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Abstract

Objectives

A detailed understanding of the metabolic processes governing rapid growth in early life is

still lacking. The aim of this study was to investigate the age-related metabolic changes in

healthy children throughout early childhood.

Methods

Healthy children from a birth cohort were enrolled in this study from birth through 4 years of

age. Urinary metabolites were assessed at 6 months, and 1, 2, 3, and 4 yr of age by using
1H-nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistical

analysis including principal components analysis (PCA) and partial least-squares discrimi-

nant analysis (PLS-DA). Metabolic pathway analysis was performed using the MetPA web

tool.

Results

A total of 105 urine samples from 30 healthy children were collected and analyzed. Metabo-

lites contributing to the discrimination between age groups were identified by using super-

vised PLS-DA (Q2 = 0.60; R2 = 0.66). A significantly higher urinary trimethylamine N-oxide
(TMAO) and betaine level was found in children aged 6 months. Urinary glycine and gluta-

mine levels declined significantly after 6 months of age and there was a concomitant com-

pensatory increase in urinary creatine and creatinine. Metabolic pathway analysis using

MetPA revealed similar nitrogen metabolism associated energy production across all ages

assessed. Pathways associated with amino acid metabolism were significantly different
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between infants aged 6 months and 1 year, whereas pathways associated with carbohy-

drate metabolism were significantly different between children at ages 2 and 3 years.

Conclusions

Urine metabolomics ideally represents dynamic metabolic changes across age. Urinary

metabolic profiles change significantly within the first year of life, which can potentially pro-

vide crucial information about infant nutrition and growth.

Introduction
Metabolism refers to all biological processes and pathways in the body. Enzymes play a key
role in many metabolic processes and functional changes. Consequently, genetic mutation of
genes encoding enzymes can lead to problems in these pathways [1]. Growth in early life not
only involves increasing the length and weight of a body, but is also accompanied by a complex
remodeling of the immune system, endocrine system, and metabolism [2,3]. The incidence of
certain diseases varies with age in children, including atopic diseases, hematological malignan-
cies, autoimmune diseases, and diabetes. Understanding the complexity of age-related changes
in metabolic profiles during early life is of utmost importance for the management of health
and disease in childhood [4,5]. A detailed understanding of the metabolic processes during
early childhood will likely provide much needed clinical insights.

Metabolic profiling provides a new opportunity to explore the global metabolic effects of
many conditions on complex biological systems [6,7]. High resolution 1H-nuclear magnetic
resonance (NMR) spectroscopy is widely used to quantitatively analyze metabolic profiles, due
to its reliability and relatively straightforward sample preparation [8,9]. The metabolites in
urine provide a fingerprint for each individual, containing significant information about age,
sex, lifestyle, dietary intake, and disease history [10–12]. Metabolites that are correlated with
age have been reported in the pediatric population, and include trimethylamine N-oxide
(TMAO), citrate, creatine, glycine, succinate, acetone and creatinine [13,14]. However, metab-
olites definitely associated with the growth spurt during early childhood have not yet been
elucidated.

The field of pediatric metabolomics is still being pioneered [15,16]. It is tremendously
important to understand the dynamic metabolic changes that occur during infancy and child-
hood to further metabolomic research in pediatrics. The major aim of this study was to identify
the determinants of urinary metabolic profiles in healthy children from a birth cohort, aged six
months through to 4 years. The metabolite changes in urine associated with the sex of the
child, breastfeeding patterns and age were assessed, and the likely metabolic pathway function-
ing was also examined.

Methods

Study population
A time-series study was designed to investigate the urinary metabolic profiles of healthy chil-
dren from six months of age to 4 years. The urine samples were collected from healthy children
that had been recruited as part of a birth cohort (the PATCH study) that was launched in 2007
to investigate the epidemiology and predictive factors of asthma and allergies in Taiwanese
children. Detailed descriptions of subject recruitment and data collection have been reported
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previously [17,18]. Children without a personal history of asthma infections, or other atopic
conditions were diagnosed in fifty-eight children for a 4-year follow-up. Thirty of the fifty-
eight healthy children having urine samples taken over at least 3 time-points during the follow-
up period were enrolled. This study was approved by the Institutional Review Board of Chang
Gung Memorial Hospital (No. 102-1842C). Written informed consent was obtained from the
parents or guardians of all study subjects.

Definition of breastfeeding history
Detailed information on breastfeeding was obtained by well-trained investigators at 6 months
of age. All children received supplemental food after 6 months of age. Infants who were fed
with breast milk only, without additional food or drink, except water, were considered as the
exclusive breastfeeding (EBF) set. Infants who were fed with formula only, without additional
food or drink, except water, were defined as the formula feeding set. The set of partial breast-
feeding (PBF) infants were those whose mother provided formula or other supplemental foods
in addition to breast milk.

Sample preparation
Spot urine samples collected in the morning at 6 months (n = 21), and 1 (n = 23), 2 (n = 20), 3
(n = 18) and 4 (n = 23) years of age were selected and examined. Urine samples were stored at
-80 degree Celsius in aliquots until required. For each use, an aliquot was thawed, used and any
remnants discarded after completion of the experiment. After thawing, to stabilize the pH
value across samples prior to spectrum acquisition, 900 μL of urine was mixed with 100 μL of
phosphate buffer (1.5 M KH2PO4, pH 7.4) in deuterium water which containing 0.04% 3-(tri-
methylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP) as an internal chemical shift reference
standard, 2 mMNaN3 as an inhibitor of bacterial contamination. Each sample was vortexed
for 20 s and subsequently centrifuged at 12000g for 30 min at 4°C. After centrifugation, a
650 μL aliquot of the supernatant was transferred to a standard 5 mm NMR tube for analysis.

1H–Nuclear Magnetic Resonance (NMR) spectroscopy
1H-NMR spectra were acquired at 300K on a Bruker Avance 600 MHz spectrometer (Bruker-
Biospin GmbH, Karlsruhe, Germany) equipped with a 5 mm CPTCI 1H cryoprobe at Chang
Gung Healthy Aging Research Center, Taiwan. For each spectrum, 64 scans were collected into
64K computer data points using a spectral width of 10,000 Hz (10 ppm) during the relaxation
time of 4 s. All 1D spectra were applied for analysis before Fourier transformation with zero-
filled to exponential line-broadenings of 0.3 Hz. The acquired 1H-NMR spectra were manually
phased, baseline-corrected, and referenced to the chemical shift of TSP (δ 0.0 ppm) using Top-
Spin 3.2 software (Bruker BioSpin, Rheinstetten, Germany).

NMR data processing and analysis
The raw 1H-NMR spectra were imported into AMIX version 3.9.12 (Bruker BioSpin, Rhein-
stetten, Germany) for spectral bucket, spectral region exclusion and spectral normalization.
1H-NMR spectra were aligned on the TSP peak and normalized on the spectral area for calcu-
lating the concentration of each metabolite in the spectral peaks of each metabolite. The
1H-NMR spectra were subdivided into integrated regions of 0.01 ppm corresponding to the
region of δ 0–10 ppm. Regions containing residual water (δ 4.745–4.845 ppm) and urea
(δ 5.465–6.195 ppm) were excluded from the data set to avoid spectral interference of residual
water and urea. The normalized 1H-NMR bucket data were then uploaded to MetaboAnalyst
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3.0 (http://www.metaboanalyst.ca) for partial least squares-discriminant analysis (PLS-DA), to
identify metabolites contributing to the discrimination between age groups. The spectral vari-
ables were mean-centered and scaled to unit variance, and 10-fold internal cross-validation
was performed to evaluate the quality of the resulting statistical models by considering the
diagnostic measures R2 and Q2 [19], describing the endpoint variation captured in regression
model, and the variation reproduced in cross-validation, respectively. The cross validation
revealed a Q2 value of greater than 0.5 is usually considered to be a good classification model
[20]. The ratio Q2/R2 is a measure of cross-validation reproducibility and Q2/R2 above 0.5 are
considered indicative of relevant associations [21]. A permutation test can evaluate whether
the specific classification of the individuals in the two designed groups is significantly better
than any other random classification in two arbitrary groups [22]. Differences by a classifying
variable are compared to a distribution of differences in randomly selected subsets of the data.

Metabolites were identified using Chenomx NMR Suite 7.5 professional software (Chenomx
Inc., Edmonton AB, Canada). Hierarchical clustering was performed and heat maps were cre-
ated based on the Pearson distance measure and the Ward clustering algorithm, displayed for
metabolites selected by analysis of variance (ANOVA) using a significance level of P< 0.05,
and post-hoc analysis of Fisher’s LSD. The fold changes in metabolites between age groups
were performed by the non-parametric Mann-Whitney test using MetaboAnalyst web server.
Pathway analysis of the metabolites was performed with Metabolomics Pathway Analysis
(MetPA; http://metpa.metabolomics.ca/MetPA/faces/Home.jsp). The false discovery rate
(FDR) was used as a way to limit the number of false positive results given the multiple com-
parison issues posed by many metabolites in this study.

Results

Population characteristics
A total of 105 urine samples from 30 healthy children, with no diagnosed diseases over a 4-year
follow-up, were used for analysis. Population characteristics and the growth status are shown in
Table 1. There were 17 boys and 13 girls with an average gestational age of 37.7 ± 1.8 weeks, and
birth weight of 2.9 ± 0.5 kg. Breastfeeding history was carefully reviewed until 6 months of age,
and results were stratified into three groups: exclusive breastfeeding (n = 13, 43%), partial breast-
feeding (n = 13, 43%) and formula feeding (n = 4, 13%). There was a growth spurt with 2.7-fold
increase in weight and 1.4-fold increase in height at 6 months of age as compared to at birth.

Identification of metabolite sets between sex, breastfeeding patterns and
age groups
1H-NMR data of urine samples collected at different years of age were analyzed (See S1 Data-
set). One thousand buckets varied across age groups, of which 247 buckets corresponded to 76
known metabolites (S1 Table). Unsupervised principal components analysis, followed by
examination of the first three principal components, failed to separate groups clearly based on
the sex of child, patterns of breastfeeding, or age groups. The PLS-DA parameters and permu-
tation test used for distinguishing between the sexes, patterns of breastfeeding, and age groups
are shown in Tables 2 and 3 respectively. Relevant associations (Q2/R2 > 0.5) were found
between the sets with different patterns of breastfeeding, and between the different age groups.
Metabolites identified in sets with different patterns of breastfeeding, and the different age
groups, selected by using the cutoff of PLS-DA Variable Importance in Projection (VIP)
score> 1.5 and a P value< 0.05 in the fold change of expression level, are shown in Tables 4
and 5 respectively. The metabolic profiles of urine changed significantly with breastfeeding
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patterns and age within the first year of life. However, a good classification model (Q2 > 0.5)
with significant cross-validated value (P< 0.05 by permutation test) was only found between
age groups, which were then studied further.

Quantification of urinary metabolites across different years of age
Metabolites distinguishing among age groups were identified by using supervised PLS-DA
(Q2 = 0.60; R2 = 0.66). A total of 20 metabolites with VIP scores greater than 1.5 with a P
value< 0.05 by ANOVA were identified across different years of age. Fig 1 shows a heat map
of metabolites varied significantly across age groups by using Hierarchical Clustering. The fold
changes from the overall mean concentration for different years of age are shown using color-

Table 1. Population characteristics and growth of 30 healthy children during a 4-year follow-up.

Age

Variable Birth 6 Months 1 Years 2 Years 3 Years 4 Years

Urine samples (n) 21 23 20 18 23

Sex, male 17 (57%)

Maternal age (yr) 32.4 ± 4.4

Gestational age (wk) 37.7 ± 1.8

Breastfeeding until 6
mo

Exclusive 13 (43%)

Partial 13 (43%)

Formula 4 (13%)

Weight, kg
(percentile)

2.9 ± 0.5
(36.0 ± 26.9)

7.7 ± 1.0
(50.8 ± 35.1)

9.2 ± 1.1
(46.7 ± 28.1)

12.1 ± 1.7
(54.3 ± 30.9)

14.9 ± 1.9
(58.9 ± 30.0)

16.4 ± 2.6
(50.8 ± 31.4)

Height, cm
(percentile)

48.2 ± 4.2
(56.1 ± 29.9)

67.1 ± 3.1
(53.3 ± 33.3)

74.9 ± 2.8
(50.1 ± 33.3)

86.9 ± 4.0
(49.1 ± 30.1)

95.4 ± 3.4
(40.6 ± 27.9)

102.2 ± 4.6
(45.1 ± 32.5)

BMI, kg/m2

(percentile)
12.8 ± 3.0
(33.7 ± 28.1)

17.2 ± 1.3
(49.1 ± 29.1)

16.3 ± 1.4
(44.5 ± 30.7)

15.9 ± 2.0
(52.1 ± 34.9)

16.3 ± 1.4
(68.8 ± 29.8)

15.6 ± 2.0
(50.7 ± 32.2)

yr, year; wk, week; mo, month; kg, kilograms; cm, centimeters; BMI, body mass index.

Data shown are mean ± SD or number (%) of subjects as appropriate. Percentile curves were calculated using the World Health Organization (WHO)

charts.

doi:10.1371/journal.pone.0149823.t001

Table 2. PLS‐DA parameters and permutation test for distinguishing between gender and patterns of breastfeeding.

Group
Numbers

PLS‐DA parameters Group
Numbers

PLS‐DA parameters

Age (yr) (male–female) Componentsa Q2 R2 Q2/ R2 Ppermutation
b (EBF–PBF) Componentsa Q2 R2 Q2/ R2 Ppermutation

b

0.5 13–8 1 -0.18 0.49 -0.37 0.19 9–10 1 0.34 0.66 0.52 0.38

1 16–7 1 0.09 0.64 0.14 0.45 8–12 1 0.17 0.67 0.25 0.14

2 14–6 1 -0.61 0.67 -0.79 0.73 5–11 1 -0.74 0.85 -0.87 0.99

3 11–7 1 -0.52 0.46 -1.13 0.81 4–11 1 -0.86 0.45 -1.91 0.71

4 13–10 1 -0.06 0.56 -0.11 0.47 8–11 1 -0.26 0.53 -0.49 0.80

PLS-DA, partial least squares-discriminant analysis; yr, year; Q2, predictive capability; R2, correlation coefficients; EBF, exclusive breastfeeding; PBF,

Partial breastfeeding.
aThe number of components based on Q2 indicates the best classifier of PLS-DA using a 10-fold cross-validation method.
b100 random permutations were performed.

doi:10.1371/journal.pone.0149823.t002
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Table 3. PLS‐DA parameters and permutation test for distinguishing between age groups.

PLS‐DA parameters

Age (yr) Group Numbers Componentsa Q2 R2 Q2/R2 Ppermutation
b

0.5–1 21–23 1 0.682 0.756 0.90 0.01

1–2 23–20 2 0.119 0.750 0.16 0.04

2–3 20–18 3 0.086 0.803 0.11 0.24

3–4 18–23 1 -0.243 0.448 -0.54 0.41

PLS-DA, partial least squares-discriminant analysis; yr, year; Q2, predictive capability; R2, correlation coefficients.
aThe number of components based on Q2 indicates the best classifier of PLS-DA using a 10-fold cross-validation method.
b100 random permutations were performed.

doi:10.1371/journal.pone.0149823.t003

Table 4. The VIP score and fold change of metabolites significantly differentially expressed between exclusive and partial breastfeeding at differ-
ent years of age.

Age 0.5 Age 1 Age 2 Age 3

Metabolites Chemical
shift

VIP
score

Fold
change

P VIP
score

Fold
change

P VIP
score

Fold
change

P VIP
score

Fold
change

P

Creatine 3.935(s) 6.86 0.55 0.010 6.97 0.76 0.038 1.96 1.08 0.827 3.90 0.88 0.679

Glycine 3.575–3.565
(s)

4.66 1.28 0.013 5.16 1.30 0.016 5.42 0.79 0.090 3.01 0.88 0.254

Fucose 1.265–1.246
(d)

3.65 1.49 0.004 2.31 1.16 0.025 - 1.01 0.827 - 0.96 0.953

Glutamine 2.465–2.425
(m)

3.45 1.17 0.022 - 1.03 0.824 - 1.01 0.510 - 1.00 1.000

Hippuric acid 7.575–7.545
(n)

3.41 0.49 0.006 3.32 0.61 0.004 4.24 1.52 0.320 5.31 0.58 0.859

Lysine 1.915–1.865
(m)

2.74 0.87 0.017 - 0.99 1.000 2.27 0.92 0.221 - 0.99 1.000

N-Acetylglucosamine 2.055–2.045
(m)

2.73 1.14 0.028 3.46 1.17 0.025 - 1.01 0.913 - 0.95 0.953

Methylmalonic acid 1.235–1.226
(d)

2.45 1.30 0.022 - 1.08 0.295 - 0.93 0.510 1.98 0.89 0.310

Carnitine 3.235–3.225
(s)

2.20 0.81 0.028 3.28 0.79 0.067 - 1.10 0.743 - 0.98 0.440

3-Methyl-2-oxovaleric
acid

1.115–1.106
(d)

2.01 0.65 0.006 1.84 0.76 0.020 - 1.11 0.510 2.35 1.41 0.099

3-Hydroxyisovaleric
acid

2.365(s) 1.78 1.23 0.006 - 1.12 0.131 - 0.97 0.827 - 0.96 0.594

Acetic acid 1.925(s) 3.68 1.75 0.079 7.44 2.69 0.020 3.37 0.80 0.267 - 1.06 1.000

Formic acid 8.465–8.455
(s)

1.50 1.36 0.356 2.96 1.63 0.010 2.38 0.69 0.145 - 0.91 0.768

Galactose 5.285–5.276
(d)

- 0.86 0.497 2.36 0.50 0.020 1.63 1.59 0.090 1.81 1.69 0.371

Pantothenic acid 0.895(s) - 0.96 0.549 1.59 0.80 0.031 - 1.14 0.267 - 1.15 0.254

Hypoxanthine 8.215–8.196
(s)

- 0.77 0.113 - 1.03 0.552 2.15 1.50 0.013 - 0.89 0.594

2-Phenylpropionic
acid

1.415(d) - 0.80 0.017 - 0.84 0.503 - 1.26 0.267 2.60 1.54 0.019

VIP, Variable Importance in Projection; s, singlet; d, doublet; m, multiplet; n, nonet.

VIP scores were obtained from PLS-DA model and a VIP score < 1.5 was shown as “-”.

Fold change was calculated by dividing the value of metabolites in children receiving exclusive breastfeeding by partial breastfeeding.

All P values < 0.05, which is in bold, are significant.

doi:10.1371/journal.pone.0149823.t004
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codes. Fourteen metabolites decreased their concentration in urine with increasing age (galac-
tose, lysine, lactose, formic acid, trimethylamine N-oxide (TMAO), N,N-dimethylglycine, beta-
ine, lactic acid, citric acid, dimethylamine, N-acetylglutamic acid, glutamine,
1-methylnicotinamide and succinic acid). In contrast, six metabolites appeared to increase
their concentration in urine with increasing age (creatinine, 3-aminoisobutyric acid, acetic
acid, N-phenylacetylglycine, creatine and hippuric acid), as shown in Fig 2.

Metabolic pathway and function analysis
Metabolites selected by filtering the dataset using the cutoff of PLS-DA VIP score> 1.5
between the different age groups were analyzed using MetPA, which is a free web-based tool

Table 5. The VIP score and fold change of metabolites significantly differentially expressed between age groups.

Age 0.5–1 Age 1–2 Age 2–3 Age 3–4

Metabolites Chemical
shift

VIP
score

Fold
change

P VIP
score

Fold
change

P VIP
score

Fold
change

P VIP
score

Fold
change

P

Trimethylamine N-
oxide

3.275–
3.265(s)

10.99 0.52 <0.001 4.71 0.87 0.142 1.78 1.08 0.393 4.01 1.17 0.041

Creatinine 3.045(s) 8.78 1.56 <0.001 - 1.04 0.352 - 0.81 0.176 - 1.14 0.928

Creatine 3.935(s) 7.48 2.04 <0.001 - 1.04 0.971 - 0.98 0.762 - 1.01 0.726

Betaine 3.905(s) 5.53 0.53 <0.001 1.51 0.95 0.055 - 0.97 0.158 1.83 1.22 0.328

Citric acid 2.575–
2.515(d)

4.15 0.79 <0.001 - 0.99 0.782 2.92 0.93 0.426 - 0.97 0.687

N,N-Dimethylglycine 2.935–
2.925(s)

3.45 0.57 <0.001 1.85 0.88 0.178 2.01 0.88 0.196 - 1.03 0.474

Galactose 3.515–
3.485(dd)

2.90 0.80 <0.001 - 0.99 0.838 - 0.93 0.149 - 0.96 0.668

N-
Phenylacetylglycine

7.375–
7.355(m)

2.89 1.85 <0.001 2.18 1.15 0.462 2.96 1.20 0.217 2.45 0.86 0.256

Dimethylamine 2.715(s) 2.75 0.47 <0.001 - 0.93 0.352 - 1.03 0.099 - 1.01 0.886

Glycine 3.575–
3.565(s)

2.57 0.82 0.002 2.21 1.09 0.240 2.10 0.90 0.346 1.57 1.06 0.668

Hippuric acid 7.575–
7.545(n)

2.16 1.79 0.008 3.38 1.35 0.034 2.46 1.25 0.553 - 1.01 0.668

Glutamine 2.465–
2.425(m)

1.81 0.88 0.007 1.55 0.96 0.365 1.91 0.93 0.228 2.07 1.07 0.316

N-
Acetylglucosamine

2.055–
2.045(m)

1.79 0.88 0.008 2.15 0.93 0.142 - 0.96 0.718 - 1.04 0.507

Lysine 1.915–
1.865(m)

1.50 0.92 0.027 - 0.97 0.462 2.03 1.08 0.066 - 0.97 0.472

Carnitine 3.235–
3.225(s)

- 1.09 0.167 3.39 0.84 0.044 - 1.05 0.675 3.42 1.26 0.107

Formic acid 8.465–
8.455(s)

- 0.85 0.316 2.40 0.70 0.028 - 0.83 0.082 - 1.00 0.706

Lactose 4.705–
4.685(d)

- 0.67 <0.001 1.74 0.77 0.023 3.66 3.23 0.005 2.80 0.47 0.948

3-Methylhistidine 7.015–
7.005(s)

- 1.37 0.042 1.51 1.32 0.046 - 0.99 0.317 - 1.00 0.687

Acetic acid 1.925(s) - 1.33 0.304 - 0.99 0.507 1.56 0.87 0.015 - 1.07 0.256

VIP, Variable Importance in Projection; s, singlet; d, doublet; dd, doublet of doublets; m, multiplet; n, nonet.

VIP scores were obtained from PLS-DA model and a VIP score < 1.5 was shown as “-”.

All P values < 0.05, which is in bold, are significant.

doi:10.1371/journal.pone.0149823.t005
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Fig 1. Heat map of 20 metabolites selected by the PLS-DA VIP score > 1.5 across 6 months to 4 years of age. Each row represents a urine sample and
each column represents the expression profile of a metabolite across age groups. The changes of x-fold standard deviation from the overall mean
concentration for different years of age are shown in a color-coded way. Blue color represents a decrease, and red color an increase. PLS-DA, partial least
squares-discriminant analysis; VIP, Variable Importance in Projection.

doi:10.1371/journal.pone.0149823.g001
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that combines results from powerful pathway enrichment analysis with the topology analysis.
Metabolites with concentrations that had altered were mapped onto likely relevant pathways,
and were used to explain the metabolism. Metabolic pathway analysis with MetPA by filtering
the dataset using a FDR-adjusted P value< 0.05 revealed that metabolites identified between
age groups were all important for energy and were responsible for nitrogen metabolism
(Table 6). Metabolic pathways associated with aminoacyl-tRNA biosynthesis were significantly
different between the ages of 6 months and 1 year, and between the ages of 3 years and 4 years.
In addition, the metabolism of the amino acids glycine, serine, and threonine was significantly
different between the ages of 6 months and 1 year. In contrast, metabolism of galactose, a car-
bohydrate, was significantly different between the ages of 2 and 3 years.

Discussion
Metabolomics involves the systematic study of endogenous small molecules that characterize
the metabolic pathways of biological systems [23]. The first five years of a child’s life are a time
of incredible growth and learning. It is believed that the age-dependent changes reflected in
their metabolic profiles demonstrate the rapid growth occurring in early life. This study pro-
vides an overview of the dynamic metabolic changes from 6 months to 4 years of age, which
potentially provide information on dietary patterns and rapid physical growth during early
childhood.

As infants and children progress through a series of growth stages, the child’s nutrient
needs correspond to these changes in growth rate. Parents should provide a diet with a wide
variety of foods suited to the child’s age. In Taiwan, until 6 months of age, milk remains the pri-
mary food source. After this time, complementary or protein-rich solid foods are gradually
added. Intake of carbohydrate-based staple foods such as rice, bread, and noodles mainly starts

Fig 2. Representative 600 MHz 1H-NMR spectra of urine showing the metabolite signals of 20 age-relatedmetabolites (δ1–9).With increasing age,
red up arrow indicates a detected increase in metabolite concentration, whereas down blue arrow indicates a detected decrease in metabolite concentration.
1, 3-Aminoisobutyric acid; 2, acetic acid; 3, creatinine; 4, creatine; 5, N-phenylacetylglycine; 6, hippuric aicd; 7, lactic acid; 8, N-acetylglutamic acid; 9,
succinic acid; 10, glutamine; 11, citric acid; 12, dimethylamine; 13,N,N-dimethylglycine; 14, Trimethylamine N-oxide; 15, galactose; 16, lysine; 17, betaine;
18, lactose; 19, formic acid; 20, 1-methylnicotinamide.

doi:10.1371/journal.pone.0149823.g002
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from the age of 1. In this study, the metabolic profiles associated with breastfeeding patterns
appear to be significantly different at 6 months of age. Furthermore, amino acid and carbohy-
drate metabolisms changed significantly within in the first and second years respectively.
These findings indicate that metabolomics can be used to analyze the dietary patterns charac-
terized by different nutrition regimes in childhood.

In infancy, growth is rapid and affects different parts of the body at different rates [24]. An
infant generally doubles birth weight by age 4 to 6 months and triples the birth weight within 1
year of birth, as was seen in this study [25]. In addition, dietary protein provides an important
anabolic drive for the spurt of linear bone growth during infancy [26]. An increase in body
mass increases the basal metabolic rate, or the amount of calories the body burns while at rest.
In this study, urinary metabolites significantly changed within the first year. Metabolites result-
ing from nitrogen metabolism and energy production were identified throughout all of early
childhood. These findings may support the idea that an infant needs more nutrition, in relation
to size, height, and weight, than a preschool-age child needs.

Nitrogen metabolism and nitrogen compounds are important and essential components in
the life-cycle of living organisms [27,28]. During childhood growth, the diet should provide
adequate energy sources and assist nitrogen retention in the body as protein, resulting in
weight gain commensurate with age. Muscle mass is the major reservoir of protein in human
body, and changes in muscle mass can be detected in the urine as an altered nitrogen balance.
Glycine is one of the non-essential amino acids, and is known to be required for the production
of muscle tissue [29]. Glutamine is an important component of muscle protein, and helps
repair and build muscle [30]. In this study, urinary glycine and glutamine levels declined signif-
icantly within in the first year, which may be interpreted, perhaps, by their use in increased
growth of skeletal muscle tissue during infancy.

Creatinine is a chemical waste molecule of muscle metabolism and is excreted in urine at a
relatively constant rate through glomerular filtration [31,32]. Creatinine is produced from crea-
tine, a molecule of major importance for energy production in muscles. In this study, urinary
creatine and creatinine levels appeared to increase with increasing age, which is consistent with

Table 6. Metabolic pathway and function analysis between age groups.

Age Pathway Name Total Hits Metabolites Raw P FDR Impact Function

0.5–1 Glycine, serine and
threonine metabolism

48 4 Glycine, Betaine, Creatine, N,N-
Dimethylglycine

<0.001 0.017 0.246 Amino acid

Aminoacyl-tRNA
biosynthesis

75 4 Histidine, Glutamine, Glycine, Lysine 0.001 0.034 0.056 Genetic Information
Processing; Translation

Methane metabolism 34 3 Trimethylamine N-oxide, N,N-
Dimethylglycine, Glycine

0.001 0.034 0.001 Energy

Nitrogen metabolism 39 3 Histidine, Glutamine, Glycine 0.002 0.038 0.000 Energy

1–2 Nitrogen metabolism 39 5 Formic acid, Histidine, Taurine,
Glutamine, Glycine

<0.001 0.002 0.000 Energy

2–3 Nitrogen metabolism 39 4 Histidine, Taurine, Glutamine, Glycine <0.001 0.033 0.000 Energy

Galactose metabolism 41 4 Galactose, Lactose, Galactitol,
Glucose 6-phosphate

<0.001 0.033 0.346 Carbohydrate

3–4 Nitrogen metabolism 39 4 Histidine, Taurine, Glutamine, Glycine <0.001 0.014 0.000 Energy

Aminoacyl-tRNA
biosynthesis

75 5 Histidine, Glutamine, Glycine, Lysine,
Threonine

<0.001 0.014 0.056 Genetic Information
Processing; Translation

Total is the total number of compounds in the pathway; the Hits is the actually matched number from the user uploaded data; the Raw P is the original P

value calculated from the enrichment analysis; the false discovery rate (FDR) is the portion of false positives above the user-specified score threshold; the

Impact is the pathway impact value calculated from pathway topology analysis.

doi:10.1371/journal.pone.0149823.t006
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the increase in muscle metabolism needed for a broad range of physical activities following
early infancy. Generally, urinary creatinine is often used to adjust for urine analyte concentra-
tions because of its relative stability within an individual. However, it must be emphasized that
a strict assessment of the normal reference values of urinary creatinine based on the subjects’
age is considered a crucial step to investigate metabolic diseases in children using urine
samples.

Trimethylamine N-oxide (TMAO), produced by bacteria in the intestine, is a product of the
oxidation of trimethylamine. The blood level of TMAO increases after consuming foods con-
taining carnitine in red meat [33] or after consuming lecithin in soy, eggs and milk [34,35].
Lecithin is the major dietary source of choline. Choline and its metabolites, such as betaine, can
serve as a source of methyl groups required for numerous cellular functions such as DNA
methylation, phosphatidylcholine biosynthesis, and protein biosynthesis [36]. In this study, a
significantly higher urinary TMAO and betaine level was found in children at age 6 months, at
which age milk is the primary source of nutrition, compared to all other age groups. Clinically,
TMAO has been reported to be associated with cardiovascular and chronic kidney diseases
[34,37], indicating that metabolomics not only detects likely dietary patterns, but can also
point to early metabolic alterations that can be targeted in preventive interventions to prevent
diet-related conditions.

Metabolomics has been used to study human diseases extensively, and has resulted in signif-
icant advances in the understanding of their pathophysiology [38]. In this study, metabolism of
aminoacyl-tRNA biosynthesis and nitrogen metabolism appeared to be particularly active dur-
ing early childhood. Aminoacyl-tRNAs, substrates for translation, are pivotal in determining
how the genetic code is interpreted as amino acids, and mutations in aminoacyl-tRNA synthe-
tases have been reported to be associated with mitochondrial metabolic diseases and congenital
heart diseases [39–41]. Our findings suggest that further studies using this approach may be
useful to investigate unexplained diseases that occur early in childhood.

Limitations of this study include the small sample size with limited statistical power for sub-
analyses, and the low sensitivity of 1H-NMR-based metabolomic analysis relative to mass spec-
trometry-based methods. Urinary creatinine concentrations are known to be different among
age groups; and so urinary creatinine was not used to adjust the concentrations of urine analyte
in this study. Although the time of day, in the morning, at which urine samples were collected,
produced only a small variation in dilution effects of samples, there is still a limitation on the
interpretation of our findings, because no normalization of metabolite levels against urinary
creatinine was performed in the same age group. However, a significant strength of the present
study lies in its longitudinal design, allowing long-term, sequential measurements of urinary
metabolites at very close intervals.

In conclusion, to our knowledge, this is the first study to identify a group of urinary metabo-
lites at very close intervals during early childhood using a 1H NMR-based metabolomic
approach. Metabolomics can reveal dynamic metabolic changes across age, emphasizing the
importance of using age matched samples for metabolic studies in infants and young children.
The metabolic profiles of urine appear to change significantly within the first year of age, dur-
ing which time a child’s diet changes from milk to more solid foods, and a physical growth
spurt occurs. Age-related metabolites and their metabolic pathways could potentially provide
crucial information about infant nutrition and growth. However, further studies with a larger
sample size, especially for subgroup analysis, are needed to investigate any associations more
comprehensively.
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