily-catalyzed reactions, such as

cytochrome p450 monooxygenases and NADPH-cytochrome

P450 reductase responsible for the xenobiotic detoxification,

antioxidant-defense system, and cellular redox homeostasis.

Since GSH/GSSG ratio is the major biomarker for oxidative

stress, preserving the GSH pool is vital to maintaining

antioxidant defense in the cell (35). Virus-infected cells also

affect the mitochondrial pathways due to the high demand

for biosynthetic processes such as the proliferation of virions.

Mitochondria is the major source of ROS and enhanced

ROS induces mitochondrial dysfunction leading to impaired

electron transport chain (ETC) and energy metabolism (36).

However, NADPH also protects mitochondria stress via a

mitochondrial membrane from the effects of ROS via NADPH-

dependent antioxidant enzymes (37). Human viral diseases,

including COVID-19, increase the production of ROS and

impair antioxidant mechanisms leading to the impairment of

the immune system (38). On the other hand, virus-induced

immune response contributes to oxidative stress as well, where

oxidative stress increases inflammation, leading to enhanced

oxidative stress as a vicious cycle (39). Danger signals trigger the

immune system through pattern recognition receptors (PRRs)

belonging to the Toll-like (TLRs) and the NOD-like (NLRs)

families, where oxidative stress involves in these processes

at several levels, including the release of danger molecules,

activation by PRRs, and their downstream pathways (40).

All viral infections cause redox imbalance in the host; for

instance, prototypic poxvirus vaccinia virus (VACV) enhances

ROS production at the side of the infection to promote viral

replication. Additionally, high levels of ROS are required for

VACV infection (41).

Antioxidant administration has been reported to ameliorate

virus-induced side effects or to reduce viral replication yield,

according to various studies. For instance, N-acetyl-L-cysteine

(NAC) inhibits pro-inflammatory mediators in the alveolar

cells infected with influenza virus A and B and with the

respiratory syncytial virus (RSV) (42). The antioxidant molecule

butylated hydroxyanisole (BHA) treatment ameliorates RSV-

induced lung inflammation (43). Terameprocol (TMP) is a

methylated derivative of nordihydroguaiaretic acid, which is

a phenolic antioxidant derived from creosote bush. TMP

showed antiviral and anti-inflammatory effects via potently

inhibiting the growth of both cowpox virus and vaccinia

virus in vitro, where TMP treatment effectively reduced the

infectious virus yield (44). On the other hand, resveratrol

altered genome replication and post-replicative gene expression

of MXPV (45). Resveratrol (RV) is a natural polyphenol non-

flavonoid compound found in grapes, berries, and several other

plants. RV is accepted as one of the powerful polyphenols

with many positive effects on metabolism and health and
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significantly reduces the replication of MPXV (46, 47).

No studies reveal the antioxidant’s impact on the MPXV

infection in humans since monkeypox is an emerging disease

worldwide. Thus, the possible effect of the antioxidants

on the MPXV infection in humans can be investigated to

develop antioxidant-based therapeutic approaches to ease the

severe symptoms.

Conclusion

All viruses depend entirely on the host’s cell cellular

metabolism, and every virus family has different molecular

machinery to enter, using the host cells’ energy and metabolic

pathways multiplication and all steps in viral infection.

However, we need novel studies to increase our knowledge

on virus and virus-infected host cell metabolism, especially

during the pandemic and the Monkeypox outbreak. Since

antioxidants can reduce MPXV replication in vitro, according

to the studies, antioxidant molecules can be investigated to

develop therapeutic approaches or to ease the symptoms of

MPXV infection.
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