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Abstract—Background: Deep learning models for patch
classification in whole-slide images (WSIs) have shown
promise in assisting follicular lymphoma grading. However,
these models often require pathologists to identify centrob-
lasts and manually provide refined labels for model opti-
mization. Objective: To address this limitation, we propose
PseudoCell, an object detection framework for automated
centroblast detection in WSI, eliminating the need for ex-
tensive pathologist’s refined labels. Methods: PseudoCell
leverages a combination of pathologist-provided centrob-
last labels and pseudo-negative labels generated from un-
dersampled false-positive predictions based on cell mor-
phology features. This approach reduces the reliance on
time-consuming manual annotations. Results: Our frame-
work significantly reduces the workload for pathologists
by accurately identifying and narrowing down areas of
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interest containing centroblasts. Depending on the confi-
dence threshold, PseudoCell can eliminate 58.18-99.35%
of irrelevant tissue areas on WSI, streamlining the diag-
nostic process. Conclusion: This study presents Pseudo-
Cell as a practical and efficient prescreening method for
centroblast detection, eliminating the need for refined la-
bels from pathologists. The discussion section provides
detailed guidance for implementing PseudoCell in clinical
practice.

Index Terms—Centroblast cell detection, deep convolu-
tional neural network, follicular lymphoma, hard negative
mining, morphological features.

Impact Statement— PseudoCell automates CB detection
in H&E WSIs without requiring refined labels. It reduces
pathologists’ workload by accurately eliminating 58.18–
99.35% of non-centroblast regions and suggesting CB can-
didates at the cell level.

I. INTRODUCTION

Follicular lymphoma (FL) is the second most prevalent lym-
phoid malignancy in Western and Asian countries. It is respon-
sible for 5–35% of non-Hodgkin lymphoma (NHL) [1], [2], [3].
Most FL carries the translocation t(14;18), which causes the
overexpression of the BCL-2 protein. FL patients usually present
with lymphadenopathy, infrequent B-symptoms, systemic fever
symptoms, night sweats, and weight loss. The progression of
a disease can be predicted using a combination of clinical
and laboratory findings and the histopathological grade of the
disease [4].

The World Health Organization (WHO) classification system
is currently the gold standard for grading follicular lymphoma
(FL). This system relies on the number of centroblast cells
(CBs), large neoplastic cells, identified within a tissue sample
[5]. Traditionally, pathologists manually count CBs under a
microscope using hematoxylin and eosin (H&E) stained tissue
sections. However, this process is time-consuming and laborious
due to the vast size difference between whole slide images
(WSIs) and individual cells (as illustrated in Fig. 1). Addition-
ally, it suffers from subjectivity and variability among experts,
leading to inter- and intra-observer variability ranging from
61–73% [6]. This high variability introduces sampling bias,
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Fig. 1. Automated detection of centroblast cells in whole-slide images.
The tiny red square within WSI represents the patch image. Experts
examined WSI under a patch-by-patch microscope to identify CB. In
contrast, our proposed model can immediately identify CB with a confi-
dence score.

hinders reproducibility, and ultimately impacts patient care due
to a lack of consensus among pathologists [6]. Consequently,
there is a crucial need to enhance the precision, reliability, and
reproducibility of histological grading in FL.

Numerous studies have proposed automated methods to lo-
calize and classify FL by using whole-slide images (WSI),
scanned images from the tissue samples, aiming to facilitate
the work of pathologists [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]. The techniques can be categorized into
two groups: 1) machine learning (ML)-based approaches with
human-engineered features [7], [8], [9], [10], [11], [12], [13] and
2) deep learning (DL)-based approaches [14], [15], [16], [17].
ML-based approaches have been explored for classifying and
detecting CBs. However, their performance was often limited
by the reliance on hand-engineered features, particularly those
based on color distributions and morphological characteris-
tics. This approach can lead to overfitting, high false-positive
(FP) prediction rates, and difficulties in generalizing to new
datasets [8], [9], [10], [11], [12]. The heavy dependence on
the specific combination of chosen features further restricts
model performance. Consequently, recent research has shifted
towards a DL-based approach, which eliminates the need for
hand-engineered features and can automatically extract essential
features from the training data.

DL-based models, especially Convolutional Neural Networks
(CNN), have been recently applied to detect and classify lymph
nodes on H&E-stained WSIs. To detect lymphocytes in breast
cancer (BC), Liu et al. [14] addressed the tumor class imbalance
problem by applying random sampling and data augmentation
on patches (i.e., cropped images from WSI) before training the
InceptionV3 [18]. Their method achieved the best sensitivity
on the Camelyon16 dataset. Then, Lu et al. [15] proposed
an automated pipeline to achieve a robust model for a new
cohort. Their approach employed cascade training on a U-Net
architecture [19], involving an iterative process of model fine-
tuning. Specifically, the model was initially trained on a source
dataset and then fine-tuned on the new cohort using its predicted
lymphocyte masks. These masks were subsequently evaluated
and refined by pathologists before being used for further model

training. This cascade training process was repeated for two
iterations, ultimately yielding a model with an F1-score of 0.927.
However, while demonstrating promising results, this method
introduces additional workload for pathologists during the mask
refinement stage, which contradicts the goal of reducing their
workload.

In contrast to BC research, where DL has been extensively
explored for WSI analysis, most DL studies in FL have primarily
focused on patch-level classification, specifically identifying
whether patches contain CBs. This patch-level approach of-
fers limited interpretability for directly grading FL. Somaratne
et al. [16] addressed this by proposing a one-class training
approach to minimize the generalization gap between two FL
datasets. Their method involved incorporating images from the
target dataset into the training set and then applying transfer
learning with AlexNet [20]. This resulted in a 12% improve-
ment in patch classification accuracy compared to training from
scratch. Syrykh et al. [17] employed a CNN-based model to
differentiate between FL and follicular hyperplasia (FH) at
four different resolutions. While their model achieved accurate
patch-level classification at the highest resolution, the study also
highlighted the sensitivity of DL approaches to pre-processing
steps, particularly stain normalization (SN). This was evidenced
by a significant drop in the area under the curve (AUC) from
0.92–0.99 on the internal dataset to 0.63-0.69 on an external
dataset. This accentuates the importance of stain normalization
in the pre-processing phase for robust and generalizable DL
models in FL.

According to the limitations mentioned above: (1) Deep
Learning (DL) is sensitive to the variation of stain color in
WSIs; (2) the need for expert-refined labels during training,
and (3) class imbalance between CB and non-CB cells. These
limitations restricted DL’s improvement on FL WSIs to cell-level
prediction.

To overcome these limitations, we proposed a framework
called PseudoCell to explore the feasibility of DL-based object
detection models on CB detection tasks. We aim to use the
state-of-the-art object detection model, YOLOv8 [21], as our
backbone model. Firstly, we compare the consistency of two
Stain Normalization (SN) methods on our dataset to prevent
the effect of color variation from WSI. Secondly, the need for
expertly refined labels during training will be imitated through
the hard negative mining technique (HNM) [22], i.e., retrieving
false-positive (FP) predictions from the trained model, afterward
incorporating them into the training set as pseudo-negative labels
(non-CB class), then use the new training set to train a new
model. Since the number of pseudo-negative labels is higher than
the number of CB labels from pathologists, the imbalance class
issue must be addressed before incorporating pseudo-negative
labels. Thirdly, three distinct undersampling approaches were
explored to mitigate the class imbalance issue before incorpo-
rating pseudo-negative labels into the training set.

To our knowledge, HNM was initially introduced in the field
of computer vision and has yet to be utilized in the context of dig-
ital histopathological image recognition. While previous work
on cancer cells sought refined labels from experts to enhance
the model, we instead attempted to imitate it through the HNM.
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This framework allows us to improve the model autonomously
without relying on additional work from pathologists. Therefore,
the comparison between different HNM approaches was mainly
investigated.

Lastly, we have provided a practical guideline based on high-
power field selection and CB identification in WSI for applying
our PseudoCell as a pre-screening tool for FL patients. Integrat-
ing this framework with histopathological workflow can reduce
experts’ workload by narrowing down the region experts focus
on while examining the tissue. Potential real-world applications
(such as quality control, training, and education tools) are also
discussed to benefit human-machine collaboration.

II. MATERIALS AND METHODS

A. Data Collection

This study included 75,245 patches (512x512 pixels) of fol-
licular lymphoma (FL) admitted for treatment at the Faculty of
Medicine Siriraj Hospital between 2016 and 2020. No signif-
icant correlation between clinicopathological parameters was
observed (data not shown). The Siriraj Institutional Review
Board (SIRB) (MU-MOU CoA No. 973/2020) has approved
the procedures for obtaining and using tissue. Formalin-fixed
paraffin-embedded (FFPE) tissue samples with a thickness of
3-5 microns were prepared for automated hematoxylin and eosin
(H&E) staining and scanned at a resolution of 0.12 microns per
pixel using a 3Dhistech Panoramic 1000 microscope with a 40x
objective lens. The resulting images were saved in NRXS format.

From a total of 75,245 patches, 1203 patches contain Cen-
troblast (CB) cells, and 3045 patches without CB were selected
and annotated by a consensus of two doctors (one of them is a
pathologist). The annotation is manually drawn around CB as a
bounding box (bbox), Fig. 2(a).

B. The Proposed Framework

Based on the challenge of CB cell detection, we proposed a
framework in Fig. 2(b)–2(d) that gives reproducible cell-level
predictions. Our proposed framework comprises three parts: 1)
Train original model, 2) Hard Negative Mining pipeline, and 3)
Train model with pseudo-negative label.

1) Train Original Model: As shown in Fig. 2(b), three steps
comprise this part to obtain a one-class dataset and a CB
detection model: 1.1) Stain normalization selection; 1.2) Data
preprocessing; 1.3) Model training.

a) Stain normalization selection: Even though our
WSIs came from the same lab and scanner, the WSIs still have
different stain colors. So, Stain normalization was applied to our
preprocessing step.

Stain normalization (SN) is the color distribution transforma-
tion from a source image I into a target image I ′. The trans-
formation can be described through the operation I ′ = f(I, θ)
where θ is a collection of parameters derived from the template
image, and f is the function that maps the visual appearance of a
given image I to the template image. Generally, θ is designed to
capture the color information of the primary stain components
(e.g., hematoxylin and eosin). Consequently, stain-normalized

images will have a color distribution similar to the template
image [23].

In this work, we consider two state-of-the-art SN methods:
� Structure Preserving Color Normalization (SPCN): Va-

hadane et al. proposed in [24], which tackled the stain
separation problem with the assumption that stain density
is non-negative, and the color basis is sparse. The sparse-
ness constraint reduces the solution space of the color
decomposition problem. Then, the color basis of a source
image is replaced with those from a template image while
maintaining its original stain concentrations.

� Deep convolutional Gaussian mixture models (DCGMM):
Zanjani et al. proposed in [25]. This method first converts
the source image into the HSD color system. Then, a GMM
is fitted to the color distribution individually per tissue
class. To train the DCGMM, E-step and M-step of the EM-
algorithm are replaced by gradient descent and the back-
propagation algorithm. The advantage of this approach
is that it does not need any assumptions about the H&E
image content.

We conduct an experiment, detailed in Section II-C1, to
compare and select the most appropriate SN method for our
dataset (i.e., one that produces processed images with low color
variation and minimal background error).

b) Data preprocessing: Due to the considerable hu-
man errors during annotation, label cleaning was necessary
before feeding data into the model. Our dataset’s two most
prevalent errors were 1) bbox annotations with zero areas and
2) repeated bbox annotations on a single CB cell. Since the
annotator may have accidentally generated a bbox with zero
areas by clicking the mouse, we removed all box annotations
with zero areas from our dataset. Regarding the second error,
we first calculated the center of each bbox and then retrieved
the groups of bounding boxes whose center-to-center distance
is within a constant. If bbox annotations share the same CB
cell, we select the bbox that best fits the cell based on manual
inspection of each bbox group.

Then, we will apply the stain normalization method from
the previous experiment to the annotated positive patches to
standardize our dataset’s color variation. Lastly, 80%, 10%, and
10% of the normalized positive patches were separated into train,
validation, and test sets to create dataset D1.

c) Model training: Before feeding the training set into
the model, five augmentation methods (flip up-down, flip left-
right, rotate 90 degrees, rotate 180 degrees, and rotate 270
degrees) were applied to the training set.

We trained and validated a YOLOv8 model with the X6
architecture using 10-fold cross-validation on the augmented
dataset D1. The model, consisting of 350 layers and approx-
imately 97 million parameters, was trained under the default
hyperparameter configuration. We employed stochastic gradient
descent (SGD) to minimize cross-entropy loss during training,
which ran for a maximum of 500 epochs with early stopping
implemented to prevent overfitting. This resulted in the original
model, referred to as “ori” throughout this work.

2) Hard Negative Mining Pipeline: In histopathological
image recognition, pathologists typically annotate only target



SEESAWAD et al.: VIOLETPSEUDOCELL: HARD NEGATIVE MINING AS PSEUDO LABELING 517

Fig. 2. Overview of the PseudoCell framework. (a) Data annotation: H&E-stained slides were scanned and patched into 512x512 pixels. An
expert pathologist annotated centroblast (CB) cells on selected patches by locating a rectangle bound to each CB while another expert pathologist
reviewed the annotations. (b) Train original model: The CB-annotated patches were cleaned and then normalized the color using the best stain
normalization method from Experiment I. Then, 80%, 10%, and 10% of the data were separated into train, validation, and test sets to create
dataset D1. Five methods augmented the training set before being fed into YOLOv8. YOLOv8 was trained and validated in a 10-fold cross-validation
manner to generate ori model. (c) Hard Negative Mining pipeline: The ori model was then applied to infer the training set to retrieve false-positive (FP)
samples. We then employed three undersampling strategies (red, blue, and purple paths) to avoid the imbalance class issue. *: the six morphological
features [28] were calculated using a binary image segmented by a trained HoverNet model [29]. (d) Train model with pseudo-negative label: The
undersampled FP samples from each path were combined with the training set of dataset D1 as a new class. Consequently, each path had its own
training set of two classes with identical validation and test sets from D1. YOLOv8 was trained and validated with similar manner as ori model to
obtain hnm_random, hnm_box, and hnm_morph models. Finally, all models were compared in Experiment II, and the best approach was applied
to visualize the heatmap of WSI.
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cells (i.e., CB cells) and leave other cells unannotated to mini-
mize the annotation cost. It causes DL-based models to typically
perform poorly due to many false-positive (FP) predictions.

We hypothesize that distinguishing CB cells from other cells
that look like CB cells (non-CB cells) is the key to improving
the model. One approach is incrementing the non-CB labels as
a new class in the dataset. In practice, we retrieve the FP bbox
(i.e., non-CB annotation) from the ori model inference on the
training set and add them to the training set as a new class. As
shown in Fig. 2(c), the following three steps were employed to
generate a dataset with pseudo-negative labels: 2.1) Retrieve FP
predictions; 2.2) Undersample; and 2.3) Combine the non-CB
class with the training set.

a) Retrieve FP predictions: To obtain FP annota-
tions, we applied the ori model to the training set within each
cross-validation fold using a low confidence threshold of 0.001.
This ensured the model predicted all possible negative cases.
Since CB bounding boxes (bbox) in the training set had a long
side smaller than 100 pixels, we further filtered out any predicted
FP bbox with a side length exceeding this threshold. This step
helped to eliminate spurious detections of large objects that were
unlikely to be true CBs.

b) Undersample: As the number of identified FP pre-
dictions remained significantly higher than the actual number of
CB cells, directly incorporating these negatives into the training
set would lead to a class imbalance problem. To address this issue
and ensure balanced representation during model training, we
considered two undersampling strategies: Random undersam-
pling and Neighborhood-based Recursive search undersampling
(NB-Rec) [26].

� Random undersampling is a popular non-heuristic tech-
nique due to its simplicity of application. Despite its
simplicity, there is a significant disadvantage that must
be considered. Given that balanced class, distribution is a
stopping criterion, random undersampling may eliminate
potentially useful samples to achieve this balance [27].

� NB-Rec eliminates the majority class sample, which may
overlap with the minority class. As described in Algorithm
1, the majority sample is considered overlapping when it
is in the neighborhood of more than one minority sample.
Since the NB-Rec uses K-Nearest Neighbor (KNN), we
must search for k before execution to produce several
negatives approximately equal to the actual CB.

As the NB-Rec undersampling method requires coordinate
information, we extracted features from both the ground truth
and FP bbox. The width and height of each bbox were directly
obtained. Additionally, six morphological features, as described
in [28], were calculated for each cell within the bbox. To achieve
this, we first segmented the cells using a trained HoverNet
model based on the PanNuke architecture [29], resulting in
binary images of individual cells within each bbox. These binary
images were then used to compute the morphological features.

As depicted in Fig. 2(c) by the red, blue, and purple paths,
we obtain three sets of undersampled FP predictions: (1) the set
from random undersampling, (2) the set from applied NB-Rec
undersampling to bbox width and height, and (3) the set from
NB-Rec undersampling applied to the first- and second-principal

Algorithm 1: NB-Rec.

components of bbox width, bbox height, and six morphological
features using the Principal Component Analysis (PCA) method.

c) Combine the non-CB class with the training
set: Following the undersampling procedures described in the
previous step, we created three new datasets by incorporating the
respective sets of undersampled FP predictions into the original
training set of D1. These new datasets have similar images to
D1 but contain two classes (CB and non-CB) in the training
set. However, to maintain consistency and evaluate the models’
ability to generalize to unseen data, we retained only the CB
class in the validation and testing sets for all three datasets.

3) Train Model With Pseudo-Negative Label: As shown
in Fig. 2(d), similar to the part 1) Training original model, we
use the same setup model training step on the dataset of red,
blue, and purple paths to get model hnm_random, hnm_box,
and hnm_morph, respectively.

C. Experiment Setup:

All experiments were performed with an NVIDIA Tesla
V100-SXM2 graphic card.

1) Experiment I: Stain Normalization Selection: This ex-
periment aimed to ensure color consistency within our dataset
by comparing two stain normalization methods: SPCN and
DCGMM. We selected a template image, preferred by an expert,
from the available patches. Both stain normalization methods
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were then applied to the remaining images in the dataset. The
resulting normalized images were evaluated using metrics de-
scribed in Supplementary Materials, Section I-A1. The stain
normalization method that demonstrated superior performance
will be employed in the pre-processing phase of this work.

2) Experiment II: Backbone Model Evaluation: This ex-
periment aims to compare the performance of models from
different training approaches (i.e., conventional and HNM ap-
proaches) on both object detection and image classification
tasks. We use the training pipeline described in Section II-B
to obtain four models:

� Original (ori) model: Conventional object detection ap-
proach with one class annotation.

� Model trained with random HNM (hnm_random): Ran-
domly add FP samples from ori prediction on the training
set into the training set as a new class. Then, it trains the
model with the same setup as ori.

� Model trained with HNM of bbox features (hnm_box): In-
stead of randomly sampling, this approach undersamples
the FP samples using NB-Rec on the width and height of
the FP bounding box, then adds them into the training set.

� Model trained with HNM of morphological features
(hnm_morph): Similar to hnm_box but using NB-Rec on
first- and second-principal components from six morpho-
logical features and width and height of FP bounding box.

We use metrics from Supplementary Materials, Section I-A2
to evaluate the performance models on object-level prediction.

To evaluate the model’s performance on the image classi-
fication task, we mapped the cell-level predictions to patch-
level classifications using the following criteria: a patch was
classified as positive if it contained at least one predicted CB
cell; otherwise, it was classified as negative. Given that the test
set of each cross-validation folds comprised 120-121 images
containing CBs (positive images), we augmented each test set
with additional negative images randomly selected from our
database. This ensured a balanced class distribution for robust
model classification performance evaluation.

III. RESULTS

A. Experimental Results

1) Experiment I. Stain Normalization Selection: Deep
convolutional Gaussian mixture models (DCGMM) yielded the
lowest standard deviation (SD) and coefficient of variation (CV)
for both Normalized Median Intensity (NMI) and Normalized
Median Hue (NMH) metrics, as indicated in Table I. Since NMI
qualifies the color consistency of the nuclei [30] and NMH
quantifies the global color variation of an image population [31].
Thus, the results indicate that DCGMM provides qualitatively
similar color distributions for nuclei with less color variation
within the image population (see Fig. 3). Comparing the original
and the Structure Preserving Color Normalization (SPCN), the
box plots in Fig. 4 demonstrate that DCGMM has the smallest
spread of NMI and NMH values around the median (inter-
quartile range) with variance statistical significance (p < 0.01).

TABLE I
STANDARD DEVIATION AND COEFFICIENT OF VARIATION FOR NMI AND NMH,

ALONG WITH MEAN VALUES AND STANDARD DEVIATION FOR AMCE, FOR
THREE DIFFERENT IMAGE POPULATIONS

Fig. 3. Illustration of the performance of different stain normalization
methods. The top-left image is the template image. The next column is
the images sampled from the original images, followed by the results of
normalization using SPCN and DCGMM, respectively.

Fig. 4. Box plots of NMI, NMH, AMCEα and AMCEβ values for all
stain normalization methods in Experiment I. * denotes the statistical
significance of p < 0.01, and ns denotes not statistical significance.
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Fig. 5. Centroblast detection results: Precision, Sensitivity, mAP at 0.5 IOU threshold (mAP@50), and mAP at 0.5 to 0.95 IOU threshold
(mAP@50:95) of each model on test dataset with standard deviation error bar.

Fig. 6. Patch classification results: Accuracy, Sensitivity, Specificity, and Receiver Operating Characteristics (ROC) curves of each model on test
dataset with standard deviation error bar.

Next, we evaluate the background error of each image pop-
ulation. DCGMM has a significantly higher mean Absolute
Mean Color Error in α space (AMCEα) than the original image
population. For β space (AMCEβ), DCGMM does not have
statistical significance compared to the original. It suggests that
the DCGMM-processed images contain more or equal back-
ground errors than the original images, contradicting the goal of
reducing color variations.

Even though SPCN does not have statistical significance with
the original at AMCEα, at AMCEβ , SPCN provides significantly
less error than the original. Moreover, both values of SPCN’ are
statistically significantly less than DCGMM.

Therefore, we decided to implement SPCN in our framework
pipeline, as it offers lower SD and CV in NMI and NMH values
than the original and better AMCE values for both α and β
spaces than DCGMM.

2) Experiment II. Backbone Model Evaluation: This ex-
periment aimed to benchmark the performance of models trained
using both conventional and HNM approaches for object de-
tection and image classification tasks. Prior to comparing their
performance, we first analyzed the optimization process of each
model during training to gain insights into their convergence
behavior and stability. As indicated in Supplementary Fig. S1,
it was observed that the validation loss of the original (ori)
model reached the lowest value when converged. Other mod-
els (i.e., all HNM approaches) exhibited a similar converging
pattern more rapidly than the ori model, albeit with a higher
loss. Despite the model trained with HNM of morphological

features (hnm_morph) going with the same trend as other HNM
approaches, it achieved the highest performance in terms of
mean average precision (mAP@50) and accuracy, as shown in
Figs. 5 and 6, respectively.

For the object detection task, Fig. 5 provided an overview of
model performance on each metric with a confidence interval.
All models follow the same trend. The hnm_morph achieved
slightly better sensitivity, but in contrast, the trade-off appears
to be on precision. Nevertheless, its performance is superior to
other models in mAP@50 and mAP@50:95.

For the image classification task, the hnm_morph outper-
formed all other models, especially the model trained with
random HNM (hnm_random). Notice that the performance of
hnm_random dropped from ori on all metrics. In contrast,
hnm_morph, which was trained with the same approach but
with a more reasonable undersampling method, improved its
performance over the ori.

IV. DISCUSSION

A. Effect of Training With Pseudo-Negative Labels
on the Model Performance

Concerning the impact of training with pseudo-negative la-
bels from the hard negative mining (HNM) technique over the
conventional training approach, we demonstrated improvements
in centroblast (CB) detection and patch classification. However,
the validation loss of these models is higher than that of the
conventional training method (Supplementary Materials, Fig.
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Fig. 7. Heatmap visualization of detected centroblast in each patch on an unseen WSI. As conf_thres increases, the bright patch becomes
sparser and more prone to expert annotation.

S1). This is because the softmax function divides the total
probability mass across multiple classes (i.e., CB and non-CB)
rather than just one class of CB. When computing each class’s
confidence score in the bounding box using the softmax function,
the number of divisors is increased to two, resulting in the
confidence scores for each class becoming smaller on average
as the number of classes increases. Finally, the class loss of the
YOLO model, which is the cross-entropy loss, in models trained
with HNM is higher than in the ori model.

B. Effect of Undersampling Approaches on the
Model Performance

Since our framework was designed to imitate the training loop
with the pathologist’s refined labels, identifying CB based on cell
color and morphology, we retrieved false-positive samples and
fed them to the model. We obtain the following models based
on three undersampling approaches: hnm_random, hnm_box,
and hnm_morph. As the result of object detection and image
classification tasks, the model with the morphological features
(hnm_morph) performs best. Suggests that the design of the un-
dersampling approach is essential to take advantage of the HNM
technique and that pathologists’ intuition still provides some
information for deep learning to distinguish between non-CB
cells and actual CB cells.

C. Guidance for Clinical Implementation and Future
Works

In conventional histopathological workflow, pathologists
count the number of centroblasts (CB) in ten randomly se-
lected high-power fields (HPF), leading to high inter- and intra-
observer variability and being vulnerable to sampling bias. The
inter- and intra-observer variability among pathologists is crucial
since it directly impacts patient grading and management [6]. To
reduce the variability between pathologists, a solid guideline for
finding potential HPF in WSI is one solution.

With PseudoCell framework, pathologists will obtain two
guidelines: (i) heatmap visualization for potential CB regions
in WSI and (ii) CB annotations at the HPF level for identifying
CB. Pathologists’ remaining job is to select the HPF and then

accept the annotation or self-identify CB cells. Pathologists must
only set the confidence threshold (conf_thres), ranging from
zero to one when using PseudoCell. The conf_thres parame-
ter determines the initial confidence level of CB annotations
reported to pathologists. A low conf_thres (conf_thres = 0.2)
produces a dense heatmap, as in Fig. 7, whereas a high conf_thres
(conf_thres = 0.8) produces a sparse heatmap that more closely
resembles the expert-annotation.

We will divide the histopathological process into the HPF
selection and CB identification phases. In each phase, the real-
world adjustment of conf_thres to facilitate pathologist prefer-
ence could take the form of the following suggestion:

1) HPF Selection Phase: With a high conf_thres, Pseu-
doCell offers a sparse HPF that is still sufficient to grade
FL, which is suitable for pathologists who wish to complete
the grading task rapidly. In contrast, when conf_thres is low,
PseudoCell’ generates a dense heatmap that identifies the region
containing intensive CB and regions with less CB. This approach
is suitable for pathologists who wish to determine the HPF
independently.

2) CB Identification Phase: A high conf_thres is advanta-
geous for pathologists who prefer to self-identify on CB with
some framework-suggested CB annotation. In contrast, a low
conf_thres will enable the framework to recommend more CB
annotation, which is ideal for pathologists who wish to check
off the annotation.

The pathologists’ workload can be reduced by PseudoCell
accurately narrowing down the areas requiring their attention
during examining tissue as in Fig. 7. From all 24,757 patches
with tissue in WSI, the framework highlights 10,353 and 161
patches that contain potential CB candidates based on conf_thres
with an inference time of approximately 0.03 seconds per patch.
In other words, the framework can eliminate 58.18 to 99.35%
of all WSI patches that do not appear to be CB candidates at the
conf_thres. Pathologists can, therefore, focus on identifying CB
on the slide. We anticipated that the inter- and intra-variability of
pathologists would decrease after implementing our framework
in the real world. Meanwhile, the machine can benefit from
pathologists’s actual CB as refined labels. These labels can be
used to improve the model’s performance in the future. This
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Fig. 8. Comparision between ori, hnm_morph, and pathologist’s an-
notation in identifying centroblast cells. The illustration shows that ori
and hnm_morph correctly identify CB in (a) and (b), which are partially
blurred and mixed types of cells, respectively. For (c), hnm_morph had
a false positive. For (d), hnm_morph performed better than ori but still
had some false negative predictions.

cycle leads to human-machine collaboration in the real world,
which is one of the objectives of this work.

Pseudocell can also provide a second opinion that offers ad-
ditional patient safety and instills greater confidence in doctors,
enhancing their efficiency and reducing the likelihood of errors.
For instance, when there is a need to distinguish between an
infection and follicular cell lymphoma, particularly in its early
stages, Thai pathologists, already handling a heavy workload,
could issue a false negative, especially when the pathological
area is small.

Integrating PseudoCell into the histopathological workflow
offers several benefits. Firstly, the model assists pathologists
by highlighting regions or suggesting potential CB cell can-
didates within the tissue, narrowing the examination focus. It
serves as an additional quality control mechanism, flagging
areas that may contain CB cells and assisting pathologists in
not overlooking significant findings, thereby reducing diagnostic
errors. In addition, pathologists can use the model’s predictions
as a benchmark to compare and contrast their observations.
This iterative process improves their recognition of centroblast
cells, enhancing diagnostic precision. Incorporating PseudoCell
contributes to improved efficiency, quality control, and training
and education for identifying centroblast cells in histopathology.

While implementing the PseudoCell framework offers a cost-
effective alternative to the ongoing expenses of maintaining
a pathology team, its integration into clinical practice faces
workflow optimization and trust-building challenges. The com-
plexity of healthcare systems necessitates careful integration to
ensure seamless operation, potentially requiring adjustments to
existing infrastructure and the deep learning pipeline. Addition-
ally, addressing the “black box” nature of deep learning models
through enhanced interpretability and transparency is crucial for
gaining the confidence of clinicians and patients in PseudoCell’s
predictions and recommendations.

In future work, if additional object detection models or up-
dated versions exist, the PseudoCell framework permits their
implementation by modifying the backbone model. Further-
more, dealing with data limitations and model transparency is
crucial for pathologists to understand and have confidence in
the model’s decision-making. Combining weakly supervised
paradigms (e.g., MIL or Attention Map) with explainability
techniques (e.g., LIME, SHAP, and CAM) is a promising next
step to investigate.

V. CONCLUSION

In conclusion, our study introduces the PseudoCell framework
for centroblast (CB) cell detection, which enhances the perfor-
mance of the backbone model by using false-positive samples
from the Hard Negative Mining (HNM) method as pseudo-
negative labels. PseudoCell effectively distinguishes between
actual CB and non-CB cells in patches from whole-slide im-
ages (WSI). Our experiments and evaluations demonstrate that
model training from HNM on Neighborhood-based Recursive
search undersampling using morphological features achieves
the best results in CB detection and patch classification tasks.
PseudoCell can reduce pathologists’ workload by accurately
identifying tissue areas requiring attention during examination.
Depending on the confidence threshold, PseudoCell can elim-
inate 58.18–99.35% of non-CB tissue areas on WSI. Further-
more, PseudoCell can serve as a second opinion to differentiate
between infection and follicular cell lymphoma, particularly in
the early stages, making it cost-efficient for quality control and
educational purposes in CB recognition. This study presents
a practical centroblast prescreening method that does not rely
on pathologists’ refined labels for improvement. It suggests the
potential for human-machine collaboration in CB identification,
alleviating the burden on clinicians by focusing their labeling
efforts on regions suggested by PseudoCell rather than manual
labeling as conventionally done.

APPENDIX

Although our findings are promising, the limited sample size
used for model training and testing may affect its accuracy and
generalizability. Additionally, the PseudoCell model demon-
strates sensitivity to WSI stain color variations, leading to false
positives and false negatives in cell detection, as illustrated in
Fig. 8. For example, Fig. 8(c) shows a false positive identification
by the hnm_morph model compared to the ori model. In contrast,
Fig. 8(d) demonstrates some false negatives, potentially due to
stain variations that cause missing cell structures. Further inves-
tigation is needed to fully understand the cause of these false
negatives and explore potential mitigating strategies. Despite
these limitations, the model accurately identified CBs in blurred
images and those with mixed cell types, Fig. 8(a) and 8(b). This
suggests that data augmentation techniques and a larger, more
diverse dataset could improve the model’s robustness. Our study
demonstrates the potential of object detection models trained
with pseudo-negative labels to enhance cell- and slide-level
prediction performance, ultimately aiming to reduce pathologist
workload.
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SUPPLEMENTARY MATERIALS

Supplementary materials explain all evaluation metrics, vi-
sualize validation losses for each model during training, and
illustrate the models performance in challenging cases.
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