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Understanding the protein-RNA interaction mechanism can help us to further explore various biological processes. -e ex-
perimental techniques still have some limitations, such as the high cost of economy and time. Predicting protein-RNA-binding
sites by using computational methods is an excellent research tool. Here, we developed a universal method for predicting protein-
specific RNA-binding sites, so one general model for a given protein was constructed on a fixed dataset by fusing the data of
different experimental techniques. At the same time, information theory was employed to characterize the sequence conservation
of RNA-binding segments. Conversation difference profiles between binding and nonbinding segments were constructed by
information entropy (IE), which indicates a significant difference. Finally, the 19 proteins-specific models based on random forest
(RF) were built based on IE encoding. -e performance on the independent datasets demonstrates that our method can obtain
competitive results when compared with the current best prediction model.

1. Introduction

RNA-binding proteins (RBPs) play an important role in
gene expression and regulation since they are highly in-
volved in various biological processes such as mRNA sta-
bility [1], stress responses [2], and gene regulation at the
transcriptional and posttranscriptional levels [3]. Under-
standing RNA-protein interactions can lead to further study
on the mechanisms underlying these biological processes.
Accurate identification of RNA-protein binding sites is very
useful for studying these biological processes. In recent
years, many high-throughput experimental methods are
useful for studying these biological processes. In recent
years, many high-throughput experimental methods, such as
PAR-CLIP [4], have been developed which can accurately
determine the binding sites of RNA-protein interactions at
the experimental level. However, these experimental
methods are time-consuming and cost-effective. It is nec-
essary to develop computational methods to predict the
binding sites between RNAs and proteins.

At present, several researchers have developed compu-
tational methods for predicting RNA-protein binding sites.
RNA context is a method with sequence and accessibility
information to predict binding motifs [5], and Maticzka
et al. present GraphProt to predict binding preferences by
using RNA sequence and secondary structural contexts [6].
Zhang et al. integrate RNA sequence, secondary structural
contexts, and RNA tertiary structural information by using a
deep learning framework for modeling structural binding
preferences and predicting binding sites of RBPs [7]. Strazar
et al. develop an integrative orthogonality-regularized
nonnegative matrix factorization (iONMF) to predict RBP
interaction sites on RNAs [8]. In iONMF, the features of
protein-RNA interactions are the positions of RNA structure
and sequence motifs, RBP cobinding, and gene region types.
Pan et al. have given iDeep, iDeepS, and iDeepE to predict
RNA-protein binding sites from RNA sequences [9]. iDeep
developed a novel hybrid convolutional neural network and
deep belief network with RNA sequence, secondary struc-
ture, clip-cobinding, region type, and motif features to
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predict the RBP interaction sites and motifs on RNAs.
iDeepS can identify the binding sequence and structure
motifs from RNA sequences at the same time by using
convolutional neural networks and a bidirectional long
short-term memory network only with RNA sequence and
predicted secondary structure. iDeepE improves the net-
work structure to predict RNA-protein binding sites and
motifs by combining local and global deep convolutional
neural networks.

-e above research has achieved satisfactory prediction
results, and some of them obtain the high area under curve
(AUC) values in most datasets, such as iDeepS. However,
there are still limitations deserving improvement in previous
studies, including different experimental datasets and the
selection of features.

Since different experimental methods for the same
protein are usually different, previous prediction methods
are all based on different datasets from different experi-
mental techniques, so multiple different models are usually
constructed for a given protein, such as the protein ELAVL1
which has two datasets with different protocols of PAR-CLIP
and CLIP-seq [10, 11]. We know that each protein has a
definite RNA-binding motif, but there may be some errors
that make the RBPs undetectable during the experiment.
Different protocols can make up for the loss caused by
experimental errors, so different experimental datasets for a
given protein could bemerged as one general dataset to build
a protein-specific model which is universal to different
experimental techniques. In addition, the current accuracy
of the predicted secondary structures is relatively low, so the
reported performance may be of some discount for the
existing methods based on the predicted secondary
structures.

In our study, we developed a simpler and universal
model for predicting RNA-protein binding sites for different
proteins only based on RNA sequence information. Firstly,
for 19 proteins, 19 general protein-specific datasets were
achieved by fusing different experimental data. -en, only
based on the sequence information, k-mer-based features
and IE profiles were respectively used to represent the
binding segments. Finally, the RF model based on IE profiles
was proved to be with the best performance, compared with
3, 4, and 5-mer features. -e final model yields satisfactory
results with an average AUC of 0.849 for the 19 proteins. In
addition, the model that uses single RNA secondary
structures was also built, but it gives the lowest prediction
accuracy. Overall, our method only based on sequence
conservation information by IE can obtain competitive
results when compared with the current best prediction
model.

2. Materials and Methods

2.1. Dataset. We downloaded the datasets from iDeepS [12]
which is available at https://github.com/xypan1232/iDeepS.
iDeepS collected the data from iONMF [8], and it contains
31 CLIP-seq datasets with 19 binding proteins. Original
CLIP-seq data are from servers iCount (http://icount.biolab.
si) and DoRiNA [13]. In the iDeepS datasets, protein-RNA-

binding sites are positive samples. Fifty bases were selected
from each side of the binding site by sliding window to form
a sequence with a length of 101. Genes that had never been
identified as interacting sites in 31 experiments were used as
negative samples.

In our work, in order to construct the protein-specific
and experiment-universal model, we merged 31 CLIP-seq
datasets into 19 general datasets for 19 different proteins.
Here, due to the different structures, Ago2-MNase and
Ago2, as well as ELAVL1-MNase and ELAVL1, are deemed
as different proteins from each other [14]. Finally, we sep-
arated each dataset into training and testing one according
to the ratio of 5 :1. -e detailed information about the 19
datasets is shown in Table 1.

2.2. Methods

2.2.1. Feature Extraction. Here, we tried to represent protein
binding RNAs from RNA primary sequences by IE profiles
and K-mer features. Besides, since RNA secondary struc-
tures have been used and demonstrated to be useful for
representing binding segments by previous reports [15], they
were also extracted to be compared with features from se-
quence information.

(1) Information Entropy. Information entropy (IE) was
proposed by Shannon [16] and has been deemed as one of
the simplest and most common measures of conservation at
a site on protein sequences in the field of bioinformatics [17].
IE describes the occurrence probability of discrete random
events, and it also reflects the evolutionary conservatism of
each location in the sequence. It has been successfully used
in our previous research works of Shi et al. [18] and Wang
et al. [19]. Shi et al. used IE to distinguish the difference
between methylated and nonmethylated peptide segments,
and Wang et al. used it to classify Type IV secreted effectors
from the negative sample based on the N-terminal 100
residues.

In our work, IE is used to measure evolutionary con-
servation differences between binding and nonbinding sites
of RNA sequences. -e information content of each nucleic
base at each position can be calculated as the input features
to predict protein-RNA interaction binding sites.

(2) K-mer. K-mer is a common genomic feature in bio-
informatics, and it has been widely used to identify some
regions in biological DNA or protein molecules. Zhang et al.
use K-mer to predict piRNA [20], and Cao et al. make use of
K-mer to predict subcellular localization of lncRNA [21]. To
characterize protein binding RNA sequences, we used all the
3–5 nt strings, including 3mer strings, 4mer strings, and
5mer strings.

(3) RNA Secondary Structure. RNA secondary structure
refers to the planar structure formed by various components,
such as single-stranded region structure, stem-ring struc-
ture, and double-stranded structure, which are composed of
complementary base pairs in an RNA molecule and self-
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folding through these structures. RNA secondary structure is
a kind of reversal formed by RNA molecules under natural
conditions.

RNA secondary structures are widely used in protein-
RNA-binding site prediction, such as iONMF [8] and
iDeepS [22]. RNAshapes is a tool for predicting the sec-
ondary structure of RNA [23]. We used RNAshapes to
obtain RNA secondary structure annotations by referring to
Fukunaga et al. [24]. In this way, we can obtain the sec-
ondary structure of each position in the sequence (Figure 1).
Six types of secondary structures were considered, including
stems (S), multiloops (M), hairpins (H), internal loops (I),
dangling end (T), and dangling start (F).

2.2.2. Random Forests. -e random forests (RFs) algo-
rithm is an integrated classification model [25]. Its
construction process is mainly composed of three as-
pects: the generation of a training set, the construction of
a decision tree, and the generation of the algorithm. First,
we need to generate training sets from the original data
by sampling. -rough the bagging algorithm, N samples
are extracted from the original data set. Each sample will
produce a decision tree, and the generated decision tree
does not need pruning, thus establishing N decision trees
to form forests.

At present, the RF algorithm is one of the most popular
machine learning algorithms, and it has been widely used to
solve biological classification [26–30].

-e RF model we used in this study was implemented by
a random forest package in the R language.

2.2.3. Evaluation Indicators. We used five effective perfor-
mance evaluation indicators to evaluate the predictive ability
of the model, namely area under curve (AUC), sensitivity
(SE), specificity (SP), accuracy (ACC), and Matthew’s cor-
relation coefficient (MCC), respectively. AUC represents the
area under the receiver operating characteristic (ROC)
curve. When drawing the ROC curve, the true positive is
taken as ordinate, and the false positive is taken as abscissa.

Table 1: -e prediction performance of the models constructed with a single information entropy feather across 31 original experiment
datasets.

Training groups Protein SE SP ACC MCC AUC_train AUC_test

A

1 Ago/EIF 0.500 0.504 0.502 0.004 0.605 0.583
3 Ago2-1 0.523 0.444 0.490 − 0.032 0.623
4 Ago2-2 0.515 0.548 0.528 0.062 0.656
5 Ago2 0.473 0.508 0.489 − 0.019 0.554

B 6 eIF4AIII-1 0.745 0.845 0.795 0.593 0.851 0.858
7 eIF4AIII-2 0.780 0.805 0.793 0.585 0.873

C
8 ELAVL1-1 0.860 0.118 0.501 − 0.033 0.750 0.715
10 ELAVL1A 0.763 0.119 0.460 − 0.153 0.626
11 ELAVL1-2 0.869 0.090 0.501 − 0.065 0.703

D 12 ESWR1 0.870 0.735 0.803 0.611 0.858 0.896

E 13 FUS 0.885 0.855 0.870 0.740 0.916 0.914
14 Mut FUS 0.890 0.840 0.865 0.731 0.912

F 15 IGFBP1-3 0.690 0.675 0.683 0.365 0.628 0.771

G 16 hnRNPC-1 0.595 0.840 0.718 0.449 0.947 0.830
17 hnRNPC-2 0.685 0.835 0.760 0.526 0.844

H
18 hnRNPL-1 0.680 0.750 0.715 0.431 0.754 0.810
19 hnRNPL-2 0.740 0.730 0.735 0.470 0.805
20 hnRNPL-like 0.625 0.710 0.668 0.336 0.732

I 21 MOV10 0.960 0.535 0.748 0.547 0.776 0.835
J 22 Nsun2 0.685 0.745 0.715 0.431 0.832 0.796
K 23 PUM2 0.920 0.795 0.858 0.721 0.887 0.915
L 24 QKI 0.840 0.890 0.865 0.731 0.920 0.937
M 25 SRSF1 0.705 0.795 0.750 0.502 0.785 0.848
N 26 TAF15 0.885 0.855 0.870 0.740 0.906 0.930
O 27 TDP-43 0.815 0.845 0.830 0.660 0.819 0.889

P 28 TIA1 0.760 0.875 0.818 0.639 0.999 0.900
29 TIAL1 0.645 0.840 0.743 0.494 0.842

Q 30 U2AF2 0.780 0.855 0.818 0.637 0.901 0.903
31 U2AF2 (KD) 0.700 0.865 0.783 0.573 0.874

R 2 Ago2-MNase 0.239 0.659 0.451 − 0.113 0.605 0.405
S 9 ELAVL1-MNase 0.719 0.245 0.491 − 0.040 0.605 0.499

RNA Sequence RNA Secondary
Structure

RNA Shapes
CAAGAATAGGATGGTTTTGGG
GTCGTCCATAGTCTGGGTGTC
TTCTGCATGTTTATGGTAGAA

GACGTGAAGAAAAAGACAATC
CAATTTATGTTTTGTTT

FFFSSSSSSSSSIIIIIII
SSSSISSSIIIIISSSIII

SSSSSSSSSSHHHHHHHHH
SSSSSSSSSSIIISSSIII
ISSSISSSSIIIIIIISSS

SSSSSS

Figure 1: Conversion diagram of RNA secondary structure.
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-e closer the AUC is to 1, the better the prediction will be
these metrics are commonly defined as follows:

SE �
TP

TP + FN
,

SP �
TN

TN + FP
,

ACC �
TP + TN

TP + TN + FP + FN
,

MCC �
(TP + TN) − (FP + FN)

�����������������������������������
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

 ,

(1)

where TP, FP, TN, and FN are true positive, false positive,
true negative, and false negative, respectively.

3. Results and Discussion

3.1. Difference Analysis between Positive and Negative
Samples. -e distribution of nucleic bases is the basic in-
formation for an RNA sequence. With the segment length of
101 bases, we plotted two sample logos [15, 31] of 19 protein
training sets to show the difference in base composition
between positive and negative samples in each dataset. Here,
we select two of them as examples. We can find that the
positive and negative samples of the same protein have
obvious differences in base compositions. For each segment,
the 51st base in the positive sample sequence is the protein-
RNA interaction site. According to the literature [32], the
binding motif of protein-RNA interaction is usually 6–8
bases. From Figure 2(a), we can find that the (Figure 2) base
locations of 48–54 in positive samples are obviously enriched
with A and T. Negative samples were not enriched with A
and T. Similarly, for the MOV10 data set, we can find that
the 48–54 base positions of positive samples have obvious C
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Figure 2: A two-sample logo to show position-specific distribution difference of base and secondary structure between binding and
nonbinding sequence. (a) -e difference of base in the QKI dataset; (b) the difference of secondary structure in the QKI dataset; (c) the
difference of base in the MOV10 dataset; and (d) the difference of secondary structure in the MOV10 dataset.
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Figure 3: Comparison of conservation in each position between binding and nonbinding sequence through Information entropy value.
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and G enrichment from Figure 2(c). Especially at the 51st
position of the positive sample, there was a significant C base
enrichment. Negative samples do not have the above ob-
servations.-us, the difference in base composition between
positive and negative samples is significant.
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Figure 4: -e AUCs of single information entropy feather across 31 original experiment datasets.
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Figure 5: -e AUCs of single information entropy feather across
19 merged experiment datasets.

Table 2: -e prediction performance of the models is constructed
with a single information entropy feather across 19 merged ex-
periment datasets.

Training
groups SE SP ACC MCC AUC_train AUC_test

A 0.635 0.607 0.621 0.217 0.639 0.659
B 0.765 0.820 0.793 0.465 0.847 0.865
C 0.734 0.708 0.721 0.368 0.777 0.792
D 0.870 0.735 0.803 0.482 0.858 0.896
E 0.885 0.848 0.866 0.557 0.916 0.914
F 0.690 0.675 0.683 0.312 0.628 0.771
G 0.640 0.838 0.739 0.400 0.947 0.837
H 0.682 0.730 0.706 0.347 0.754 0.783
I 0.960 0.535 0.748 0.447 0.776 0.835
J 0.685 0.745 0.715 0.360 0.832 0.796
K 0.920 0.795 0.858 0.550 0.887 0.915
L 0.840 0.890 0.865 0.556 0.920 0.937
M 0.705 0.795 0.750 0.410 0.785 0.848
N 0.885 0.855 0.870 0.561 0.906 0.930
O 0.815 0.845 0.830 0.513 0.819 0.889
P 0.700 0.865 0.783 0.458 0.999 0.874
Q 0.743 0.860 0.801 0.479 0.901 0.888
R 0.239 0.659 0.451 − 0.113 0.605 0.405
S 0.719 0.245 0.491 − 0.040 0.605 0.499
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We also plotted the two sample logos of the secondary
structure of 19 protein training sets and showed the
difference in the secondary structure of positive and
negative samples for each data set. When protein and RNA
interact, they both have unique space structures [33].
-erefore, the secondary structure of positive and nega-
tive samples will be different. It is also proved by our two
sample logos. In Figure 2(b), we can find that the 48–54
positions in the positive samples of QKI datasets are
usually multiloop (M) and hairpin (H). In the secondary
structure of negative samples, we find that there are more
stem (S) structures. In Figure 2(d), the positive sample of
the MOV10 dataset is stem (S) structures at 48–54 po-
sitions. Negative samples did not show many stem (S)
structures. We can also find that the positive and negative

samples have obvious secondary structure differences by
using two sample logos.

-en, we calculated the information entropy of 19
datasets. Information entropy can characterize the evolu-
tionary conservation of each position in a sequence. We
selected two training datasets of PUM2 and TIA1 to show
the results of IE difference between positive and negative
samples in Figure 3. From Figure 3, we can find that the IE
values of positive and negative samples have obvious dif-
ferences. We know that the lower the IE value of a given
position is, the more conservative this position is. In general,
we can easily see that all bases in the positive dataset are
more conservative than those in the negative dataset.
Moreover, there are significant conservation differences
between positive and negative samples at the location of the

Table 3: AUCs of 6 selected proteins with a single K-mer.

Protein AUC of 3-mer AUC of 4-mer AUC of 5-mer
QKI 0.9 0.899 0.919
U2AF2 0.871 0.8871 0.886
SRSF1 0.853 0.856 0.867
Mut FUS 0.829 0.836 0.841
Nsun2 0.76 0.763 0.767
IGFBP1-3 0.657 0.675 0.686

Table 4: -e prediction performance of the models is constructed with a single secondary structure feather across 31 original experiment
datasets.

Training groups Protein SE SP ACC MCC AUC train AUC test

A

1 Ago/EIF 0.505 0.500 0.503 0.005 0.537 0.513
3 Ago2-1 0.420 0.555 0.488 − 0.025 0.509
4 Ago2-2 0.440 0.580 0.510 0.020 0.510
5 Ago2 0.530 0.420 0.475 − 0.050 0.464

B 6 eIF4AIII-1 0.035 0.965 0.500 0.000 0.560 0.547
7 eIF4AIII-2 0.350 0.745 0.548 0.103 0.600

C
8 ELAVL1-1 0.895 0.090 0.493 − 0.025 0.632 0.498
10 ELAVL1A 0.635 0.410 0.523 0.046 0.533
11 ELAVL1-2 0.620 0.620 0.620 0.240 0.662

D 12 ESWR1 0.460 0.640 0.550 0.102 0.582 0.555

E 13 FUS 0.565 0.550 0.558 0.115 0.630 0.578
14 Mut FUS 0.565 0.710 0.638 0.278 0.642

F 15 IGFBP1-3 0.565 0.710 0.638 0.278 0.523 0.642

G 16 hnRNPC-1 0.500 0.745 0.623 0.253 0.679 0.661
17 hnRNPC-2 0.335 0.915 0.625 0.307 0.670

H
18 hnRNPL-1 0.540 0.500 0.520 0.040 0.573 0.551
19 hnRNPL-2 0.505 0.600 0.553 0.105 0.564
20 hnRNPL-like 0.465 0.510 0.488 − 0.025 0.470

I 21 MOV10 0.440 0.580 0.510 0.020 0.521 0.520
J 22 Nsun2 0.615 0.530 0.573 0.146 0.610 0.595
K 23 PUM2 0.600 0.590 0.595 0.190 0.565 0.625
L 24 QKI 0.600 0.590 0.595 0.190 0.724 0.625
M 25 SRSF1 0.085 0.910 0.498 − 0.009 0.522 0.464
N 26 TAF15 0.580 0.625 0.603 0.205 0.609 0.618
O 27 TDP-43 0.580 0.625 0.603 0.205 0.553 0.618

P 28 TIA1 0.155 0.955 0.555 0.183 1.000 0.636
29 TIAL1 0.120 0.950 0.535 0.126 0.567

Q 30 U2AF2 0.120 0.950 0.535 0.126 0.602 0.567
31 U2AF2 (KD) 0.330 0.705 0.518 0.038 0.548

R 2 Ago2-MNase 0.545 0.470 0.508 0.015 0.499 0.516
S 9 ELAVL1-MNase 0.485 0.550 0.518 0.035 0.519 0.506
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51st base and its adjacent bases, as marked by the red ovals in
Figure 3.

-e large difference in sequence conservativeness be-
tween binding and nonbinding sequences means that IE will
be an important feature for predicting potential protein-
RNA interaction sites.

3.2. Results on the Original 31 Datasets and the Combined 19
Datasets. According to the definition of IE and IG, we
calculated the IG value of each position in the sequence. -e
IG value can quantitatively reflect the evolutionary con-
servation of each site in the sequence. We can find that the
evolutionary conservatism of positive and negative samples
is obviously different. Firstly, we use a single IG as the feature
to construct the classifying model. Figure 4 shows the AUC
of 31 original test sets.-e average AUC value of test datasets
is 0.86, which indicates that IE is generally effective for
predicting binding sites of protein-RNA interactions.

In order to get a more general model, we merged the
datasets from different experiments for the same protein, so
19 protein-specific datasets were achieved. According to 19
proteins, the protein-specific model for each protein was
constructed on each protein-specific dataset. Figure 5 shows
the AUCs of the combined test datasets, and Table 2 lists the

detailed information. We can find that IE-based models also
yield good prediction performance with an average AUC of
0.807.Moreover, 12 of 19models give the AUC values higher
than 0.8. -e results of test datasets indicate that the general
prediction model for each protein is valid, and it is a feasible
way to develop the protein-specific model for the data from
different experiments.

Secondly, six protein training sets were selected from 19
proteins according to the results of the model constructed
with a single information entropy feather. Table 3 shows the
AUC comparison of three models based on the features of
K� 3, 4, and 5, respectively. -e result of 4-mer is similar to
that of 5-mer and better than that of 3-mer. When K� 5, the
feature dimension is 1028, so there aremany positions in 1028
features with a result of 0. In order to reduce the noise of the
model, we give up 5-mer as a feature. Finally, we chose K� 4.

Previous research has selected secondary structures as a
feature to predict protein-RNA interaction binding sites [7].
We also tried to introduce the secondary structure into our
prediction model. Table 4 is the test sets AUC of the original
31 datasets using the secondary structure separately.
However, we find that the contribution of a single secondary
structure to the model is very small.-e average AUC is only
0.55. -ere are specific secondary structures when proteins
interact with RNA. But the RNA secondary structure used in

Table 5: -e comparison results among the model of single information entropy, the model of single information entropy with 4-mer, and
iDeepS.

Protein Information entropy Information entropy + 4-mer iDeepS
1 Ago/EIF 0.583 0.708 0.773
3 Ago2-1 0.623 0.832 0.865
4 Ago2-2 0.656 0.839 0.868
5 Ago2 0.554 0.592 0.634
6 eIF4AIII-1 0.858 0.932 0.950
7 eIF4AIII-2 0.873 0.934 0.953
8 ELAVL1-1 0.715 0.921 0.932
10 ELAVL1A 0.626 0.875 0.893
11 ELAVL1-2 0.703 0.907 0.919
12 ESWR1 0.896 0.904 0.917
13 FUS 0.914 0.936 0.934
14 Mut FUS 0.912 0.920 0.958
15 IGFBP1-3 0.771 0.709 0.717
16 hnRNPC-1 0.830 0.929 0.960
17 hnRNPC-2 0.844 0.966 0.975
18 hnRNPL-1 0.810 0.827 0.756
19 hnRNPL-2 0.805 0.802 0.769
20 hnRNPL-like 0.732 0.746 0.711
21 MOV10 0.835 0.839 0.813
22 Nsun2 0.796 0.811 0.835
23 PUM2 0.915 0.963 0.962
24 QKI 0.937 0.945 0.966
25 SRSF1 0.848 0.873 0.887
26 TAF15 0.930 0.934 0.964
27 TDP-43 0.889 0.913 0.930
28 TIA1 0.900 0.911 0.930
29 TIAL1 0.842 0.856 0.893
30 U2AF2 0.903 0.921 0.953
31 U2AF2 (KD) 0.874 0.891 0.931
2 Ago2-MNase 0.405 0.615 0.591
9 ELAVL1-MNase 0.499 0.566 0.613
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current research is not the real secondary structure. -ey are
derived from predictive tools such as RNAshapes [23] and
RNAfold [34]. So, it will provide some wrong information to
the model. Because the secondary structure cannot provide a
positive impact on the prediction performance of the model,
we do not choose to add the secondary structure to the final
prediction model.

3.3. Comparison of OurWork and Other’s works. Finally, we
construct a hybrid model to predict protein-RNA interac-
tion binding sites by combining IE with 4-mer.-en, the two
models constructed by us with IE and IE + 4-mer were
compared with the reported tool of iDeepS [12]. Table 5
shows the comparisons among the three models. On av-
erage, the hybrid model based on IE + 4-mer is superior to
the model only with IE. For most datasets, the prediction
performance of the hybrid model is almost equal to that of
iDeepS. -e average AUC of our hybrid model is 0.849, and
that of iDeepS is 0.863. However, iDeepS is a tool based on
sequence and secondary structure information. Our hybrid
model is only sequence information. So, it is more concise
and practical.

-e prediction performance of the models constructed
with information entropy and 4-mer feather across 31

original experiment datasets can be seen in Table 6. -e
detailed comparison results are shown in Table 5.

4. Conclusions

In this work, we have developed a simpler and more applied
model for predicting protein-RNA interaction binding
sites. According to the same binding protein, we merged the
original datasets from different experiments, so the model
constructed by the merged dataset is more general. We
compared the performance of the prediction models with
single IE, K-mer, and RNA secondary structures, respec-
tively, and we found that models based on single IE and
single 4-mer give satisfactory performance. -en, we
constructed a hybrid model based on IE + 4-mer and
compared it with the reported tool of iDeepS. We find that
our hybrid model gives a competitive performance. How-
ever, in this paper, we first develop a general model for a
specific protein, and our model is only based on the se-
quence information, so it is more feasible than other tools
based on RNA structures.

Data Availability

-e dataset can be accessed upon request.

Table 6:-e prediction performance of themodels is constructed with information entropy and 4-mer feather across 31 original experiment
datasets.

Training groups Protein SE SP ACC MCC AUC_train AUC_test

A

1 Ago/EIF 0.530 0.730 0.630 0.265 0.750 0.708
3 Ago2-1 0.815 0.680 0.748 0.500 0.750 0.832
4 Ago2-2 0.805 0.700 0.753 0.508 0.750 0.839
5 Ago2 0.365 0.720 0.543 0.091 0.750 0.592

B 6 eIF4AIII-1 0.810 0.875 0.843 0.686 0.924 0.932
7 eIF4AIII-2 0.870 0.835 0.853 0.705 0.924 0.934

C
8 ELAVL1-1 0.925 0.755 0.840 0.690 0.897 0.921
10 ELAVL1A 0.850 0.755 0.803 0.608 0.897 0.875
11 ELAVL1-2 0.890 0.720 0.805 0.619 0.897 0.907

D 12 ESWR1 0.850 0.800 0.825 0.651 0.845 0.904

E 13 FUS 0.870 0.875 0.873 0.745 0.895 0.936
14 Mut FUS 0.830 0.885 0.858 0.716 0.895 0.920

F 15 IGFBP1-3 0.690 0.560 0.625 0.252 0.695 0.709

G 16 hnRNPC-1 0.865 0.850 0.858 0.715 0.952 0.929
17 hnRNPC-2 0.960 0.870 0.915 0.833 0.952 0.966

H
18 hnRNPL-1 0.775 0.725 0.750 0.501 0.765 0.827
19 hnRNPL-2 0.780 0.715 0.748 0.496 0.765 0.802
20 hnRNPL-like 0.645 0.735 0.690 0.382 0.765 0.746

I 21 MOV10 0.875 0.655 0.765 0.543 0.793 0.839
J 22 Nsun2 0.725 0.735 0.730 0.460 0.832 0.811
K 23 PUM2 0.920 0.870 0.895 0.791 0.927 0.963
L 24 QKI 0.895 0.855 0.875 0.751 0.941 0.945
M 25 SRSF1 0.785 0.790 0.788 0.575 0.858 0.873
N 26 TAF15 0.870 0.890 0.880 0.760 0.897 0.934
O 27 TDP-43 0.750 0.875 0.813 0.630 0.888 0.913

P 28 TIA1 0.775 0.900 0.838 0.680 0.998 0.911
29 TIAL1 0.645 0.875 0.760 0.534 0.998 0.856

Q 30 U2AF2 0.865 0.810 0.838 0.676 0.895 0.921
31 U2AF2 (KD) 0.855 0.760 0.808 0.618 0.895 0.891

R 2 Ago2-MNase 0.545 0.625 0.585 0.171 0.605 0.615
S 9 ELAVL1-MNase 0.280 0.755 0.518 0.040 0.593 0.566
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