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Abstract

People who have Alzheimer's disease neuropathologic change (ADNC) typi-

cally associated with dementia but not the associated cognitive decline can 

be considered to be “resilient” to the effects of ADNC. We have previously 

reported lower neocortical levels of hyperphosphorylated tau (pTau) and less 

limbic- predominant age- related TDP- 43 encephalopathy neuropathologic 

change (LATE- NC) in the resilient participants compared to those with demen-

tia and similar ADNC as determined by current NIA- AA recommendations 

using traditional semi- quantitative assessments of amyloid β and pathological 

tau burden. To better understand differences between AD- dementia and resil-

ient participants, we developed and applied a deep learning approach to ana-

lyze the neuropathology of 14 brain donors from the Adult Changes in Thought 

study, including seven stringently defined resilient participants and seven age- 

matched AD- dementia controls. We created two novel, fully automated deep 

learning algorithms to quantify the level of phosphorylated TDP- 43 (pTDP- 43) 

and pTau in whole slide imaging. The models performed better than traditional 

techniques for quantifying pTDP- 43 and pTau. The second model was able to 

segment lesions staining for pTau into neurofibrillary tangles (NFTs) and tau 

neurites (neuronal processes positive for pTau). Both groups had similar quanti-

ties of pTau localizing to neurites, but the pTau burden associated with NFTs in 

the resilient group was significantly lower compared to the group with demen-

tia. These results validate use of deep learning approaches to quantify clinically 

relevant microscopic characteristics from neuropathology workups. These re-

sults also suggest that the burden of NFTs is more strongly associated with 

cognitive impairment than the more diffuse neuritic tau commonly seen with 

tangle pathology and suggest that additional factors may underlie resilience 

mechanisms defined by traditional means.
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1 |  INTRODUCTION

Alzheimer's disease (AD) is a complex disorder defined 
by characteristic clinical manifestations and specific 
neuropathologic changes. It is the most common cause 
of dementia, affecting over 44 million people worldwide. 
Despite the increasing impact of AD on society, effective 
disease- modifying treatment or prevention strategies 
still do not exist. Nevertheless, our understanding of the 
neuropathological changes associated with AD has ex-
panded over time. Current National Institute on Aging 
and Alzheimer's Association (NIA- AA) guidelines for 
the assessment of AD neuropathologic change (ADNC) 
combine amyloid β (Aβ) plaque distribution (Thal phase), 
neurofibrillary tangle (NFT) distribution (Braak stage), 
and neuritic plaque density (Consortium to Establish 
a Registry for Alzheimer's Disease [CERAD] score) to 
generate an overall ADNC assessment and interpre-
tation (1). Further, the current NIA- AA standards for 
assessment of neurodegenerative disease include evalu-
ating for other, often comorbid pathologies associated 
with neuronal loss and cognitive decline including Lewy 
body disease (LBD), vascular brain injury (VBI) includ-
ing both microvascular lesions and large and small vessel 
infarcts, TDP- 43 pathology, and hippocampal sclerosis 
(HS), highlighting the complexity of the neuropathology 
of AD and related dementias and the need for better un-
derstanding of how neuropathology findings influence 
the clinical phenotype (1).

Of special interest is the distinction between onset and 
progression of neurodegenerative disease and associated 
cognitive impairment; alternatively stated, the factors 
that influence differences between onset of patholog-
ical changes in the tissue and functional impairment. 
Perhaps the most important research cohort in this area 
is the subset of people, referred to as “cognitively resil-
ient,” who have sufficient ADNC burden to expect asso-
ciated dementia, but lack the clinical manifestations of 
dementia during their lifetime (2). Resilience to ADNC 
is an important area of interest in AD research, and 
understanding this phenomenon may help to uncover 
potentially modifiable risk factors or targetable patho-
physiological pathways. Research in these populations is 
beginning to uncover clues. Studies have shown a clear 
association between the presence of NFTs and cognitive 
decline, while the association between neuritic plaques 
and cognition is less well understood (3). Studies in re-
silient populations have found that although increased 
neuritic plaque (NP) density is a common finding in this 
group, high levels (Braak stage V or VI) of NFTs are a 
much less frequent occurrence in people with cognitive 
resilience (2, 4).

The Adult Changes in Thought (ACT) study is a pro-
spective, population- based observation cohort of par-
ticipants ≥65  years who enroll with normal cognitive 
status and are followed until the development of AD 
and related dementia (5). The longitudinal nature of this 

study and the substantial proportion of participants who 
consent to autopsy have enabled investigators to link ex-
tensive postmortem neuropathological findings to well- 
characterized cognitive assessments. Using these data, 
our group has previously reported quantitatively lower 
neocortical levels of phosphorylated Tau (pTau) and less 
limbic- predominant age- related TDP- 43 encephalopa-
thy neuropathologic change (LATE- NC) in the resilient 
cohort, stringently defined to limit confounders, com-
pared to ACT participants with dementia and similar 
levels of ADNC (6). This current approach is limited to 
the assessment of distribution, but not density, of neu-
rofibrillary tangles and pathological TDP- 43 deposits; 
thus rigorous quantitative methods may provide addi-
tional insights to further scientific understanding of the 
neuropathology findings contributing to resilience and 
dementia.

One promising new research tool to aid in deepening 
scientific understanding of neuropathology and demen-
tia is deep learning, a type of machine learning in which 
artificial neural networks are created to analyze complex 
data. Deep learning has been transformative in the field 
of medical imaging, and in many cases, deep learning 
approaches have been able to extract previously unrec-
ognized features in imaging data that are associated 
with clinical disease (7, 8). These approaches are becom-
ing more common in AD research with the increase in 
available multimodal neuroimaging data to classify AD 
and predict progression from mild cognitive impairment 
(MCI) to AD (9). In neuropathology, deep learning has 
been recently used to classify and quantify tau pathology 
(10) as well as Aβ plaques and cerebral Aβ angiopathy 
(11, 12).

To further clarify the relationship between pTau and 
TDP- 43, AD, and AD- resilience, we trained deep learn-
ing models to segment and quantify pTau and TDP- 43 
pathology. We report results of the performance of these 
models when applied to analyze the neuropathology of 
AD- resilient ACT participants and age- matched AD- 
dementia controls, and compare these approaches to tra-
ditional quantification methods.

2 |  M ETHODS

2.1 | Study population

Data came from the ACT study participants who had 
been prospectively evaluated, and who died between 
1996 and 2016 and donated their brains for research to 
the University of Washington (UW) BioRepository and 
Integrated Neuropathology (BRaIN) laboratory (Seattle 
WA). ACT is an ongoing, longitudinal, population- based 
cohort study that enrolls participants aged ≥65 and 
free of dementia from Kaiser Permanente Washington 
(KPW) (5, 13). Participants were examined bienni-
ally either at home or clinic with a standard protocol, 
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including administration of the Cognitive Abilities 
Screening Instrument (CASI) (14). Participants who fell 
below a threshold cognitive score at subsequent visits, 
or for whom caregivers or clinicians were concerned for 
cognitive decline, progressed to evaluation with a com-
prehensive neuropsychological battery and a clinical 
examination along with medical records and imaging 
reviews. All of these data were reviewed at a consensus 
conference to diagnose and categorize incident demen-
tia. Dementia diagnoses were determined at consensus 
conferences using the Diagnostic and Statistical Manual 
of Mental Disorders, 4th Edition (DSM- IV) criteria 
(15), and probable and possible AD diagnoses were de-
termined using the National Institute of Neurological 
and Communicative Disorders and Stroke- Alzheimer's 
Disease and Related Disorders Association (NINCDS- 
ADRDA) criteria (16). If, at consensus, the participant 
was felt not to have dementia, they reentered the co-
hort for regular study visits, while those with a demen-
tia diagnosis were followed by telephone. The cohort is 
maintained at approximately 2000 participants and ap-
proximately 30% consent for autopsy, permitting impor-
tant interpretation of factors that contribute to decisions 
for brain donation through inverse probability weight 
processes (17, 18). This study was approved by the KPW 
and University of Washington (UW) institutional review 
boards.

2.2 | Neuropathologic features

Brain autopsy is performed on ACT participants with 
appropriate consent. At least 22 brain regions are rou-
tinely sampled after appropriate fixation. Brain tissue 
is processed, and histologic sections are prepared with 
appropriate histochemical and immunohistochemical 
stains meeting or exceeding NIA- AA guidelines (19). The 
brain and histologic sections are evaluated by a board- 
certified neuropathologist who assesses diverse ADRD- 
related neuropathologic features in every case, including 
neurofibrillary tangle distribution measured by Braak 
stage (20), NP density quantified by the CERAD level 
(21), Lewy body disease distribution (21, 22), TDP- 43 
pathology distribution (LATE stage) (23), hippocam-
pal sclerosis (presence or absence), and cortical and 
subcortical (deep cerebral) microinfarcts evaluated as 
described in the Honolulu Asia Aging Study (HAAS) 
(24). Detailed methods have been previously described 
(25, 26). Briefly, from each case a 5- μm thick section was 
cut from a formalin- fixed, paraffin- embedded tissue 
block of middle frontal cortex and immunostained for 
paired helical filament tau (PHF- tau; clone AT8, 1:1000 
dilution, MN1020, Thermo Fisher Scientific, Waltham, 
MA) and a 5- μm thick section was cut from a formalin- 
fixed, paraffin- embedded tissue block of amygdala and 
immunostained for phosphorylated TDP- 43 (pTDP- 43; 
clone 1D3, 1:1000 dilution, MABN14, Millipore). For all 

slides, immunohistochemistry was performed using pre-
viously optimized protocols and a Leica BOND- MAX 
Fully Automated IHC and ISH staining system (Leica 
Biosystems, Buffalo Grove, IL). Positive controls were 
performed and all stains were reviewed by a board- 
certified neuropathologist blinded to dementia diagnosis 
and original ADNC classification.

2.3 | Cognitive resilience versus 
dementia population

In an evaluation of 684 brains from the ACT autopsy 
cohort, seven resilient study participants were identified 
using stringent criteria including assessment as cogni-
tively normal (CASI results available within 2 years of 
death, and CASI score over the screening threshold for 
dementia) and the highest categorical scores for ADNC 
(Braak stage VI, CERAD frequent) (6). As we have pre-
viously published, although these participants had ex-
tensive NFTs, they had lower neocortical levels of pTau 
compared to study participants with similar brain pathol-
ogy and dementia. They also exhibited less LATE- NC 
compared to non- resilient study participants (19% vs. 
62%, p = 0.002). Seven age-  and sex- matched study par-
ticipants with dementia were chosen for the comparative 
analyses. Brain tissue from all 14 participants underwent 
standard staining processes as described above.

2.4 | Digitization of slides, traditional 
quantification methods

As previously described (6), an Aperio ScanScope AT2 
(Leica Biosystems Pathology Imaging, Vista, CA) at 20x 
(0.5 microns/pixel) was used to scan the sections immu-
nostained for pTau and phosphorylated TDP- 43 (pTDP- 
43). Regions of interest (ROI) on each tissue section 
were highlighted for analysis using Aperio ImageScope 
software (Leica Biosystems Pathology Imaging, Vista, 
CA), and quantitative image analysis of the annotated 
ROIs was performed (Aperio Brightfield Image Analysis 
Toolbox software [Leica Biosystems Pathology Imaging, 
Vista, CA]). The calibrated red- green- blue (RGB) color 
vectors for the immunohistochemical stain components 
were measured and input as parameters into the Color 
Deconvolution Area Analysis algorithm (pTau+ and 
pTDP- 43+ stained slides) and Immunohistochemistry 
(IHC) Nuclear Quantification algorithm (pTDP- 43+ 
stained slides) (Figure 1).

2.4.1 | pTDP- 43 quantification method

The object analysis method using the IHC Nuclear 
Quantification algorithm was applied, which finds ob-
jects (groups of neighboring pixels) with staining in the 
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positive color channel exceeding an intensity thresh-
old, and filters the found objects using size, shape, and 
minimum- positive intensity threshold parameters. The 
algorithm was calibrated to count the number of pTDP- 
43+ inclusions per annotated area. The algorithm was 
configured to use only the positive DAB chromogen in 
the segmentation step. Cumulative frequencies were used 
to calculate the final output metric (objects per mm2) at 
each possible threshold cut point based on histogram 
data of the number of objects per intensity unit. Based 
on the performance of the algorithm in both the positive 
and negative slides, the positive threshold was selected at 
the point where the number of objects per mm2 reached 
a maximum on the positive slides while remained mini-
mum on the negative slides (99th percentile of objects in 
positive slides and 60th percentile in negative slides). The 
quantitative analysis data for each ROI included total 
numbers of pTDP- 43+ objects per mm2.

Next, the color deconvolution area analysis method 
was applied. The Color Deconvolution Area Analysis 
algorithm counts the number of pixels that exceed an 
upper intensity threshold in the DAB stain channel. The 
algorithm was calibrated to measure the total amount 
of staining present in the pTDP- 43 ROIs using a similar 
method as the IHC Nuclear Quantification algorithm. 
The product of average positive optical density (OD) 
was multiplied by percent of ROI with positive staining 
(OD*%Positive). Optical density is a measurement of ab-
sorbance and is linearly related to the amount of staining 
present (27). OD*%Positive is a weighted metric previ-
ously used in digitally quantifying immunohistochemi-
cal staining (28– 30).

2.4.2 | pTau quantification method

For the pTau stained slides, only the color deconvolution 
area analysis method was performed. The object analysis 

method used by the IHC Nuclear Quantification algo-
rithm was unable to detect small and faint pTau regions 
reliably without also counting non- specific background 
staining, so instead only a pixel area analysis was per-
formed using the Color Deconvolution Area Analysis 
algorithm. To quantify pTau, the product of average 
positive optical density (OD) was multiplied by percent 
of ROI with positive staining (OD*%Positive).

2.5 | Deep learning algorithms

We used deep learning models based on the PSPNet ar-
chitecture (31) with a ResNet- 101 (32) backbone. We pre-
trained each model with ImageNet (33) and we retrained 
all layers for each stain. For each stain (pTau and pTDP- 
43), we independently trained separate models using sto-
chastic gradient descent with the Adam optimizer (34) 
and an initial learning rate of 0.001. (Figure 1) We used 
200 epochs with a batch- size of 25 and froze the weights 
of the lowest validation to use for the test set. We used 
a combined pixel- wise and class binary cross entropy 
loss. During training, we performed image augmenta-
tion with random rotations, horizontal flips, vertical 
flips, and cropping to create 256 × 256 × 3 input tensors 
for training and inference. For training and validation, 
we partitioned the annotations of the regions of interest 
spatially so that 20% of the annotated area came from 
a contiguously segregated area of the slide. For train-
ing, the image resolutions were continuously sampled at 
384 × 384 so that the online augmentations would gen-
erate 256 × 256 without missing data at the edges. For 
validation, the images were sampled at 256  ×  256 in a 
non- overlapping fashion and no augmentation was ap-
plied. After training two deep learning models, we used 
the frozen models and ran inference on whole slides from 
different individuals without any manual preprocessing. 
None of the training data were used for the comparison 

F I G U R E  1  Flow chart of traditional and deep learning methods for quantification of phosphorylated Tau (pTau) and phosphorylated 
TDP- 43 (pTDP- 43) 
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with the traditional techniques. We used the intersection 
over union of pTau and pTDP- 43 as a metric to compare 
traditional quantification techniques and deep learning 
algorithms. The quantification of neurites for pTau was 
performed by binary subtraction of the color deconvolu-
tion area mask against the deep learning binary mask 
segmentation.

3 |  RESU LTS

Seven resilient and seven age, sex, year of death, and 
ADNC- matched ACT participants with AD dementia 
were identified using ACT neuropathology and consen-
sus diagnostic criteria and included in the study (35). The 
mean age at death was 85.2 ± 6.1 years for the resilient 
study participants and 86.7 ± 3.5 years for the matched 
controls. There were five female study participants and 
two male study participants in each group (Table 1).

Two separate PSPNet deep learning models (31) were 
trained to perform segmentation on pTau and pTDP- 43- 
stained regions of interest from a single slide each. For 
TDP, 12 840 tiles and 7245 tiles were continuously sam-
pled for training and validation, respectively. For Tau, 
2653 tiles and 1472 tiles were continuously sampled for 
training and validation, respectively. The training curves 
are shown in Figures S1 and S2, with the lowest valida-
tion points marking the point in training that was frozen 
and carried forward for the quantification of the slides 
from the other patients.

For pTau tangle detection, the object analysis method 
used by the IHC Nuclear Quantification algorithm failed 
to identify tangles without decreased specificity. The 
small size and irregular shapes made the tangles difficult 

to positively identify among other brown- staining re-
gions with the IHC Nuclear Algorithm's object seg-
mentation parameters. We performed area- based stain 
analysis. Compared to the results from the color decon-
volution area analysis method, which is the traditional 
staining quantification technique, deep learning was su-
perior in identifying pTau tangles based on intersection 
over union by 66% (0.03% vs. 0.69%; p- value <2.2 × 10−16) 
(Figure 2J). Deep learning was superior to either of the 
traditional quantification methods in detecting pTDP- 
43. Compared to both color deconvolution area analysis 
and object analysis methods, deep learning algorithms 
were better at detecting pTDP- 43 by 66% and 26%, re-
spectively, using intersection over union as our metric 
(p- values <2.2 × 10−16, 9.4 × 10−13) (Figure 2K).

The analysis of seven matched pairs of demented and 
resilient participants using the OD × %positive approach 
showed that the matched participants with AD demen-
tia had a higher level of pTau than the resilient group 
(7.10 vs. 0.99; p = 0.04); however this method, unlike deep 
learning, was unable to differentiate between neuritic 
and neurofibrillary tangle pathology. No significant dif-
ference was found in the number of pTau neurites iden-
tified by the deep learning algorithm between the two 
groups (34 383 in demented vs. 20 540 in resilient group; 
p- value 0.38) while the number of tangles was signifi-
cantly higher in participants with AD dementia com-
pared with resilient participants (93.29 vs. 39.14; p = 0.03) 
(Figure 3).

4 |  DISCUSSION

In this study, we present two novel, fully automated, deep 
learning algorithms to quantify the level of pTau and 
pTDP- 43 in whole slide imaging. Using this approach, 
we were able to partition the effect of pTau into neurites 
(neurons containing diffuse neuritic pTau) versus neu-
rofibrillary tangles (aggregates of pTau). We found that 
the resilient and dementia groups had similar quantities 
of pTau localizing to neurites, but the pTau burden of 
the resilient group was significantly lower in NFTs com-
pared to the group with dementia.

Previous studies have applied machine- learning 
techniques to classify and segment the characteristic 
lesions associated with AD. A recent study trained a 
convolutional neural network to identify Aβ pathology 
on digitized immunohistochemically stained slides 
from the temporal gyrus region of 43 normal and dis-
eased brains. The network was able to distinguish three 
types of Aβ pathology (cored plaques, diffuse plaques, 
and cerebral amyloid angiopathy) with high area under 
the receiver operating characteristics (AUROC) of 
0.993 and fair precision recall curve (0.743). In addi-
tion, the total Aβ burden on whole slide images (WSIs) 
was quantified and compared to the manual CERAD- 
like scoring system and showed varying correlation by 

TA B L E  1  Demographic and baseline clinical characteristics of 
resilient and demented participants

Resilient 
(N = 7)

Dementia 
(N = 7) p- value

Mean age of death (SD) 85.2 (6.1) 86.7 (3.5) 0.31

Age at final study visit 
(years) mean (SD)

83.9 (5.6) 79.7 (5.5) 0.05*

Female, n (%) 5 (71.4) 5 (71.4) 1.00

Education (years) mean 
(SD)

15.9 (2.7) 15.4 (3.7) 0.67

CASI to death (years) 
mean (SD)

0.9 (0.5) 7.0 (3.4) 0.03*

APOE ε4, n (%) 2 (28.6) 4 (66.7) 0.50

Charlson Comorbidity 
Index (cumulative) 
mean (SD)

3.4 (2.6) 1.1 (1.3) 0.06

Patient demographic information obtained from previous research by Latimar 
et al (35). The Charlson Comorbidity Index is a weighted measure that 
considers the number of comorbid diseases and their severity (45).

Abbreviations; CASI, cognitive abilities screening instrument; SD, standard 
deviation.

*Statistical significance.
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amyloid pathology types (11). Another study used his-
topathology slides from 22 brains of study participants 
with tau- related neurodegenerative diseases (AD, 

primary age- related tauopathy, progressive supranu-
clear palsy, and chronic traumatic encephalopathy) to 
train a machine- learning algorithm to quantify NFTs 

F I G U R E  2  Deep learning (DL) quantification of phosphorylated Tau (pTau) tangles (A) and phosphorylated TDP- 43 (pTDP- 43) inclusions 
(E). Expert pathologist segmented pTau tangles (B) and pTDP- 43(F). Color deconvolution area analysis, a traditional stain quantification 
technique, was applied (C) and compared to the DL semantic segmentation (D) of pTau tangles. Color deconvolution area analysis (G), 
Immunohistochemistry Nuclear Quantification object analysis method (H), and DL methods (I) were utilized for quantification of pTDP- 43. 
DL approaches were statistically significantly superior to traditional approaches in detecting both pTau (J) and TDP- 43 (K)

F I G U R E  3  Deep learning (DL) semantic segmentation results of phosphorylated Tau (pTau) stained resilient (A) and demented (C) cases. 
DL annotation of pTau staining is shown in panels B and D for the resilient and demented cases, respectively. pTau tangles are identified in 
blue with dark blue representing areas of low confidence and light blue representing tangles of high confidence, and neurites are shown in red. 
Fourteen cases, seven matched pairs of demented and resilient cases, were quantified using a traditional approach, optical density * percent 
staining method (E). Deep learning annotated neurites (F) and tangles (G) show that the number of pTau tangles are statistically significantly 
lower in the resilient compared to the demented cases 
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and qualitatively assess the types of NFTs on WSIs 
(10). The sensitivity and positive predictive value of the 
algorithm output ranged from 0.72 to 0.92 but, unlike 
this study, qualitative results were not provided. Both 
of these studies differed from our approach in that the 
training slides were first divided into smaller patches 
containing the region of interest centrally followed by 
experts’ annotations, which could have artificially in-
flated estimates of the performance of the model. In 
contrast, we first annotated the WSIs, and the slides 
were then divided randomly. These steps likely in-
crease the model's generalizability and performance in 
a routine diagnostic setting without the need for any 
preprocessing of the images.

NFTs are one of the hallmarks of AD (along with Aβ 
plaques); pTau is a key component of NFT and thus in 
the pathophysiology of AD (36). Although both pTau 
and Aβ pathology are necessary for the development 
of AD dementia, pTau is more closely associated with 
neurodegeneration and cognitive decline than Aβ (37). 
Phosphorylated TDP- 43 is a prominent component of 
the aggregates seen in most forms of amyotrophic lateral 
sclerosis (ALS) and approximately half of frontotemporal 
lobar degeneration (FTLD) cases; but pTDP- 43 has also 
been seen in Huntington's disease, chronic traumatic en-
cephalopathy (CTE), and is associated with more rapid 
cognitive decline in people with AD (38). Neither pTau 
nor pTDP- 43 proteinopathy is specific to AD, yet both 
are associated with cognitive decline. The term “patho-
logic synergy” has been used to describe how misfolding 
proteins can trigger related protein accumulation and 
accelerate damage to the surrounding tissue (39). The 
absence of pTDP- 43 seems to be a notable feature of the 
brains of AD resilient participants and may be a key to 
understanding their unique clinical presentation.

While pTau and pTDP- 43 are clearly important fac-
tors in AD and related dementias, we currently lack a 
standard method of quantifying their tissue involvement 
beyond categorical or semi- quantitative measures. In as-
sessing the severity of NFT, the widely accepted Braak 
score only allows six categories to define the extent of 
NFT distribution, without a continuous linear quanti-
fication of the disease burden, although novel methods 
such as Histelide have shown promise for the quanti-
fication of pTau in formalin- fixed tissue sections (40). 
Assessing the severity of pTDP- 43 lesions can also be 
challenging due to general low levels of tissue burden 
even in advanced cases. Reliable detection of these low 
levels of tissue burden requires sensitive approaches for 
quantitation. As we have shown, traditional quantifica-
tion methods were significantly inferior to deep learn-
ing algorithms in identifying and quantifying pTDP- 43 
lesions. The importance of pTDP- 43 lesions in dementia 
and resilient populations is becoming more recognized 
(6, 23, 41) and deep learning approaches similar to ours 
may be required for quantification to help us better 

understand the role of TDP- 43 in aging and cognitive 
decline.

The deep learning model described here was able to 
subclassify and quantitate pTau burden into neurites and 
tangles, demonstrating significantly less NFTs tangles, 
but not pTau neurites, in a small cohort of resilient par-
ticipants compared to those with AD- dementia. pTau 
neurites indicate the presence of neurons containing dif-
fuse pTau within their processes. pTau neurites are often 
located around amyloid plaques, as the initial microtu-
bule disruption is thought to be Aβ- induced and followed 
by misfolding and aggregation of hyperphosphorylated 
tau (42). Modeling suggests the misfolded pTau no longer 
provides necessary structural support to axonal micro-
tubules and eventually aggregates into pretangle lesions 
and NFTs in the soma of the neuron (43). Although we 
found that resilient individuals show similar amounts 
of diffuse intracellular pTau (neurites) as patients with 
dementia, our results suggest that pTau pathology in 
the resilient population does not appear to manifest as 
NFTs to the same degree. The role of TDP- 43 in this 
process adds an additional layer of complexity; TDP- 43 
pathology is strongly associated with dementia, but the 
relationship between pTau and TDP- 43 in the pathogen-
esis and clinical manifestations of AD, including causal 
relationships and direct versus indirect interactions is 
not clearly elucidated. A simple possibility is that TDP- 
43 pathology influences the formation of NFTs, or vice 
versa, in AD.

Sonnen et al. reported that, although 47% of cogni-
tively normal (CN) individuals in their clinicopathologic 
correlation study of non- demented elderly brain do-
nors had CERAD moderate or frequent neuritic plaque 
scores, only 6% of the CN participants had severe (stage 
V or VI) Braak stage, supporting the finding from mul-
tiple studies that NFT pathology, rather than NPs, is 
the primary predictor of cognitive impairment (2). The 
Honolulu- Asia Aging Study (HAAS) cohort study re-
ported that participants who only had neocortical NP 
lesions did not have higher Braak stage or worse cogni-
tive function than the group with neither NPs nor NFTs. 
Those with both pathologies showed a higher frequency 
of dementia, suggesting that the combination of NPs and 
NFTs may be the major contributor to cognitive dysfunc-
tion (44). Another study of the ACT population reported 
several factors associated with resilience such as college 
education, higher brain weight, and fewer neuropatho-
logic findings— specifically microinfarcts, the absence 
of Braak stages V and VI, and hippocampal sclerosis. 
After adjusting for these factors, the amount of NPs 
was not predictive of cognitive resilience. However, this 
study's definition of resilience was less strict than what 
we used in our study, and subjects with intermediate AD 
pathology defined as Braak stages III– V and CERAD 
scores of moderate were included in the resilient group 
in that previous report (4).



8 of 10 |   LEE Et aL.

Our study is consistent with the prior literature which 
has shown that in AD, NFTs correlate best with cognitive 
decline. This suggests that while there may be significant 
phosphorylation of tau occurring in the brain as an early 
change in AD, prior to the onset of cognitive decline, it is 
the progression of the phosphorylated tau to tangles that 
is associated inversely with resilience. It should be kept 
in mind, however, that these are only associative stud-
ies and alternative hypotheses exist, including that fewer 
NFTs are identified due to a greater loss of neurons. 
There are still many unanswered questions with respect 
to the relationship between neuritic and NFT tau, tau 
progression, and potential regression, and the influence 
of TDP- 43 and Aβ on pTau formation and progression 
within cells and their processes. However, these results 
demonstrate that machine- learning approaches have the 
potential to better quantify and differentiate pathology 
across regions of the brain, and between individuals, to 
more accurately characterize pathological burden and 
AD stage than traditional methods.

Several limitations exist in our study. Our study had 
a small sample size and the training data originated 
from the ACT autopsy cohort. All of our histopathol-
ogy evaluations used the same staining protocols but 
they were stained in different batches at varying times 
using standard negative and positive controls, support-
ing the generalizability of our algorithm to other archi-
val and prospective cohort studies. In addition, all the 
slides were scanned using the same platform. A previous 
study showed that the level of staining background may 
interfere with the performance of deep learning models 
(10); therefore additional research studies with larger 
datasets and different staining protocols for pTau are 
needed to improve our model generalizability. In addi-
tion, although we did not compare the deep learning tau 
quantification results to grading by expert neuropathol-
ogists, we aimed to demonstrate that the deep learning 
approach could be used to quantify AD neuropatho-
logic lesions that have previously required human expert 
grading and are difficult to quantify. Finally, deep learn-
ing models are known to be sensitive to subtle artifacts 
that human experts are not. A qualitative assessment of 
the deep learning segmentations did not show sensitivity 
to local tissue distortions on the slide (Figure S3).

In summary, we successfully trained deep learning 
models to quantify pTau and pTDP- 43 burden in the 
brain in a case control cohort focused on cognitive resil-
ience to ADNC. We report that NFTs, but not pTau neu-
rites, differentiate resilient from AD- dementia research 
participants, highlighting potential differences in AD 
pathologic progression and accentuating the potential 
utility of whole slide image analysis and deep learning 
to more accurately classify disease progression in tissue- 
based studies. Finally, this study adds evidence support-
ing the value of deep learning approaches for discovery 
of novel pathological patterns, and hence insights into 
pathogenesis, in AD and related dementias.
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FIGURE S1 Training curves of deep learning algorithms to 
detect phosphorylated Tau (pTau) lesions. x- axis, number 
of epochs used in training; y- axis, training and validation 
loss. Training was stopped at the lowest validation point 
and carried forward for the quantification of the slides

FIGURE S2 Training curves of deep learning algorithms 
to detect phosphorylated TDP- 43 (pTDP- 43) lesions.  
x- axis, number of epochs used in training; y- axis, train-
ing and validation loss
FIGURE S3 Qualitative assessment of artifacts. A low 
magnification view of an area with a vertical shear tissue 
distortion is shown on the left with the corresponding 
deep learning segmentation on the right
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