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Abstract: The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as
one of the most important high-resolution protein separation techniques of modern biochemistry
(Journal of Biological Chemistry 1975, 250, 4007–4021). The application of two-dimensional gel
electrophoresis has played a key role in the systematic identification and detailed characterization of
the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation,
fibre type specification, physiological muscle adaptations and natural muscle aging were studied
in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques.
Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium
dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully
employed in several hundred published studies on gel-based skeletal muscle biochemistry.
This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines
key findings from mass spectrometry-based muscle proteomics, which was instrumental in the
identification of several thousand individual protein isoforms following gel electrophoretic separation.
These muscle-associated protein species belong to the diverse group of regulatory and contractile
proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic
enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and
extracellular matrix proteins.

Keywords: difference in-gel electrophoresis; isoelectric focusing; mass spectrometry; muscle fiber
type; muscle plasticity; muscle proteomics; muscular atrophy; polyacrylamide gel electrophoresis;
protein separation; skeletal muscle

1. Introduction

Efficient protein separation is a prerequisite for a variety of bioanalytical applications [1].
Physicochemical parameters such as size, charge and solubility of individual polypeptides have been
extensively exploited to develop sophisticated techniques for the isolation of specific protein species.
Electro-focusing methods and one-dimensional gel electrophoresis (GE) are long established methods
of protein biochemistry. Conventional isoelectric focusing (IEF) separates proteins by differences
in their isoelectric point (pI) whereby a pH gradient along the length of a gel provides the support
system for protein migration until they reach their pI-value with no net charge [2]. In contrast,
one-dimensional gel electrophoresis in the presence of an anionic detergent, such as sodium dodecyl
sulfate (SDS), is based on the separation of denatured and structurally linearized polypeptides within
complex protein mixtures. Electrophoretic mobility patterns mostly depend on size differences of
the denatured molecules due to the introduction of an overall negative charge [3–5]. However, since
many protein species exhibit a similar net charge or relative molecular mass, one-dimensional gel
bands are often heterogeneous in composition. Once it became clear that biochemical techniques
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focusing on only one parameter have relatively limited separation capacity, alternative approaches
were attempted. Especially the sequential usage of two independent methods promised the separation
of proteins at higher resolution. The technical realization of this ground-breaking concept was
the beginning of a new era in protein biochemistry. The combined property of the pI-value of a
protein and its molecular size following denaturation was successfully exploited in the development
of standardized two-dimensional gel electrophoresis (2D-GE). Historical and technical aspects of
combined gel electrophoretic approaches have been extensively reviewed [6–8].

Patrick H. O’Farrell’s work set the scene for high-resolution gel electrophoresis [9]. Many other
laboratories developed similar approaches or modified the original gel electrophoretic method to
adapt this technique to other analytical applications [10–13]. Both, protein biochemistry and the more
recently established field of mass spectrometry (MS)-based proteomics have heavily depended on
the 2D-GE method in the past, making this method one of the most commonly employed standard
technique of protein separation. In addition, gel-free approaches and the usage of 1D-GE systems are
frequently used for the proteomic analysis of complex tissues. The most crucial capabilities of the
2D-GE technique are the simultaneous resolution of thousands of distinct protein species within the
same gel system and the reliable determination of their relative molecular mass and pI-value, as well
as their relative quantity. Especially the application of the 2D-GE method for the efficient separation of
different protein isoforms with dynamic post-translational modifications (PTM) has made outstanding
contributions in analytical biochemistry. In contrast to other large-scale separation approaches such
as liquid chromatography (LC), individual protein spots are visualized in 2D gels so that their status
in relation to fragmentation and modification can be directly accessed. Furthermore, gel-separated
and -embedded proteins are relatively stable and can be safely stored for long periods of time prior to
further analysis [14–17].

This article focuses on the application of the 2D-GE method in basic myology and discusses the
enormous scientific impact of this method on recent proteomic studies of normal and physiologically
challenged skeletal muscle tissues. This includes the systematic cataloguing of the protein constituents
of different contractile fiber types and the findings from surveys of proteome-wide changes during
physiological adaptations. Comparative proteomics has also played a key role in the pathobiochemical
evaluation of global changes in diseased skeletal muscles [18]. However, this topic is not addressed
in this article on the biochemistry of normal, adapting and aging skeletal muscles. Several
extensive reviews on the pathoproteomics of neuromuscular disorders have outlined the various
proteomic techniques used in the determination of molecular and cellular mechanisms that underlie
common muscle diseases [19–22]. The critical examination of how MS-based proteomics can be
used for the systematic identification and biochemical characterization of novel protein biomarkers,
which may be exploitable for the future design of improved predictive, diagnostic, prognostic and/or
therapy-monitoring assays, has also recently been reviewed [23]. Below sections give an overview of
major proteomic studies that have employed 2D-GE methods and analyzed fiber type specification and
protein changes during muscle development, fiber type transformation, exercise-induced adaptations,
hypoxia-associated alterations, disuse-related muscular atrophy and skeletal muscle aging.

2. Two-Dimensional Gel Electrophoresis of Skeletal Muscle Proteins

The 2D-GE technique is a frequently used and highly reliable bioanalytical method for the
systematic assessment of skeletal muscle tissues. Following tissue homogenization under optimized
conditions and in the presence of a suitable protease inhibitor cocktail, a large portion of skeletal
muscle proteins can be extracted without major complications due to proteolytic degradation and then
separated by 2D-GE. The application of the original O’Farrell method [9] or modified and optimized gel
electrophoretic techniques [24] played an essential role in the systematic identification and thorough
characterization of the protein components that form the functional basis of skeletal muscle contractility.
The PubMed databank of the US National Library of Medicine contains nearly 33,000 entries with
the keyword “two-dimensional gel electrophoresis” of which over 600 publications are in relation
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to the combined key words “two-dimensional gel electrophoresis” and “skeletal muscle”, including
from the year 2001 onwards nearly 200 papers using MS-based proteomics [25]. Figure 1 summarizes
in a histogram the number of published papers per year on this topic since 1976 and shows an
increase in the usage of the 2D-GE method after the incorporation of MS-based proteomics for the
routine analysis of skeletal muscle tissues since 2004. Over the last 4 decades, the combined usage of
IEF in the first dimension and SDS-PAGE in the second dimension has been successfully employed
to identify and characterize several thousand muscle-associated or muscle-derived protein species.
These muscle protein species belong to the diverse group of regulatory and contractile proteins of
the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and
transporters, signaling proteins, ion-handling proteins, molecular chaperones, extracellular matrix
proteins and myokines.
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Figure 1. Summary of the number of publication entries with the keywords “two-dimensional gel
electrophoresis” and “skeletal muscle” registered with the PubMed databank of the US National
Library of Medicine ranging from 1976 to 2015.

As outlined in Figure 2, conventional biochemical approaches and more recently established
MS-based proteomic methods have integrated the 2D-IEF/SDS-PAGE technique as a highly suitable
method for detailed investigations into skeletal muscle proteins. It is important to mention that
skeletal muscle tissues are heterogeneous in their composition and highly dynamic in their response to
cellular, metabolic or physiological challenges [26]. The main contractile units of an individual skeletal
muscle are presented by diverse fiber populations, consisting usually of slow-oxidative, intermediate
fast-glycolytic/oxidative and fast-glycolytic cell types, as well as mixed hybrid fibers. This relates to
the histochemically well-defined fiber types I, IIa, IIx and IIb, and the hybrid fibers I/IIa, IIa/IIx and
IIx/IIb [27]. The internationally agreed nomenclature of muscle fiber types is based on the distribution
of myosin heavy chain (MyHC) isoforms [28]. Besides contractile fibers, muscle tissue contains motor
neurons with their extensive myelin sheets, an elaborate network of capillaries, satellite cells and
multiple layers of connective tissue, including the epimysium, perimysium and endomysium [29].
Biochemical studies using homogenized tissue preparations have to take into account this cellular
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heterogeneity of skeletal muscles [21], as well as the presence of actively secreted and passively
released fiber-derived proteins that constitute the muscle secretome [30].

Heterogeneous muscle fiber population
Main types of slow-oxidative, fast-glycolytic and mixed hybrid fibers

I - I/IIa - IIa - IIa/IIx - IIx - IIx/Iib - IIb fibers

Cellular, metabolic and physiological heterogeneity of muscle tissueMotor neurons
Schwann cells

Connective tissue layers
Epimysium Perimysium

Endomysium
Capillaries

Satellite cells

Metabolic proteins
 - Glycolytic enzymes
   (Most abundant cytosolic enzymes)
 - Mitochondrial proteins
   (Most abundant organelle proteins)
 - Metabolite transporters

Ion-handling proteins
Signaling proteins

Molecular chaperones

Cytoskeletal proteins
(actin, tubulin, desmin, vinculin)

A-band Myosin filament: Myosin heavy chains (MyHC)
  - MyHC-I, MyHC-IIa, MyHC-IIx, MyHC-IIb, MyHC-emb,
    MyHC-neo, MyHC-EO, MyHC-15, MyHC-I-ton
A-band Myosin filament: Myosin light chains (MLC)
  - MLC1s, MLC2s, MLC1f, MLC2f, MLC3f
A-band Myosin filament: Myosin binding proteins (MBP)
I-band Actin filament: Actins (muscle α-ACT, cardiac α-ACT)
I-band: Tropomyosins (slow α-TM, fast α-TM, β-TM)
I-band: Troponins (TnCf, TnCs, TnT1f-4f,TnT1s-2s, TnIf, TnIs)
M-line complex (myomesin, obscurin, creatine kinase)
Sarcomere-associated titin and nebulin complexes
Z-disk complex (myozenin, actinin, telethonin, plectin, filamin)

Major categories of muscle proteins assessable by 2D gel electrophoretic analysis

Muscle
Proteome

Basal lamina proteins
(laminin-associated protein complexes)

Fiber type-specific isoforms of the acto-myosin apparatusSarcomeric proteins

Neuronal and glial proteins

Muscle secretome

Collagens
Matricellular proteins
Matrix proteases
Proteoglycans

Myokines
Muscle-derived serum proteins

Developmental/regenerative 
muscle marker proteins

Figure 2. Overview of protein classes from skeletal muscle tissue that can be separated by routine
two-dimensional gel electrophoresis using isoelectric focusing in the first dimension and sodium
dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension. Abbreviations used:
ACT, actin; MBP, myosin binding protein; MLC, myosin light chain; MyHC, myosin heavy chain; TM,
tropomyosin; Tn, troponin.

Prior to the publication of the original O’Farrell method [9], 2D-GE studies on skeletal muscle
employed SDS-PAGE in both dimensions with differing gel concentrations. These early attempts could
only separate a few distinct protein spots from muscle ribosomes [31] and the microsomal fraction
from skeletal muscles [32]. However, following the publication of high-resolution 2D-IEF/SDS-PAGE
methods [9–12], this new and more refined approach was quickly adapted in the field of basic and
applied myology [24]. Initial studies included the analysis of major structural and regulatory proteins
of muscle fibers [33,34], the evaluation of human muscle biopsy specimens [35,36] and the identification
of contractile protein isoforms in single skeletal muscle fibers [37,38]. In the pre-proteomic era of
2D-GE biochemistry [39], the technique was extensively applied to the detailed analysis of subunit
structures and isoform expression patterns of major skeletal muscle proteins and their changes during
development, fiber adaptations, contractile fatigue and denervation, as reviewed by Bárány et al. [40].
From 1995 onwards, gel-based surveys and 2D-GE databases became an integral part of skeletal muscle
proteomics [41]. Protein changes during myogenesis, muscle maturation, fibre type specification,
physiological muscle adaptations, muscle regeneration and natural muscle aging were studied in depth
by the original O’Farrell method or slightly modified gel electrophoretic techniques. Below sections
review the application of the 2D-IEF/SDS-PAGE method in modern proteomics and its modifications
for comparative studies using fluorescent dyes. Included are descriptions of the systematic cataloging
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of the assessable skeletal muscle proteome, and the comparative proteomic profiling of muscle plasticity
in relation to neuromuscular activity versus disuse atrophy.

3. Cataloguing of the Skeletal Muscle Proteome Using Two-Dimensional Gel Electrophoresis

MS-based muscle proteomics was instrumental in the identification of several thousand individual
protein isoforms following gel electrophoretic separation [21,42,43]. General technical aspects
of the most frequently employed 2D-GE methods in the proteomic profiling of crude tissue
extracts, subcellular fractions or isolated protein complexes have been extensively discussed and
reviewed [15,17,44–46]. Over the last few years, several excellent methods books have been published
that focus on specific aspects of the many modifications used in routine 2D-GE and proteome analysis
protocols. These comprehensive collections of detailed method descriptions have been edited by
experts in the field, including Link [47], Reinders and Sickmann [48], Cramer and Westermeier [49],
Kurien and Scofield [50], and Marengo and Robotti [51]. In-gel staining methods and routinely
used detection technologies for studying 2D protein spot patterns have also been extensively
described and critically examined in numerous publications [52–60]. The rapidly moving field of MS
methodology analyzing peptides obtained from the proteolytic digestion of proteins is the subject
of many excellent articles that outline in detail the many instruments and approaches available in
modern proteomics research [61–64]. These optimized gel-based protein separation approaches,
highly reliable pre-electrophoretic or in-gel staining techniques and sophisticated MS methods for
the unequivocal identification of individual protein species have been extensively used in skeletal
muscle proteomics [20–22]. In relation to skeletal muscle biochemistry and proteomics, detailed
step-by-step descriptions of tissue sample preparation, protein extraction, protein solubilization, IEF,
SDS-PAGE, pre-electrophoretic protein labeling, post-electrophoretic protein staining and subsequent
MS analysis of proteins of interest following controlled proteolytic degradation have been published
in comprehensive methods papers [65–68].

In the first volume of the journal Proteomics, launched in 2001, publications by Hochstrasser and
colleagues [69] and Dunn and co-workers [70] set the scene for 2D gel-based skeletal muscle proteomics.
Their initial studies identified over 70 proteins each from normal mouse and rat skeletal muscle
homogenates, including many sarcoplasmic, metabolic and myofibrillary proteins such as various
myosin subunits, actin isoforms, regulatory sarcomeric proteins, glycolytic enzymes, mitochondrial
proteins and molecular chaperones [69,70]. The application of the 2D-GE method in combination
with MS technology for cataloging mouse skeletal muscle was part of extending the SWISS-2DPAGE
database to include proteomic maps of major types of tissue [69]. A variety of databases exist for
the image comparison of 2D gels, the identification of internet-based gel images, the cataloguing of
results from systematic 2D-GE analyses and the integration of electrophoretic and mass spectral data
from proteomic analyses, including World-2DPAGE Constellation SWISS-2DPAGE, WEB P.A.G.E,
Flicker, GELBANK, Open2Dprot Project, LECB 2-D PAGE Gel Images Data Sets, 2DWG, ProteomeWeb,
PHProteomicsDB and pProRep [71–78]. In 2001, the new field of skeletal muscle proteomics was further
developed by the systematic identification of sarcoplasmic proteins from several hake species [79] and
the mass spectrometric characterization of bovine myosin light chain MLC1f polymorphism following
2D-GE separation [80]. Potential technical shortcomings of 2D-GE for the comprehensive separation of
highly complex protein mixtures have often been discussed in the past and compared to the perceived
superiority of LC-based methods [17,81,82]. In our opinion, both protein separation techniques should
be seen as complementary proteomic methods and be used in combination to achieve the maximum
coverage of the assessable proteome of a particular biological specimen.

In the case of skeletal muscle fibers, approximately half of the protein constituents belong to
the sarcomere units that are made up of large numbers of isoforms of myosin heavy chains (MyHC),
myosin light chains (MLC), actins (ACT), troponins (TN) and tropomyosins (TM). These contractile
and regulatory protein species are routinely identified by gel-based proteomics [43], demonstrating
the usefulness of 2D-GE for the classification of muscle types and fiber specification. Metabolic
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enzymes are also highly abundant in muscle tissues and straightforwardly assessable by gel-based
proteomics [83]. Prior to outlining the many advantages and bioanalytical applications of 2D-GE in
skeletal muscle proteomics in subsequent sections, the below listing highlights certain issues that may
hamper gel-based methods and other types of analyses. The most frequently encountered biological
and technical complications (and some alternative approaches to avoid these potentially limiting
factors) are:

• Possible under-estimation of particular types of proteins, including highly hydrophobic proteins,
very high-molecular-mass proteins and low-copy-number proteins. Changing gel conditions,
the introduction of suitable pre- and post-fractionation steps, as well as higher sensitivity detection
protocols can often overcome some of these technical limitations [84–87].

• Hypothetical under-representation or 2D streaking of proteins with extreme pI-values, which
however depends heavily on the particular IEF conditions employed in the first dimensional
separation step. Often very acidic protein species form vertical streaking patterns at the pH 3
region and very basic proteins at the pH 11 region. To at least partially overcome this problem,
the usage of narrow-range immobilized pH gradients can be applied for zooming in on protein
species that do not fall into the commonly applied range of approximately pI 3 to 11 [88–91].
In addition, combining the findings from several different IEF gels in the first dimension with
slightly overlapping pI-values can be advantageous for producing more comprehensive protein
coverage [15,92,93].

• Potentially restricted separation of complex protein mixtures with greatly differing molecular
masses using routine 2D-GE approaches. Often the usage of large-scale gels, optimized gradient
SDS-PAGE slab gel systems in the second dimension and the reduction of sample complexity can
overcome some of these technical problems and be used to cover protein species that do not fall
into in the routinely analyzed range of approximately 10 to 250 kDa [67,94].

• Latent cross-contamination of individual 2D protein spots through highly abundant polypeptides
that are dragged throughout the 2D gel system due to their exceedingly high density. These
abnormal electrophoretic mobility patterns of particular proteins cause a certain degree of 2D
streaking, which can be minimized by (i) decreasing the total amount of protein loading; (ii) using
very large gel systems with a higher discriminatory capacity and/or (iii) applying optimized
pre-fractionation techniques to decisively decrease sample complexity [95–98]. Artifacts can be
kept to a minimum using 50 to 200 µg of total protein in first dimension gels. Lower protein
concentrations usually result in weak staining patterns. Comparative studies with fluorescent
dyes give optimum results with approximately 50 µg of protein per sample.

• Potential discrepancies between the findings from the densitometric scanning of gel images and
the MS-based protein identification in case of a heterogeneous composition of a single 2D protein
spot. For example, if a protein spot contains more than one protein species and the most abundant
protein is not as susceptible to digestion as the low-copy-number proteins in its vicinity, then the
concentration change of this 2D protein spot (as determined by densitometric scanning) may be
misleading. However, this analytical complication is a relatively rare occurrence and the use of
simple post-fractionation approaches and/or independent verification of gel-based proteomic
data by immunoblotting surveys or immunofluorescence microscopical analysis can effectively
assess the rate of these kinds of analytical discrepancies [21].

In relation to the analysis of skeletal muscle preparations by 2D-GE, the above listed technical
and biological issues may complicate especially the routine analysis of the many very large
proteins present in the neuromuscular system, such as titin (3700 kDa), nebulin (800 kDa), obscurin
(720 kDa), the ryanodine receptor Ca2+-release channel (565 kDa) and dystrophin (427 kDa). However,
GE methods can routinely detect fragments of these high-molecular-mass proteins. Many integral or
membrane-associated muscle proteins are under-represented in 2D gels and their detailed proteomic
analysis has to be carried out with enrichment methods prior to 2D-GE analysis, supplementing LC
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methods and/or alternative 1D gradient gel systems [99–102]. The most highly abundant proteins
in muscle homogenates are ACTs, MyHCs, MLCs, TMs and TNs. Depending on the overall loading
capacity of a particular 2D gel, the high density of some isoforms of these sarcomeric proteins can
cause a select amount of cross-contamination in particular regions of a 2D-GE system [67,103].

Despite these bioanalytical limitations, the many technical advantages of the 2D-GE approach
far outweigh the potential shortcomings of this extensively used protein separation method,
as listed below:

• Extremely reliable protein separation system that can be routinely used in large-scale and
high-throughput proteomic surveys. Multi-gel systems using large buffer tanks can run a
considerable number of 2D gels in parallel making this approach both cost-effective and highly
reproducible for systematic biochemical studies [15–17].

• Staining of 2D gels with highly sensitive dyes ranging from colloidal Coomassie Blue to silver
stains to a variety of fluorescent dyes can visualize a wide dynamic range of proteins of differing
abundance [56–58,104].

• Technical provision of a bioanalytical platform that is ideally suited for the subsequent
identification of specific protein isoforms and their PTMs [46–48]. Many in-gel staining or
labeling methods can specifically highlight PTMs, such as enzyme-conjugated lectin labeling
or Pro-Q Emerald staining for glycosylation or the fluorescent Pro-Q Diamond dye for
phosphorylation [58,105–107].

• Direct visualization of proteins of interest as discrete 2D spots, enabling the exact evaluation of
the characteristic combination of the pI-value and relative molecular mass of a particular protein
subunit or isoform. This provides a unique analytical advantage over simpler 1D gel systems that
display heterogeneous protein bands or LC methods. Often MS data from LC-based analyses
do not given efficient information on sequence coverage to unequivocally determine whether a
fully intact protein species or fragments have been detected. In contrast, proteomic data from the
analysis of distinct 2D-GE spots can be directly correlated with the electrophoretic mobility and
thereby the relative molecular mass of the protein of interest [21].

• Since potential discrepancies between the mass spectrometric identification of a protein and its
position in a 2D gel in relation to its pI-value and/or molecular mass can be easily assessed, the
rate of false positive protein hits can be conveniently measured and swiftly eliminated from the
final list of altered protein species. Additional analyses can then determine whether an abnormal
or unexpected electrophoretic mobility pattern is due to protein degradation, protein clustering
or a technical artifact caused by 2D streaking and cross-contamination [18].

• Rapid and quantitative analyses of paired protein samples can be conducted. An example of an
extremely powerful comparative 2D-GE method is the fluorescence 2D-DIGE technique [108] that
eliminates gel-to-gel variations by the differential pre-electrophoretic labeling of protein fractions
and the subsequent separation on the same 2D gel followed by image analysis [109]. See below
section for details on the DIGE method and its application in skeletal muscle proteomics.

Since the beginning of the new millennium, several thousand muscle-associated or muscle-derived
protein species and subgroups with particular PTMs have been identified and used to establish the
skeletal muscle proteome. A large proportion of the comprehensive cataloguing of total muscle tissue
extracts from various species and subtypes of muscle was carried out by 2D-IEF/SDS-PAGE [69,70,110–126].
Subcellular fractions of skeletal muscles have also been studied by 2D-GE and MS analysis [127],
including nuclei [128], mitochondria [129–132], the contractile apparatus [133], cytosol [128] and
the muscle secretome [134,135]. In addition, 1D-GE and on-membrane digestion has been used to
characterize the sarcolemma [99] and sarcoplasmic reticulum [101] from skeletal muscle preparations.
Major classes of PTMs, such as muscle protein nitration, glycosylation and phosphorylation were
determined by 2D-GE methodologies [105,106,136,137]. These gel-based proteomic cataloguing studies
were supplemented with data from alternative GE methods and a large number of LC-based proteomic
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investigations [138–150] to fully comprehend the enormous complexity of the muscle proteome [21].
Details of major 2D gel-based studies for the establishment of the skeletal muscle proteome are
listed in Table 1. Within this large cohort of skeletal muscle proteins, fiber type-specific expression
patterns of a few hundred muscle proteins have been established by 2D-GE analysis, confirming
the molecular and cellular heterogeneity between predominantly fast-twitching and slow-twitching
muscles [113–118]. This important topic of skeletal muscle physiology and the major changes that
occur during fiber transitions is discussed in the below section on comparative proteomics.

Table 1. Major 2D-IEF/SDS-PAGE-based proteomic studies of normal skeletal muscle tissues.

Proteomic Analysis Tissue and Species References

Human 2D gel reference maps Human vastus lateralis
and laryngeal muscle

Gelfi et al. [111]; Li et al. [112];
Kovalyova et al. [124]

Human fast versus slow muscle
fibre type specification

Normal human deltoideus and vastus
lateralis muscles Capitanio et al. [115]

Mouse 2D gel reference maps Normal mouse gastrocnemius and
quadriceps muscle Sanchez et al. [69]; Raddatz et al. [121]

Mouse fast versus slow muscle
fibre type specification

Normal and kyphoscoliotic mouse
soleus and vastus lateralis muscles Le Bihan et al. [117]

Rat 2D gel reference map Normal rat skeletal muscle
from the abdominal wall Yan et al. [70]

Rat fast versus slow muscle
fibre type specification

Normal rat soleus, gastrocnemius and
extensor digitorum longus muscles Okumura et al. [116]; Gelfi et al. [118]

Rabbit 2D gel reference map Rabbit gastrocnemius muscle Almeida et al. [122]
Bovine 2D gel reference maps Bovine semitendinosus muscle Bouley et al. [113]; Chaze et al. [119]
Pig fast versus slow muscle
fibre type specification

Normal pig longissimus dorsi
and soleus muscles Kim et al. [114]

Pufferfish and killifish
2D gel reference maps

Skeletal muscles from Takifugu rubripes
and Fundulus grandis Lu et al. [125]; Abbaraju et al. [126]

Mitochondrial 2D gel maps Subsarcolemmal and intermyofibrillar
mitochondria from various rat muscles

Reifschneider et al. [129];
O’Connell et al. [130];
Lombardi et al. [131];
Ferreira et al. [132]

Contractile apparatus 2D gel map Enriched acto-myosin apparatus from
rat gastrocnemius muscle Gannon et al. [133]

Cytosol and nucleus 2D gel map
Nucleus and cytosolic fraction from
mouse gastrocnemius
and soleus muscles

Vitorino et al. [128]

Muscle secretome 2D gel maps Seretome from cultured muscle cells Gajendran et al. [134];
Hartwig et al. [135]

2D PTM gel maps of
protein glycosylation Rat leg skeletal muscles O’Connell et al. [105];

Cieniewski-Bernard et al. [137]
2D PTM gel map of
protein phosphorylation Rat gastrocnemius muscle Gannon et al. [106,133]

2D PTM gel map of protein nitration Rat leg skeletal muscles Kanski et al. [136]

4. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis

MS-based muscle proteomics has focused on the systematic determination of protein changes
during myogenesis, fiber transformation, exercise-induced adaptations, hypoxia, disuse atrophy
and muscle aging. A general proteomic workflow used frequently in comparative skeletal muscle
proteomics is outlined in Figure 3.

Comparative proteomic studies have been carried out with (i) total crude tissue extracts
representing the assessable and near-to-complete skeletal muscle proteome; (ii) subcellular fractions
enriched in specific organelles thereby representing distinct subproteomes; and (iii) isolated
supramolecular protein complexes. For the systematic comparative analysis, protein mixtures
were separated by high-resolution 2D-GE using usually IEF and SDS-PAGE, but also alternative
combinations such as native gels or diagonal non-reducing/reducing gel systems. Protein visualization
was performed with both pre-electrophoretic and post-electrophoretic labeling techniques. 2D spot
patterns were routinely scanned by densitometry and proteins of interest then identified by in-gel
digestion and MS analysis of the resulting peptide populations. The verification of proteomic hits was
usually carried out by immunoblot analysis, immunofluorescence microscopy and enzyme assays.
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4.1. Proteome Signature of Skeletal Muscle Development

Skeletal muscle development is a highly complex cell biological process that is associated
with considerable alterations in protein expression patterns. Substantial proteome-wide changes
during the phenotypic conversions of myoblasts into post-mitotic myotubes were confirmed by MS
studies [151]. Embryonic and adult myogenesis is regulated by a variety of factors, including the
transcription factors PAX3 and PAX7 during the initial induction of mesodermal precursor cells
and during regenerative processes following muscle injury. Wnt glycoproteins and the myogenic
regulatory factors MyoD, Myf5, MRF4 and myogenin play a key role during the segmentation
into somites and the formation of the primary myotome [152]. The fusion of myogenic cells
results in the formation of multi-nucleated myofibers, which is followed by innervation and muscle
maturation. Electro-stimulation of the motor unit system results in the expression of a variety of distinct
maturation markers and muscle-specific proteins, including the junctional acetylcholine receptor and
the membrane cytoskeletal protein dystrophin. The extremely high level of regenerative capacity
of adult muscle fibers is due to the presence of inducible satellite cells, which represent myogenic
stem cells that become activated during reactive cycles of fiber regeneration [153]. Skeletal muscle
tissue mass is regulated by a complex network of anabolic and catabolic mechanisms and this process
includes crosstalk between a variety of regulatory pathways [154]. A key intracellular signaling
molecule with differential effects on neuromuscular loading is the transcriptional co-activator PGC-1α
(peroxisome proliferator-activated receptor gamma co-activator 1-alpha). Crucial regulatory systems
include the TGFβ (transforming growth factor) and myostatin signaling pathway, the NFκb (nuclear
factor kappa) and inflammatory cytokines pathway, the IGF1-PI3K-Akt-mTOR (insulin-like growth
factor 1-phosphatidylinositol-3-kinase-serine/threonine protein kinase PKB-mammalian target of
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rapamycin) pathway, the autophagy lysosome, the ubiquitin proteasome, acetylating enzymes and
myogenic regulatory factors [155].

The complexity of cell biological mechanism involved in myoblast activation and fiber maturation
can be conveniently studied in a systematic fashion by muscle proteomics. Large-scale MS studies of
developing muscle fibers promise to establish the regulatory hierarchy of myogenesis and skeletal
muscle regeneration. 2D gel-based analyses of skeletal muscle development have involved the
proteomic profiling of C2C12 muscle cell culture models with a focus on myoblast differentiation and
myotube formation [156,157] and postnatal muscle growth [158,159]. In addition, 1D-GE approaches
were used to study changes in the skeletal muscle secretome during myogenesis [160–162]. The
phenotypic conversion of mono-nucleated myoblasts into differentiated and multi-nucleated myotubes
was shown to be associated with considerable changes in highly regulated muscle proteins involved in
intercellular signal transduction, intracellular signaling systems, the maintenance of cell shape, the
regulation of cell proliferation and apoptosis, as well as protein folding, stabilization and degradation
in relation to the cellular stress response [156,157]. Proteomics also confirmed complex changes
during the early postnatal period. The developing rat tibialis anterior [158] and porcine longissimus dorsi
muscle [159] showed a time-dependent increase in contractile proteins and drastic alterations in
metabolic enzymes, cytoskeletal proteins, molecular chaperones and signal transduction factors.
An interesting negative regulator of muscle growth is myostatin, a secreted differentiation factor
that belongs to the TGF-β superfamily [163]. Semitendious muscles from Belgium Blue bulls that lack
myostatin were shown to be characterized by a higher proportion of fast-twitch glycolytic fibers with
alterations in contractile protein isoform expression patterns and an increase in myosin binding protein
MBP-H [164,165].

4.2. Muscle Plasticity and Fiber Type Specification

The physiological regulation of contractile fiber size, fiber type distribution and skeletal muscle
mass is closely linked to neuromuscular activity levels. A variety of molecular networks are
involved in skeletal muscle plasticity and fibre type specification [155]. Physiological adaptations to
changed functional demands and fiber type formation is intimately related to cytosolic Ca2+-levels
and the activation of the Ca2+-calmodulin/calcineurin system. This pathway is involved in the
dephosphorylation and subsequent translocation of NFAT (nuclear factor of activated T-cells) into the
fibre nucleus, which triggers NFAT-mediated remodeling of muscle gene transcription. Importantly,
the activation of the mitogen-activated protein kinase MAPK is a Ca2+-dependent process [166]. Thus,
Ca2+-homeostasis plays not only a central role in the regulation of the excitation-contraction-relaxation
cycle and skeletal muscle metabolism, but also influences fiber type specification and muscle
adaptations. Adult skeletal muscles are composed of a mixture of slow-twitching fibers, fast-twitching
fibers and hybrid fibers. In cell biological terms, the functional and transitional status of an
individual skeletal muscle is characterized by the dynamic ratio of slow-to-fast-to-hybrid fibers [167].
The particular mixture of fibers determines the ability of an individual skeletal muscle to generate
force. It also influences its susceptibility to contractile fatigue and its properties in relation to
shortening kinetics.

Distinct populations of contractile fibers can be distinguished by their cell biological properties
(tissue color, cellular diameter, capillary density, mitochondrial content), physiological characteristics
(contraction time, power output, relaxation time, relative resistance to fatigue) and biochemical
status (aerobic versus anaerobic activities, ratio of oxidative versus glycolytic enzymes, myoglobin
levels, triglyceride storage, glycogen levels) [27]. These specific properties of predominantly fast
versus slow fibers are reflected by discrete differences in muscle protein density and protein isoform
expression patterns. The differential biochemical profile of slow versus fast fibers was confirmed by
extensive gel-based proteomic studies that have clearly established several hundred fiber type-specific
protein isoforms, including contractile proteins, cytoskeletal proteins, metabolic enzymes, signaling
proteins and ion-handling proteins. Major comparative studies of slow versus fast muscles are listed
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in Table 1 and include the 2D-GE analysis of human deltoideus versus vastus lateralis muscles [115],
pig longissimus dorsi versus soleus muscles [114], rat soleus, gastrocnemius and extensor digitorum longus
muscles [116,118] and mouse soleus versus vastus lateralis muscles [117], as well as the subcellular study
of the nucleus and cytosol from mouse gastrocnemius versus soleus muscles [128].

Future studies on muscle plasticity can build on these extensive proteomic 2D-GE maps and
determine how chronic neuronal, mechanical or metabolic changes may affect the fiber type distribution
during physiological muscle conditioning or pathophysiological insults. In general, complex work
load-related signaling mechanisms are involved in interrelated pathways with common molecular
mediators that induce skeletal muscle hypertrophy versus disuse-related muscular atrophy [154].
The overall process includes neuronal electro-stimulation patterns, mechanical stimulation,
stretch-induced fiber alterations, the influence of shear stress and the effects of gravity exposure,
as well as hormonal and metabolic factors. The various signals from these varied physiological
stimulations present enhanced versus reduced neuromuscular loading and are efficiently transduced
into muscle fibers [155]. The cell biological integration alters the response of individual motor units.
Thus, neuronal activities, metabolite concentration, oxygen levels, the degree of cellular stress and
substrate signaling are key factors that influence changes in the muscle phenotype.

4.3. Exercise-Induced Proteome Signature

The effects of enhanced physical activity have been extensively studied in humans and animal
models by 2D-GE analysis to determine large-scale adaptations in skeletal muscle and establish
time-dependent tissue changes during exercise [168]. Biological issues that have to be taken into
account are the intensity of exercise, the training mode, the overall neuromuscular load, the exercise
regimen and the specific skeletal muscle types under investigation [169]. Combined transcriptomic,
metabolomic and proteomic approaches promise to identify the detailed regulatory mechanisms
underlying molecular and cellular changes during and following physical training. Initial proteomic
studies suggest that a large variety of protein alterations reinforce the establishment of power
performance versus the endurance phenotype [170]. The findings from previous physiological
and biochemical studies of exercise-related protein changes were confirmed by proteomics.
The exercise-induced proteome signature is influenced by the type and duration of exercise and
especially involves the regulation of glycolytic and mitochondrial protein synthesis, and changes
in the isoform expression pattern of contractile proteins. Besides the protein systems involved in
ATP generation and contractile force, oxygen and metabolite delivery are crucial factors, as well as
components that maintain the cellular stress response and anti-oxidant capacity of adapting fibers.
Proteomics corroborated the physiological concept that a single bout of intensive exercise affects
cytosolic Ca2+-release and triggers increased amino acid metabolism. In contrast, chronic endurance
training is clearly related to enhanced mitochondrial metabolism and an up-regulation of proteins
involved in the citric acid cycle and oxidative phosphorylation [171].

Proteomic profiling of exercise has included the evaluation of protein changes in various
human muscles [172–177] and established animal models of different training regimes [178–188].
The individual investigations are listed in Table 2. Human exercise studies have focused on (i) the
effects of interval training on the vastus lateralis muscle [172]; (ii) changes in the mitochondrial proteome
from vastus lateralis muscle following extended periods of endurance training [173]; (iii) the response
of soleus and vastus lateralis muscles to vibration exercise countermeasures to prevent muscular atrophy
in lower limbs due to long-term bed rest [174,175]; (iv) the effects of acute or repeated eccentric
exercises on rectus femoris muscle [176] and (v) exercise-induced muscle damage and inflammation in
vastus lateralis muscle following extensive downhill running [177]. Distinct adaptive responses were
identified for key muscle proteins, including changes in the ATP synthase and succinate dehydrogenase
following interval training [172], a glycolytic-to-oxidative enzyme shift during endurance training [173],
altered MyHCs and oxidative enzymes following vibration exercise [174,175], changes in glycolytic
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enzymes and myosins in response to repeated eccentric exercises [176], and altered expression levels
of actin, desmin and calsequestrin in damaged muscles [177].

The proteomic signature of increased neuromuscular loading in animals was evaluated in response
to (i) moderate intensity endurance training in rat plantaris muscle [178]; (ii) 14 and 60 days of chronic
low-frequency stimulation of rabbit tibialis anterior muscle [179,180]; (iii) high intensity swimming
in rat gastrocnemius and epitrochlearis muscles [181,182]; (iv) treadmill endurance overtraining in rat
gastrocnemius muscle [183]; (v) one bout of an exhaustive exercise in rat gastrocnemius muscle [184];
(vi) training effects on protein carbonylation in rat tibialis anterior and soleus muscles [185]; (vii) different
stages of endurance training in horse vastus lateralis muscle [186]; (viii) endurance training in mouse
leg muscles with insulin-like growth factor-mediated gene doping [187]; and (ix) high-capacity versus
low-capacity running in rat soleus muscle [188]. Endurance training was shown to be clearly related
to shifts from glycolytic metabolism to mitochondrial bioenergetics [176,181–183,187]. The chronic
activation of motor units by electro-stimulation caused a drastic increase of markers of oxidative
metabolism and a transformation of contractile proteins to slower isoforms [179,180]. Interestingly,
the comparative 2D-GE analysis of soleus muscles from rats that were artificially selected as either
high- or low-capacity runners identified protein disulfide isomerase PDIA3 as a key component that is
associated with the aerobic capacity of slow skeletal muscles [188].

4.4. Hypoxia-Related Muscle Adaptations

Although contractile fibers are metabolically robust and remarkably resistant to short periods
of oxygen deprivation, very strenuous exercise or physical activity during chronic exposure at
altitude cause an adaptive response in the skeletal musculature [189]. A chronic decrease in oxygen
levels causes a bioenergetic challenge to metabolically active muscle tissue and is associated with
muscular atrophy due to a transient activation of proteolysis and an mTOR-related inhibition of
muscle protein synthesis, as well as an overproduction of reactive oxygen species and the stabilization
of the oxygen-sensitive hypoxia-inducible factor HIF-1α [190]. Proteomic studies have confirmed
hypoxia-induced muscle adaptations using both animal models of oxygen deprivation, i.e., zebrafish
in hypoxic tanks [191] and rats in hypoxic chambers [192], and human biopsy specimens from
vastus lateralis muscle during adaptations to different periods of hypoxia [193,194]. The response
to chronic hypoxia is clearly associated with an inhibition of fatty acid oxidation and a decreased
expression of proteins involved in the citric acid cycle and oxidative phosphorylation, as well as
moderate alterations in the glycolytic pathway [191–194]. The hypoxia-related loss of muscle mass
and decrease in fiber area is probably an adjustment to impaired oxygen diffusion, and the apparent
oxidative-to-glycolytic shift in fiber metabolism represents an optimization of bioenergetic processes
during exposure to environmental hypoxia.

4.5. Proteome-Wide Changes during Disuse Atrophy

A variety of physiological or pathophysiological conditions may lead to muscular atrophy.
Prolonged episodes of muscle disuse or neuromuscular unloading are related to traumatic nerve crush,
complete denervation, exposure to microgravity, extended bed rest in the severely ill, various forms
of immobilization or a general lack of physical activity as for example seen in the elderly. Muscular
atrophy has severe effects on the musculature triggering a net loss of skeletal muscle protein mass
and contractile strength. In general, muscular atrophy is associated with a drastic decrease in protein
synthesis and concomitant increase in the rates of protein breakdown, as well as slow-to-fast transitions
in contractile kinetics and an oxidative-to-glycolytic shift in fiber metabolism [195]. A considerable
number of gel-based studies have used animal models of denervation, immobilization or extended
periods of muscle disuse to determine proteome-wide changes during muscular atrophy [196–205].
These studies have confirmed the general tendency of atrophying skeletal muscles to undergo a
stepwise conversion to faster contractile properties and increased glycolytic metabolism. The proteomic
profiling of rat muscles following denervation [196], hindlimb suspension [197] or immobilization by
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the pin-heel method [198] showed increases in carbonic anhydrase CA3, enolase and fast MLC, as well
as decreases in the fatty acid binding protein and slow MLC. As described in the proteomic studies
listed in Table 2, neuromuscular unloading is clearly associated with a slow-to-fast transformation
process [199–203] and complete denervation triggers extensive isoform switching in slow versus fast
isoforms of the contractile proteins MyHC, MLC, TN and TM [204,205]. As already mentioned in above
section on exercise proteomics, vibration training can be beneficial to counteract muscular atrophy
triggered by extended periods of bed rest [174,175]. The proteomic profiling of disuse atrophy following
chronic bed rest has revealed decreases of type I fibers and an increase of hybrid fibers in human
soleus and vastus lateralis muscles. An oxidative-to-glycolytic shift in skeletal muscle metabolism was
confirmed by the identification of elevated levels of glycogen phosphorylase and glycolytic enzymes,
and a concomitant decrease in mitochondrial enzymes involved in oxidative phosphorylation [175].

4.6. Sarcopenia of Old Age

The regenerative capacity of senescent fibers is greatly compromised causing a natural decline in
contractile strength during skeletal muscle aging [206]. This functional decline of the neuromuscular
system is related to both a gradual loss in skeletal muscle mass and fiber type shifting due to a
higher susceptibility of aged type II fibres to muscular atrophy [207]. Sarcopenia of old age has
been recognized as a major contributor to frailty in the elderly [208] and affects a large portion
of the general population over 75 years of age [209]. The pathophysiological mechanisms of
sarcopenia are believed to be highly complex resulting in a multi-factorial etiology. Recent proteomic
studies have established extensive changes in the skeletal muscle proteome during the natural aging
process [210–212], whereby gel-based proteomics has been instrumental in the initial cataloguing of
the aged muscle proteome [213–215]. Skeletal muscle aging is closely associated with persistent
impairments of the peripheral nervous system, which trigger excitation-contraction uncoupling
and pathophysiological cycles of denervation and faulty reinnervation. Besides reduced neuronal
stimulation, many other factors influence the senescent muscle phenotype, such as chronic
inflammation, oxidative stress, hormonal imbalances, lipotoxicity, impaired capillary blood flow,
decreased protein synthesis and reduced numbers of inducible satellite cells. Increased stress levels in
aged fibres were shown by the proteomic establishment of elevated levels of a variety of molecular
chaperones, including the small heat shock proteins cvHsp and αB-crystallin [216,217].

A frequently used 2D-GE method in comparative proteomics is represented by fluorescence
difference in-gel electrophoresis (DIGE) [108,109,218] and has also been applied to studying sarcopenia
of old age [219–223]. The DIGE method was originally described by Minden and colleagues [224] and
can be used with differential fluorescent 2-dye or 3-dye systems for minimal or saturation protein
labeling prior to 2D-GE [225–227]. Figure 4 gives an overview of the routine DIGE analysis of two
differing skeletal muscle specimens.

Detailed technical aspects of the DIGE technique for the comparative proteomic analysis of
skeletal muscle tissues is outlined in several method papers [65,66,68,228,229]. The development of
optimized 2D software analysis tools [230] has boosted the accuracy of quantitative investigations
of multiple protein samples on the same 2D gel [231]. The parallel analysis of differentially and
pre-electrophoretically labeled proteomes on the same gel greatly reduces gel-to-gel variations, making
the DIGE method an excellent comparative tool of analytical protein biochemistry [232,233]. In the field
of skeletal muscle proteomics, pre-electrophoretically labeled and 2D-GE separated proteins usually
account for a representative proportion of components from the contractile apparatus, structural
cytoskeleton, basal lamina, excitation-contraction coupling complex, major metabolic pathways, ion
handling systems and regulatory mechanisms [228,234]. For the routine 2D-DIGE analysis of the
skeletal muscle proteome, usually 50 µg protein aliquots from individual fractions are differentially
labeled with Cy2, Cy3 or Cy5 dyes [65,66,68].

Changes in the abundance of mitochondrial enzymes [128,129,235] and an altered oxidative
status of redox-sensitive proteins have been shown to occur in aged muscles [236–238]. PTM changes
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have been reported in phosphoproteins of the contractile apparatus [106,133] and glycoproteins of
metabolic pathways [105]. In addition, age-dependent protein nitration and carbonylation appear to
play a role in skeletal muscle aging [136,239]. Extensive 2D-GE studies of contractile proteins have
confirmed fast-to-slow transitions during both human and animal muscle aging, including a variety
of fast and slow MyHC and MLC isoforms [100,133,219–223,240]. These studies demonstrate the
bioanalytical robustness and technical suitability of 2D-GE techniques for the efficient separation of
the many isoforms of contractile proteins. Proteomic findings support the pathobiochemical concept
that age-related fiber transitions towards a slower contractile phenotype are not a primary process,
but are based on secondary mechanisms associated with a preferential decline in faster twitching
type II fibres [207,214]. This also agrees with the observed glycolytic-to-oxidative shift during muscle
aging. Although mitochondrial metabolism is impaired in senescent fibers, the higher susceptibility
of glycolytic type II fibers to muscular atrophy appears to cause an overall shift to more oxidative
bioenergetics in a slower twitching fiber population from aged skeletal muscles with a drastic decrease
in tissue mass [235].
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Figure 4. Fluorescence two-dimensional difference in-gel electrophoretic analysis of aging skeletal
muscle (Sample A: Young muscle; Sample B: Aged muscle). Abbreviations used: DIGE, difference
in-gel electrophoresis; GE, gel electrophoresis; IEF, isoelectric focusing; PAGE, polyacrylamide
gel electrophoresis.

Table 2. Major 2D-IEF/SDS-PAGE-based proteomic studies of myogenesis, skeletal muscle adaptations,
physical activity and muscle aging.

Proteomic Analysis Skeletal Muscle Tissue References

Postnatal development Rat tibialis anterior and porcine
longissimus dorsi muscle Sun et al. [158]; Xu et al. [159]

Myoblast differentiation
and myotube formation C2C12 cell culture model Tannu et al. [156]; Casadei et al. [157]

Interval training Human vastus lateralis muscle Holoway et al. [172]
Endurance training Human vastus lateralis muscle Egan et al. [173]
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Table 2. Cont.

Proteomic Analysis Skeletal Muscle Tissue References

Vibration exercise during
long-term bed rest Human soleus and vastus lateralis Moriggi et al. [174];

Salanova et al. [175]
Repeated eccentric exercises Human rectus femoris muscle Hody et al. [176]
Downhill running-induced
muscle damage Human vastus lateralis muscle Malm and Yu [177]

Various types of animal
endurance training

Rat plantaris, gastrocnemius,
tibialis anterior, soleus and
epitrochlearis muscles;
and horse vastus lateralis muscle

Burniston [178]; Guelfi et al. [181];
Yamaguchi et al. [182]; Gandra et al.
[183]; Magherini et al. [185];
Bouwman et al. [186]

One bout of an exhaustive exercise Rat gastrocnemius muscle Gandra et al. [184]
Endurance training
following gene doping Various mouse leg muscles Macedo et al. [187]

Chronic low-frequency
electro-stimulation Rabbit tibialis anterior muscle Donoghue et al. [179,180]

High-capacity versus
low-capacity runners Rat soleus muscles Burniston et al. [188]

Myostatin-related muscle hypertrophy Belgium Blue bulls semitendious
muscle lacking myostatin Bouley et al. [164]; Keady et al. [165]

Hypoxia-induced muscle adaptations Zebrafish, rat and human
vastus lateralis muscle

Bosworth et al. [191];
De Palma et al. [192];
Vigano et al. [193]; Levett et al. [194]

Disuse atrophy due to neuromuscular
unloading, immobilization
or denervation

Rat soleus, tibialis anterior, laryngeal
and gastrocnemius muscles

Isfort et al. [196–198]; Seo et al. [199];
Moriggi et al. [200]; Ferreira et al.
[201]; Basco et al. [202]; Wang et al.
[203]; Li et al. [204]; Sato et al. [205]

Skeletal muscle aging Various aged rat skeletal muscles,
including the gastrocnemius muscle

O’Connell et al. [105,216];
Gannon et al. [106,133]
Kanski et al. [136]; Feng et al. [239];
Doran et al. [217,220]; Piec et al. [240];
Capitanio et al. [221,223]

Sarcopenia of old age Various aged human skeletal muscles,
including the vastus lateralis muscle Gelfi et al. [219]; Staunton et al. [222]

Gel-based meat proteomics has been used to establish reference maps of bovine muscle [113,119],
rabbit muscle [122] and pig muscle [114], as well as for studying tissue growth [164,165,241,242]
and post mortem changes in bovine, porcine and chicken muscles [243–248]. The findings from
meat proteomics are important for maximizing muscle growth, meat production, slaughter methods,
muscle-to-meat processing and meat storage [249–251].

5. Conclusions

Over the last 40 years, protein separation has been carried out by sophisticated 2D-GE techniques
and established this method as a highly suitable and versatile approach for the systematic analysis
and characterization of the skeletal muscle proteome. In basic and applied myology, the application of
the original O’Farrell method or slightly modified versions has resulted in the cataloging of several
thousand distinct muscle protein isoforms and the identification of hundreds of fiber type-specific
protein species. Gel-based proteomic studies have established a variety of protein changes in
physiologically challenged skeletal muscles, including the effects of myogenesis, exercise, regeneration,
hypoxia, prolonged disuse and natural aging. In this regard, the 2D-GE method has played an essential
role in modern muscle biology and the systematic identification of the molecular components that form
the functional units of contractility and adaptability to changed functional demands. The extensive
usage of 2D-GE has been instrumental in the establishment of the highly dynamic skeletal muscle
proteome signature that is characterized by an extremely diverse population of protein species. Crucial
issues in muscle tissue proteomics are optimum protein extraction and efficient protein separation
prior to MS analysis. Currently no single protein biochemical method is capable of separating all of
the molecular species that constitute the skeletal muscle proteome. The considerable differences in
charge, size, solubility and abundance may result in the under-representation of specific subtypes of
peptides and proteins. Independent of the specific separation approach, such as gel-based techniques
or liquid chromatography, it is currently not possible to cover the entire range of muscle protein
isoforms in large-scale and high-throughput analyses. Technical limitations of the 2D-GE method
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may especially affect the proteomic analysis of very high-molecular-mass proteins, integral membrane
proteins and low-abundance proteins. Although liquid chromatography has the advantage of being
able to efficiently separate highly hydrophobic proteins, this method cannot routinely determine the
characteristic combination of the relative molecular mass and the pI-value of a specific protein of
interest. Hence, the direct visualization of muscle proteins as discrete 2D spots can be useful to clearly
determine whether smaller fragments or a full-length protein have been identified by proteomics.
Therefore, using a combination of different biochemical techniques with overlapping separation
capabilities for dissimilar subtypes of proteins would be the best way to cover the majority of muscle
protein species in comprehensive proteomic studies. With the rapid advances in MS technology, it can
be expected that future proteomic investigations will establish an even more refined understanding of
the interactions between regulatory proteins, contractile elements, cytoskeletal proteins, extracellular
matrix proteins, metabolic enzymes, signaling complexes, ion-handling complexes and molecular
chaperones to form the structural and functional basis of the neuromuscular system.
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