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Host defense peptides, abundantly secreted by colonic epithelial cells and leukocytes,

are proposed to be critical components of an innate immune response in the colon

against enteropathogenic bacteria, including Shigella spp., Salmonella spp., Clostridium

difficile, and attaching and effacing Escherichia coli and Citrobacter rodentium. These

short cationic peptides are bactericidal against both Gram-positive and -negative

enteric pathogens, but may also exert killing effects on intestinal luminal microbiota.

Simultaneously, these peptides modulate numerous cellular responses crucial for gut

defenses, including leukocyte chemotaxis and migration, wound healing, cytokine

production, cell proliferation, and pathogen sensing. This review discusses recent

advances in our understanding of expression, mechanisms of action and microbicidal

and immunomodulatory functions of major colonic host defense peptides, namely

cathelicidins, β-defensins, and members of the Regenerating islet-derived protein III

(RegIII) and Resistin-like molecule (RELM) families. In a theoretical framework where

these peptides work synergistically, aspects of pathogenesis of infectious colitis reviewed

herein uncover roles of host defense peptides aimed to promote epithelial defenses and

prevent pathogen colonization, mediated through a combination of direct antimicrobial

function and fine-tuning of host immune response and inflammation. This interactive

host defense peptide network may decode how the intestinal immune system functions

to quickly clear infections, restore homeostasis and avoid damaging inflammation

associated with pathogen persistence during infectious colitis. This information is of

interest in development of host defense peptides (either alone or in combination with

reduced doses of antibiotics) as antimicrobial and immunomodulatory therapeutics for

controlling infectious colitis.
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INNATE IMMUNITY IN INFECTIOUS
COLITIS AND THE PRESENCE OF HOST
DEFENSE PEPTIDES

Infectious diarrhea causes inflammation of the gastrointestinal
tract, clinically manifested by diarrhea, dehydration and, in
severe cases, death. Infectious diarrhea is a major cause of
morbidity and mortality worldwide, particularly in developing
countries (1). Diarrhea is regarded as the 8th leading cause
of death, with children (<5 year of age) being responsible
for over a quarter of deaths (2). Of the >1 million diarrheal
deaths attributed to infectious agents, bacterial pathogens were
collectively responsible for ∼57% (2). Likewise, of the >2 billion
global cases of diarrhea due to foodborne illnesses in 2010, 32%
were due to bacteria (3). In addition, bacterial diarrhea is a main
cause of illness in travelers seeking medical care after returning
from developing nations (4).

The main genera of bacteria that cause infectious colitis
are Escherichia, Salmonella, Campylobacter, Vibrio, Listeria, and
Shigella. Increased emergence of antibiotic resistant bacterial

FIGURE 1 | Colonic host defense peptides (HDPs) contribute to intestinal homeostasis and innate immune defense during infectious colitis through multiple

overlapping mechanisms. HDPs secreted from intestinal epithelial cells (yellow) exert direct antibacterial effects on both the intestinal microbiota [1] and invading

bacterial pathogens [2]. In terms of immunomodulatory functions, HDPs can enhance the immune signaling capacity of intestinal epithelial cells by forming complexes

with LPS/TLR4 (LL-37), or by directly activating TLRs (β-defensins) [3]. HDPs might maintain intestinal epithelial cell barrier and prevention of pathogen invasion by

increasing MUC2 secretion (green) and tight junction protein expression [4]. In the lamina propria, HPDs (yellow) secreted by epithelial cells or infiltrating leukocytes

can directly chemoattract leukocytes from the blood (neutrophils, macrophages), through activation of FPR2, P2X7, CCR2, and CCR6, or promote the secretion of

chemoattractant (CXCL8/IL-8) by epithelial cells (purple) [5]. In tissue resident macrophages, HDPs (yellow) can either promote anti-inflammatory responses by

blocking LPS-TLR4 interaction [6] or activate macrophages and dendritic cells [7] to alter cytokine responses.

strains have limited our ability to treat important enteric
pathogens including Escherichia and Salmonella, and raises
the possibility of increased prevalence and mortality due to
intestinal bacterial infections (5–7). Indeed, antibiotic resistance
is predicted to be a major future public health problem, with
antibiotic resistant bacteria expected to cause> 10million deaths
globally by 2050 (8). Development and commercialization of new
antibiotics is minimal and there are predictions that without
substantial changes, bacterial resistance will continue to increase.
Therefore, understanding innate immunemechanisms that aid in
pathogen clearance and resolution are critical to understanding
pathophysiology of infectious colitis and developing novel
antimicrobial and immunomodulatory therapeutics.

The gastrointestinal tract has metabolic functions of digestion
and nutrient absorption and also provides a barrier against
large numbers of commensal or pathogenic microbes in the
lumen. The colon employs multiple innate mechanisms to
prevent and clear bacterial infections. For example, MUC2
mucin glycoprotein secreted by goblet cells and host defense
peptides (HDPs) secreted by intestinal epithelial cells into
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the luminal environment compose the mucus layer, an
acellular first line of defense. Intestinal epithelial cells, held
together by apical junctional complexes, form a second
line of defense to prevent penetration of bacteria into the
lamina propria. If pathogenic bacteria are able to penetrate
mucus and epithelial barriers, underlying leukocytes can
protect the host by initiating inflammatory responses to clear
invading pathogens.

Among innate effectors in the colon, HDPs are short cationic
peptides abundantly secreted into the lumen by leukocytes and
the intestinal epithelium, with key functions in maintenance
of gut homeostasis (Figure 1). In the colon, HDPs are mostly
represented by cathelicidin, β-defensins, and members of the
Regenerating islet-derived protein III (RegIII) and Resistin-
like molecule (RELM) families. Known as broad-spectrum
antimicrobials, their contribution to innate gut defenses is
expected to extend beyond direct lytic effects on bacteria to
include immune functions reported in vitro (e.g., recruitment of
immune cells, wound healing, and cytokine production; Table 1)
(9, 42, 43). These immunomodulatory functions have been
mostly described for myeloid-derived immune cells (10, 44). A
key question is the extent to which immunomodulatory effects
of HDPs occur in the gut and their relevance in infectious
diseases. There are indications that secreted colonic HDPs are not
merely antimicrobial, but also contribute to orchestrated immune
responses. Understanding these aspects of HDP function is
necessary for identifying novel anti-inflammatory and anti-
infective targets as alternatives to conventional antimicrobials.
Herein, we review recent advances in our understanding of HDPs
in gut innate immune defenses and their role in pathogenesis of
infectious colitis.

TABLE 1 | Immunomodulatory cellular functions attributed to colonic host

defense peptides.

Host defense

peptide

Immune function References

Cathelicidin • Alter chemokine responses

• Inhibit TLR4 activation (leukocytes)

• Enhance TLR4 signaling (enterocytes)

• Chemoattractant

• Increase MUC2 expression

• Induce NET formation

(9–23)

β-defensin • Chemoattractant

• Activate dendritic cells and monocytes

• Stimulate cytokine release

• Increase epithelial barrier function

• Induce epithelial cell migration

• Induce MUC2 expression

(24–32)

REGIII • Promote epithelial cell proliferation

• Prevent apoptosis

(33, 34)

RELM-β • Increase epithelial cell proliferation

• Chemoattract T-cells

• Regulate REGIII expression

• Regulate epithelial cell barrier function

• Increase mucus secretion

• Promote fibrosis

(35–41)

CATHELICIDINS

Cathelicidins are small, cationic, amphipathic peptides produced
by epithelial cells, macrophages, and polymorphonuclear
leukocytes (44, 45). These peptides are synthesized as pro-peptide
precursors with a highly conserved N-terminal region (cathelin
domain) and a highly variable antimicrobial cathelicidin
peptide domain in their C-termini. Cleavage of the C-terminal
domain from the holoprotein (e.g., by serine proteases) is
required for antimicrobial activity. Humans have a single
cathelicidin gene (cathelicidin antimicrobial peptide, CAMP),
which yields a 37 amino acid peptide (leucine-leucine, LL-37)
generated by extracellular cleavage of the C-terminus (46). The
murine counterpart is cathelicidin-related-antimicrobial-peptide
(CRAMP), encoded by the gene Camp (formerly Cnlp) (47).

In the colon, cathelicidins are mostly secreted by neutrophils
and epithelial cells (42, 48). Differentiated colonic epithelial cells
at the peak of crypts constitutively secrete cathelicidins (42, 48,
49), which are normally present in intestinal mucus of healthy
individuals (50). Protective roles of cathelicidin in infectious
colitis have been demonstrated in mice homozygous for null
mutations in Camp (Camp−/−). These mice had exacerbated
diarrhea, destructive colitis, and increased pathogen burden
after challenge by chemical (43) or infectious (Clostridium
difficile) (51) agents. Accordingly, Camp−/− mice were more
susceptible to infection with attaching/effacing bacteria including
C. rodentium (42) and E. coliO157:H7 (11). Consistent with these
findings, upregulation of endogenous cathelicidin ameliorated
colitis caused by enteropathogenic E. coli in rabbits (52).

Signaling pathways that regulate cathelicidin synthesis in
the colon respond to both bacterial and endogenous stimuli.
Regarding bacterial stimuli, colonic epithelium produced
cathelicidins in response to bacterial by-products, such as
short chain fatty acids (e.g., butyrate) (48, 53) via MEK-ERK
signaling (49, 54). Bacterial DNA also stimulated cathelicidin in
colonic lamina propria macrophages through TLR9 (43). This
mechanism was observed in vivo when intracolonic exposure
to E. coli genomic DNA upregulated cathelicidin expression in
mice via TLR9 signaling (43). Similar to bacterial DNA, double-
stranded RNA mimic poly(I:C) induced cathelicidin expression
from intestinal epithelial cells via PI3-kinase-PKCζ-Sp1 signaling
independent of MAPK pathways (55). MAPK signaling was also
required for cathelicidin expression from colonic epithelial cells
exposed to a combination of IL-1β and purified MUC2 (56).

Direct antibacterial activity was the first function identified for
cathelicidins (57) with most studies focusing on the role of LL-
37 against E. coli. Whereas, multiple antibacterial mechanisms
may occur simultaneously, a principal bactericidal action of
cathelicidins is membrane pore formation followed by direct
bacterial death. LL-37 recognizes negatively charged lipids,
a major component of Gram-negative bacterial membranes
(58, 59). Binding of LL-37 to the bacterial surface leads to
formation of transmembrane pores that induce bacterial cell
lysis (60, 61). This pore formation depends on the alpha-helical
amphipathic structure of LL-37, which shape its interactions
with negatively-charged and hydrophobic targets on bacterial
membranes. Because the structure of LL-37 is highly dependent
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on environmental factors (e.g., pH and anion concentration),
the ability of cathelicidins to kill E. coli by transmembrane pore
formation may be affected in physiological conditions (61).

Other antimicrobial mechanisms of cathelicidins include
binding LPS to cross bacterial outer membranes into the
periplasmic space, where LL-37 binds and immobilizes
peptidoglycan to impede cell wall biogenesis and growth
(62). Aditionally, there is a large influx of LL-37 into the
bacterial cell after permeabilization of outer and cytoplasmic
membranes that rigidifies the cytoplasm and halts motion of
chromosomal DNA and ribosomes, thereby arresting E. coli
growth (63). The polycationic nature of LL-37 allows it to form
a network of electrostatic bonds with polyanionic DNA and
ribosomes, preventing proper diffusion of cellular components
(63). However, some of these antibacterial effects may be simply
bacteriostatic and may not be effective at the population level. In
high-density E. coli cultures exposed to LL-37, a sub-population
of non-growing bacterial cells absorb massive amounts of LL-37
to deplete it from the surrounding environment, enabling a
second sub-population to continue growing (64). Unlike LL-37,
which interacts directly with microbial cell surfaces [e.g., E.
histolytica (56)], other cathelicidins seem to internalize within
bacterial cells and trigger non-lytic mechanisms. For example,
porcine proline rich cathelicidin (PR-39), abundant in myeloid
cells in pigs, crosses the cell membrane and likely kills pathogens
by blocking bacterial DNA and peptide synthesis (65).

In an attempt to establish infection, intestinal pathogens may
actively dampen cathelicidin defenses by multiple strategies. One
strategy is to decrease cathelicidin expression in the colon during
bacterial colonization. Cathelicidin production was decreased in
colonic epithelium and leukocytes of shigellosis patients during
early infection, where both live Shigella and bacterial plasmids
blocked transcription of cathelicidin mRNA (66). Cathelicidin
was also transcriptionally suppressed in colonic epithelial cells
by exotoxins of Vibrio cholera and E. coli (cholera toxin and
labile toxin, respectively) (67). Thus, cathelicidin silencing is
likely a key virulence mechanism used by bacterial pathogens
to facilitate intestinal colonization. Another evasion strategy
is to repel direct killing by cathelicidins. While cathelicidins
displayed in vitro killing activity against multiple strains of
E. coli (11, 68), Salmonella enterica serovar Typhimurium
resisted killing by cathelicidin through modulation of its outer
membrane properties (69). Of note, despite these findings,
the real relevance of cathelicidin antimicrobial activity in
the gut is still controversial. Cathelicidins showed broad in
vitro antibacterial activity (either bactericidal or bacteriostatic)
against both Gram-positive and -negative bacteria (12, 70–73)
(Table 2). However, this antibacterial activity is often abolished
under physiological conditions, including presence of high salt
concentrations (68, 85), serum (86), plasma alipoprotein-A1 (87),
and sugars (88). Antibacterial activity of certain cathelicidins
[synthetic cathelicidin (C18G), protegrin, magainin-like peptide]
could be further inhibited by bacterial surface modifications, e.g.,
lipid A acylation by Salmonella spp. (89). Therefore, it is still
questionable if cathelicidins undertake extensive antimicrobial
activities in the colonic lumen. It is possible that microbicidal
activities are restricted to certain conditions or niches (e.g.,

TABLE 2 | Direct in vitro antimicrobial functions of colonic host defense peptides.

Host defense peptide Antibacterial activity References

Gram-negative Gram-positive

Cathelicidin E. coli

C. rodentium

S. enterica

S. enteritidis

K. pneumoniae

L. monocytogenes

S. aureus

E. faecalis

(12, 42, 70–

73)

β-defensin -1 E. coli

S. enteritidis

Bifidobacterium

spp.

Lactobacillus spp.

B. subtilis

S. aureus

(29, 74)

-2 E. coli

P. aeruginosa

H. pylori

S. aureus

S. pyogenes

(75–78)

-3 S. enterica

E. coli

P. aeruginosa

L. monocytogenes

S. aureus

E. faecalis

(78)

-4 E. coli

P. aeruginosa

S. aureus (79)

RELM-β P. aeruginosa

C. rodentium

L. monocytogenes

E. faecalis

(80)

REGIII -β E. coli

Bacteroides spp.

(81, 82)

-γ L. monocytogenes

L. innocua

E. faecalis

(83, 84)

deeper in intestinal crypts, within the inner mucus layer) where
cathelicidins can reach high concentrations and/or overcome
inhibitory physiological effects.

On the other hand, there is growing evidence that
immunomodulation is a critical function of cathelicidins in
gut homeostasis. Such immunomodulation can be achieved by
signaling through both colonic epithelial cells and immune cells,
often at concentrations lower than is required for antimicrobial
activity (Figure 1, Table 1). A first role of cathelicidins in gut
innate immuninty could be enhancement of Toll-like receptor
(TLR) sensing and prevention of pathogen invasion into colonic
epithelial cells. For instance, human adenocarcinoma colonic
epithelial (HT-29) cells exposed to a combination of synthetic
LL-37 and LPS had increased TLR4 gene and protein expression
(13). Such TLR4 activation is expected to increase production
of pro-inflammatory cytokines, since LL-37 was required
for CXCL8 and IL-1β production from colonocytes exposed
to bacterial stimuli (13, 14). Moreover, the combination of
cathelicidin and LPS prevented invasion of Salmonella enterica
serovar Typhimurium into HT-29 cells (14). Although the
synergistic effect between cathelicidins and LPS has not be
tested in vivo, HT-29 cells served to examine colonic epithelial
cell responses, as they constitutively express TLR4 and secrete
CXCL8 in response to LPS as do primary intestinal epithelial cells
(90). In support of this presumptive role in the colonic mucosa,
LL-37 primed inflammatory responses in airway epithelial cells
during Pseudomonas aeruginosa infection, promoting IL-1β
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and IL-18 secretion in an NLRP3 and caspase-1 dependent
fashion (91).

Other immunomodulatory roles of cathelicidins in the gut
include regulation of the intestinal epithelial barrier. This is
important because the epithelial barrier plays a critical role in
colonic histopathological changes and diarrhea that characterize
infectious colitis. The epithelial paracellular barrier is largely
maintained by tight junctions (TJs), and is critical for water
absorption and restricting invasion of enteric luminal bacteria.
TJs are disrupted in the colon exposed to enteric pathogens
(92), but cathelicidins induced TJ gene expression in mammalian
enterocytes and porcine intestines (9, 93). In addition, LL-
37 prevented disruption of the TJ protein ZO-1 during S.
enterica serovar Typhimurium infection in colonic epithelial
(T84) cells (14). Effects of cathelicidins are not restricted
to gut epithelium, as LL-37 induces upregulation of tight
junction proteins and increases epithelial barrier function in
keratinocytes (94). Although significance of cathelicidins in
maintaining the gut barrier is incompletely understood, these
functions might contribute to the increased pathogen burden
and histopathological damage in Camp−/− mice infected with C.
rodentium (42).

The colonic epithelial barrier is also maintained by the
mucus layer, mainly composed of MUC2 mucin derived from
intestinal goblet cells (56). MUC2 mucin limited in vitro
colonization by pathogenic E. coli (95) andmechanically expelled
pathogens from the gut to prevent C. rodentium propagation
(96). The colonic mucus barrier is comprised of a firmly
attached inner layer devoid of bacteria and a more loosely
attached outer layer which contains large numbers of commensal
bacteria (97). Camp−/− mice had a thinner colonic mucus
layer and were more easily penetrated by E. coli O157:H7 (11),
demonstrating the importance of cathelicidin for forming an
effective mucus barrier. Moreover, stimulation of HT-29 cells
with LL-37 induced gene expression of mucins MUC1 and
MUC2 via the P2X purinoceptor 7 (P2X7) and MAP kinase
pathway (9, 15). This function has been demonstrated in other
epithelia, where stimulation of airway epithelial (NCI-H292) cells
with LL-37 resulted in MUC5AC production through EGFR
activation (98). Thus, it has been postulated that cathelicidins
and mucin coexist as first line defenders in the intestinal lumen.
Moreover, the more compact inner mucus layer could retain
cationic peptides due to its overall negative charge and provides
a gradient of antimicrobial HDPs that separates commensal
microbiota from the epithelium (50). Indeed, cathelicidins are
implicated in maintaining the colonic microbiota. Camp−/−

mice display a different colonic microbiota in comparison to
Camp+/+ mice, mostly associated with increased populations
of Odoribacter lanues, Desulfovibrio piger, and Desulfomicrobium
orale in Camp−/− mice (99).

It is known cathelicidins can act as direct chemoattractants
to promote leukocyte influx to the site of infection; a role
that could be critical in infectious colitis (100, 101). In
leukocytes, cathelicidins signal through a range of receptors,
including P2X7 and Formyl Peptide Receptor 2 (FPR2) that
recognize extracellular ATP and N-formyl peptides, respectively.
Accordingly, LL-37 inhibited neutrophil apoptosis by signaling

through P2X7 and PI3K pathway (102), and chemoattracted
FPR2-expressing peripheral blood monocytes, neutrophils and
CD4+ T cells (16). The inhibition of apoptosis in neutrophils
was abrogated by blocking P2X7 and the PI3K pathway (102),
while the chemoattractant function of cathelicidin was inhibited
by both a specific FPR2 inhibitor and the G-protein coupled
receptor inhibitor pertussis toxin (16). Moreover, LL-37 directly
activated CD11b/CD18 to increase monocyte migration (103)
and phagocytosis of LL-37 coated bacteria (104), indicating a
role of cathelicidin in leukocyte phagocytosis and migration
through CD11b/CD18. Indirect activation of CD11b/CD18 by
LL-37 and CRAMP on monocytes can also occur through
activation of FPR2 (105). Cathelicidins can promote additional
antimicrobial functions in neutrophils, such as induction of
neutrophil extracellular trap (NET) formation. Stimulation of
human neutrophils with both LL-37 and CRAMP resulted in an
increase in NET formation (17, 18). Further research is needed
to define the importance of these chemoattractant and pro-
phagoctytic effects of cathelicidins in gut physiology and defenses
in infectious colitis.

One intriguing aspect of cathelicidins is their pleiotropic
nature, exerting either pro-inflammatory effects or attenuating
inflammation depending on the environment. Cathelicidins
inhibit LPS-induced pro-inflammatory responses in leukocytes.
LL-37 inhibited the LPS-induced secretion of TNF-α from
phagocytic THP-1 cells (10) by blocking binding of LPS to
CD14 (19). This LPS neutralization was also important for
preventing LPS-induced apoptosis in endothelial cells (106) and
LPS/ATP-induced macrophage pyroptosis (20). Likewise, LL-37
lowered TNF-α, Cxcl-1, and IL-1β expression in both cultured
murine macrophages and mammary epithelial cells exposed
to the pathogenic algae Prototheca bovis (107). On the other
hand, cathelicidins seem to promote inflammatory responses
in intestinal epithelium (13, 14). Cathelicidin exhibited pro-
inflammatory functions in intestinal epithelial cells exposed
to LPS or S. enterica, including increased TLR4 expression,
increased CXCL8 expression, and increased IL-1β (13, 14). It
is likely that pro- or anti-inflammatory immunomodulatory
function of cathelicidin is cell-type specific, and depends on
the receptors expressed by either leukocytes or epithelial cells,
infection status, the class of infecting pathogen, and the
surrounding cytokine milieu.

The inter-species activity of cathelicidins is of interest for
understanding the ontogeny of these ancenstral defenses and the
development of therapeutics. Although all cathelicidins share a
highly conserved N-terminal cathelin domain, the C-terminal
antimicrobial domain is highly variable, both in sequence identity
and secondary structure (45). For example, LL-37 and CRAMP
share <70% sequence identity, however, they are still considered
homologous. This is because both LL-37 and CRAMP share
similar structure (α-helical and net charge of +6), antimicrobial
capabilities (12, 108), and show interspecies functional capacity
(109, 110). Both peptides comparably regulated chemokine
expression and TLR 4 activity in myeloid cells (12, 21, 22)
and neutrophil recruitment via FPR2 (16, 23). Moreover, mice
infected with H1N1 influenza A virus had enhanced survival
and reduced viral titer upon treatment with nebulized LL-37
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(109). Likewise, intranasal administration of LL-37 increased
inflammatory responses in sinonasal tissue of mice (110),
while CRAMP was chemoattractant for human monocytes,
neutrophils, and macrophages (23). However, an analysis of the
interspecies functionality of 12 cathelicidins from 6 different
species showed varying immunomodulatory activity results.
While cathelicidins from all species demonstrated antimicrobial
and LPS neutralizing function, there was large variability in the
peptides’ abilities to induce cytokine secretion from RAW264.7
macrophages (12). Thus, although they share common aspects,
each cathelicidin should be studied as a unique peptide with
specific activities in each host.

Given the antimicrobial and immunomodulatory
characteristics of endogenous cathelicidins, the use of exogenous
cathelicidin peptides (or their derivatives) as therapeutics
for infectious colitis is appealing. Systemically administered
exogenous cathelicidins were shown to attenuate colitis and
reduce Salmonella burden in mice (111), while intracolonic
CRAMP administration attenuated murine C. difficle colitis (51).
Furthermore, intraperitoneal injection of porcine cathelicidin
PR-39 in EHEC-infected mice improved survival, attenuated
inflammatory cell infiltration and pro-inflammatory cytokine
production (IL-1β, TNF-α, and IL-6) in the colon, and restored
jejunal tight junction formation (112). Treatment of EHEC-
infected mice with a cathelicidin derived from the snake
Bungarus fascia (cathelicidin-WA) was similarly effective as
the antibiotic enrofloxacin for increasing survival, reducing
histopathological colonic damage and attenuating inflammatory
colonic IL-6 production (113). Moreover, cathelicidin-WA
was more effective than enrofloxacin for restoring jejunal
mucus thickness and goblet cell number in EHEC-infected
mice (93). A CRAMP-vancomycin conjugate demonstrated
increased antibacterial activity against Gram-negative bacteria
when compared to vancomycin or CRAMP alone, or to a 1:1
mixture of vancomycin and CRAMP (114). Synthetic HDPs
derived from bovine cathelicidin peptide sequences with direct
bactericidal and immunomodulatory functions (named immune
defense regulator peptides, IDRs) have been developed for the
treatment of diverse bacterial infections (115). IDR-HH2,−1002,
and−1018 stimulated neutrophil functions including chemokine
secretion, expression of adhesion molecules and release of
antimicrobial HDPs, resulting in increased neutrophil killing of
E. coli (116). IDR-1002 showed anti-inflammatory functions in a
murine ear sterile inflammation model, decreasing IL-6, MCP-1,
and KC production in PMA inflamed ears (117). Treatment of
P. aeruginosa infected mice with IDR-1002 showed decreased
bacterial burden and associated inflammation, including
decreased IL-6 and MCP-1 in bronchoalveolar lavage fluid
(118). Additionally, RAW 264.7 macrophages pre-treated with
IDR-1002 and then stimulated with LPS showed reduced TNF-α
and COX-2 expression (119). IDRs could also be combined with
conventional antibiotics; IDR-1018 demonstrated anti-biofilm
activity against P. aeruginosa and synergistic capabilities with
antibiotics to kill biofilms of P. aeruginosa, E. coli, Acinetobacter
baumannii, and S. enteria, among others (24). Thus, cathelicidins
show promise as a potential future therapeutic against infectious
colitis to reduce or replace antibiotics.

β-DEFENSINS

β-defensins are small cationic HDPs characterized by their
cysteine-rich nature and disulphide bridges. There are at least
48 human β-defensin (hBD) genes (120), including hBD-1, -
2, -3, and -4 that are highly expressed in the colon (25, 121).
In mice, murine β-defensin (mBD)-1, -4, and -14 have been
proposed as orthologous to hBD-1, -2, and -3, respectively (120).
In terms of gut regulation, hBD-1 is constitutively expressed
in colonic epithelium but does not appear to be upregulated
by inflammatory signals (26), whereas hBD-2, -3, and -4 are
minimally expressed in healthy colonic epithelium but are
induced during inflammation (27–29).

Specific pro-inflammatory cytokines regulate colonic
β-defensins. For example, IL-1α/β, and TNF-α enhanced
expression of hBD-2 in intestinal epithelial cells without affecting
hBD-1 expression (26). Such β-defensin induction occurred
mostly through NF-κB (26). Likewise, activation of TLR2 and
TLR4 directly activated hBD-2 expression in colonic epithelial
cells through NF-κB and AP-1 (30), as well as activation of
Nucleotide-binding Oligomerization Domain-like Receptor 2
(NOD2) (31). NF-κB-independent mechanisms have also been
involved in β-defensin synthesis. Corticosteroids increased β-
defensin expression independent of NF-κB in intestinal epithelial
(Caco-2) cells (32). Additionally, hBD-3 was upregulated
independently of NF-κB in human colonic epithelial cells
exposed to extracts from medicinal plants (andrographolide,
oridonin, and isoliquiritigen) (122). This upregulation of
β-defensin increased bactericidal activity against Listeria
monocytogenes and, bacteriostatic activity against S. enterica in
supernatants from human colonic epithelial cells (122). The
colonic mucus layer is also important in hBD-2 regulation. The
major colonic secretory mucin, MUC2, upregulated hBD-2 in
HT-29 cells in response to IL-1β (75). Moreover, mice genetically
deficient in Muc2 (Muc2−/−) had decreased expression of
mBD-4 and mBD-14 (75). Interestingly, fully glycosylated
mature MUC2 reduced antibacterial activity of hBD-2 against
pathogenic (EPEC) and commensal E. coli, indicating mucin
may protect enteric bacteria from killing by β-defensins (75).
These results are particularly important for ulcerative colitis
patients, who commonly have diminished or disrupted intestinal
mucus layers, suffer from dysbiosis, and are more prone to
Clostridium difficile infection (123, 124).

Direct antibacterial functions of β-defensins are attributed
to a disruption of microbial membranes by pore formation,
causing release of intracellular contents and death (125).
β-defensin homologs have a broad range of antibacterial
activity (Table 2). For instance, hBD-2 has bactericidal activity
against Gram-negative bacteria (i.e., E. coli, P. aeruginosa,
Helicobacter pylori) and fungicidal activity against yeast (Candida
albicans), but is merely bacteriostatic against the Gram-positive
bacterium Staphylococcus aureus (76, 77). Conversely, hBD-3 is
directly bactericidal against S. aureus and vancomycin-resistant
Enterococcus faecium (VRE) (78). hBD-4 has bactericidal activity
against both Gram-negative E. coli and P. aeruginosa in addition
to Gram-positive S. aureus (79). Interestingly, reduction of
disulphide-bridges in hBD-1 increases its bactericidal activity

Frontiers in Immunology | www.frontiersin.org 6 May 2020 | Volume 11 | Article 965

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Blyth et al. Colonic Host Defense Peptides

against C. albicans and Gram-positive commensal bacteria (29).
Noteworthy, hBD-1 may have additional antibacterial functions
beyond direct bacterial lysis; hBD-1 forms an entrapping
net that abolished bacterial translocation across polycarbonate
membranes and would prevent bacterial invasion (74).

β-defensins have chemoattractant function, although these
roles in colitis are poorly defined. Both human (hBD-1, -2, and
-3) and murine (mBD-4 and -14) β-defensins induce chemotaxis
in leukocytes in a CCR6 dependent fashion (126–129). Moreover,
hBD-2 and -3, and the orthologous mBD-4 and -14 induce
migration of monocytes, macrophages and neutrophils through
interactions with CCR2 (25). β-defensin immunomodulatory
function also includes maturation and activation of leukocytes.
mBD-2 activates immature dendritic cells, functioning as a TLR4
ligand and upregulating co-stimulatory molecules toward to
a TH1 polarized response (130). In addition, hBD-3 activates
monocytes in a TLR1/2 dependent fashion (131), whereas hBD-2
and -3 increase pro-inflammatory cytokine release from TLR-
stimulated macrophages by ATP release and P2X7 activation
(132). Interestingly, hBD-1, -2, and -3 all stimulate cytokine
release from human peripheral blood mononuclear cells, with
each β-defensin stimulating a unique array of cytokines (133).
The presence of hBD-1 in human plasma (134), and expression of
hBD-1 and -2 by human monocytes indicates systemic functions
of β-defensins (135).

At the gut mucosa, β-defensins regulate epithelial cell
responses including proliferation and migration, which are
critical for resolution of injury, infection, and inflammation.
hBD-2 signals through CCR6 on colonic epithelial (Caco-2 and
T84) cells to induce actin cytoskeleton rearrangements and
promote cell migration (136). Likewise, hBD-2 increased cell
migration, induced MUC2 transcription and protected against
apoptosis in Caco-2 and HT-29 cells (137). Studies in other
epithelia infer hBDs may additionally have a role in regulation of
intestinal epithelial permeability. hBD-3 improved keratinocyte
barrier function through upregulation of tight junction proteins
(138). Overall, protective mechanisms of β-defensins during
intestinal infection include direct bacterial killing and regulatory
functions on immune and intestinal epithelial cells.

REGENERATING ISLET-DERIVED PROTEIN
(REG) III

The Regenerating islet-derived protein III (RegIII) proteins
are C-type lectins, ∼16–17 kD (139), with the capacity
of binding bacterial carbohydrate motifs, independent of
calcium, to mediate pore formation in bacterial membranes
(140). The Reg gene family was originally identified from
the Reg gene expressed in rat pancreatic regenerating islets
(141). A large Reg gene family was later characterized and
separated into 4 subgroups (I-IV), based on DNA and protein
sequence similarity (142, 143). In humans, the Reg family
consists of 5 genes [REGIα, REGIβ , Hepatocarcinomal-Intestine-
Pancreas/Pancreatitis-Associated Protein (HIP/PAP), REGIIIγ ,
and REGIV], whereas 7 Reg genes are present in mice (RegI,
RegII, RegIIIα, RegIIIβ , RegIIIγ , RegIIIδ, and RegIV) (144).

In intestines, RegIII genes are the most prevalent Reg, with
higher expression in the small intestine (83, 145, 146). Mice
express 4 RegIII family members (RegIIIα, -β , -γ , and -δ),
whereas humans express 2 RegIII genes (HIP/PAP (REGIIIα) and
REGIIIγ ) with certain homologies (147, 148). Human HIP/PAP
and murine RegIIIγ are orthologous and share 67% homology,
whereas human REGIIIγ shares 68% homology with murine
RegIIIβ (149).

RegIII gene expression is increased during intestinal
inflammation, as observed in IBD patients and mice afflicted
with DSS-induced colitis (HIP/PAP and RegIIIγ ) (145). RegIII
expression in non-hematopoietic cells is mainly induced by
activation of pattern recognition receptors andMyD88 signaling.
Such innate upregulation of RegIIIγ in intestinal epithelium
conferred protection against L. monocytogenes infection (150).
Likewise, oral LPS upregulated RegIIIγ through TLR4 in
antibiotic-treated mice, providing increased resistance to
vancomycin-resistant Enterococcus (VRE) (151). Specialized
intracellular nucleotide-binding oligomerization domain-like
receptors (NOD-like receptors) also regulate RegIII. Mice
deficient in Nod (Nod1−/−/Nod2−/−) had decreased expression
of colonic RegIIIγ , associated with increased susceptibility to
DSS-induced colitis (152).

Expression of RegIIIγ and RegIIIβ in colonic epithelial
cells can also be regulated by IL-22 via STAT3 (153, 154).
Indeed, mice genetically deficient in STAT3 have delayed wound
healing duringDSS-colitis, associated with decreasedRegIIIγ and
RegIIIβ expression in intestinal epithelial cells (155). Likewise,
enteric infections could regulate RegIII via IL-22. RegIIIγ is
upregulated during C. rodentium infection in response to IL-22
(154), whereas the TLR5 ligand flagellin increased expression of
RegIIIγ in intestinal epithelial cells through IL-22 induction and
protected against VRE infections (156). A main source of IL-22 is
Th17 cells that regulate RegIIIγ in human and murine colonic
epithelial cells (154, 157). Therefore, upregulation of intestinal
RegIII can be mediated through cytokines, such as IL-22, or
potentially through recognition of pathogen associatedmolecular
patterns, e.g., LPS or flagellin. Collectively, these functions could
work to drive pathogen clearance and restore homeostasis.

Antimicrobial functions of RegIII in colonic defense were
recently demonstrated (Table 2). In vitro, HIP/PAP kills Gram-
positive bacteria (L. monocytogenes and E. faecalis) through
formation of an oligomeric pore in the bacterial membrane,
although HIP/PAP failed to kill Gram-negative bacteria (83,
84). Unlike other C-type lectins, HIP/PAP binds to bacterial
peptidoglycan in a calcium-independent fashion, and bacterial
killing requires a conserved EPN motif (140). Accordingly,
RegIIIγ−/− mice have increased abundance of Gram-positive
mucosa-associated commensal bacteria (158). Interestingly,
whereas RegIIIγ disrupts Gram-positive bacterial membranes,
RegIIIβ preferentially kills Gram-negative bacteria (81, 82, 159).
The ability of RegIIIβ to specifically target Gram-negative
bacteria is due to its ability to bind to carbohydrate motifs of lipid
A, a main component of LPS (159). The antibacterial function
of RegIIIγ and RegIIIβ to preferentially target Gram-positive
and Gram-negative bacteria, respectively, offers an interesting
mechanism to for these two related HDPs to jointly protect

Frontiers in Immunology | www.frontiersin.org 7 May 2020 | Volume 11 | Article 965

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Blyth et al. Colonic Host Defense Peptides

against different types of bacterial pathogens. The antibacterial
activity of RegIIIγ and HIP/PAP is activated through proteolytic
removal of an N-terminal pro-segment by trypsin; the protein
is inactive until it is secreted into the intestinal lumen and
proteolytically processed to generate an active peptide (160). This
fine control of RegIIIγ activity is similar to other regulatory
mechanisms described for small intestinal α-defensins that
require activation by the metalloproteinase matrilysin or trypsin
(161, 162).

Roles of RegIII proteins in gut homeostasis may extend
beyond direct bactericidal functions (Table 1). In the skin
of psoriasis patients, HIP/PAP is highly expressed via IL-17
and promotes keratinocyte proliferation through engagement
of exostosin-like 3 (EXTL3) and activation of the PI3K-AKT
signaling pathway (33). Some of these immunomodulatory roles
for RegIII proteins could apply to the gut, including preventing
apoptosis. Treatment of HT-29 cells with recombinant HIP/PAP
protected against apoptosis (34). Moreover, IL-22 protected mice
from intestinal stem cell apoptosis during graft-vs.-host disease
(GVDH) through upregulation of RegIIIγ (34).

Intestinal microbiota is an important regulator of RegIII.
RegIIIγ genes were upregulated in the colon of germ-free
mice upon bacterial colonization (83), and specific commensal
bacteria induce RegIIIγ genes in the colon. Monocolonization
of germ-free mice with Gram-positive Bifidobacterium breve,
but not Gram-negative E. coli JM83, increased RegIIIγ
production (149). Similarly, specific pathogen free (SPF)
Nod1−/−/Nod2−/− mice showed decreased RegIIIγ expression,
which was restored with altered Schaedler flora (ASF) (in
gnotobiotic Nod1−/−/Nod2−/− mice) or B. breve (in SPF
Nod1−/−/Nod2−/− mice) (152). In addition, monocolonization
of germ-free SCID mice with segmented filamentous bacteria
(SFB), strong inducers of Th17 cells andmucosal IL-22, increased
RegIIIγ expression in intestinal epithelial cells (163). Likewise,
monocolonization of germ-free mice with Gram-negative
Bacteroides thetaiotaomicron resulted in a modest upregulation
of RegIIIγ (2.5-fold), whereas monocolonization with Gram-
positive Listeria innocua had no effect on RegIIIγ expression
(83). Interestingly, monocolonization of Rag-1−/− germ-free
mice with B. thetaiotaomicron and L. innocua resulted in a large
(40 to 50-fold) increase in RegIIIγ expression, respectively (83).
This phenomenon is hypothesized to be due to the absence
of luminal IgA, which normally sequesters commensal bacteria
away from intestinal epithelial cells, suggesting contact between
bacteria and intestinal epithelial cells is a major driver of RegIIIγ
expression (83).

It has been proposed that RegIIIγ antimicrobial activity
is critical to separate commensal bacteria from underlying
intestinal epithelial cells (158), or modulate the intestinal
microbiota population when stimulated by intestinal infection
or inflammation. In fact, RegIII-mediated alteration of the
intestinal microbiota can have implications on outcomes of
infectious colitis. RegIIIβ expression resulted in prolonged and
worsened disease in a streptomycin murine model of Salmonella-
induced colitis, corresponding with decreased presence and re-
establishment of commensal Bacteroides spp. (81). Similarly,
the regulation of RegIII by the microbiota has implication

on infections, as depletion of the intestinal microbiota by
antibiotic treatment decreased intestinal RegIIIγ expression and
increased VRE burden (151). Production of RegIIIγ varies across
the gut, with lower RegIIIγ expression in colon compared
to small intestine (146); this difference may account for
differential microbiome-host interactions. Whereas, RegIIIγ−/−

mice did not display increased commensal bacteria/epithelial
cell contact in the colon, they had more intimate bacterial
contact in the terminal ileum associated with increased
production of inflammatory IL-22 and myeloperoxidase (164).
The antibacterial function of RegIIIγ is thought to be of
particular importance due to its presence within the mucus
layer, preventing penetration of both commensal and pathogenic
bacteria. The mucus layer contains RegIIIγ (164) and its larger
size compared with other HDPs (e.g., defensins or cathelicidins)
could favor closer interactions with mucus glycoproteins thereby
preventing RegIIIγ diffusion from the mucus layer into the
lumen (158). Thus, RegIII may contribute to gut homeostasis
via direct antibacterial functions against intestinal bacterial
pathogens, microbiome regulation and immunomodulation
(Figure 1).

RESISTIN-LIKE MOLECULES (RELM)

Resistin-like molecules (RELMs) are a family of secreted proteins
characterized by a conserved cysteine-rich C-terminus (165).
Previously named Found in Inflammatory Zone (FIZZ) and
Hypoxia-Induced Mitogenic Factor (HIMF) proteins (166), the
RELM protein family has been studied in a wide range of
diseases, including asthma, diabetes, and bacterial and parasitic
infections. RELM proteins range in size from 105 to 114
amino acids, with 3 conserved domains: a signal sequence, a
variable middle domain, and a C-terminal domain (165). The
latter is particularly rich in cysteine residues, invariantly spaced
following the sequence C-X11-C-X8-C-X-C-X3-C-X10-C-X-C-X-
C-X9-CC-X3−6 (165). Mice have 4 Relm proteins (RELMα, -β,
-γ, and resistin) encoded by Retlna, Retlnb, Retlng, and Retn
genes, respectively, whereas humans possess only RELMβ and
Resistin, encoded by RETLNB and RETN genes (165, 167).
Murine RELMα is mostly restricted to airway epithelial cells
(168) and immune cells (i.e., macrophages and dendritic cells)
(169, 170), while murine RELMγ is expressed in bone marrow,
spleen, and lungs (171). Human Resistin is expressed in immune
cells (172), whereas murine Resistin is restricted to adipocytes
(173). Resistin and RELMβ form large hexamers consisting of 2
trimers, linked by disulphide bonds present in their N-terminal
coiled-coiled domains (174), although RELMβ may also exist as
secreted dimers (175).

RELMβ is the most abundantly expressed RELM in the large
intestine of both humans and mice (176), mostly in cecum and
distal colon (176). The peptide is produced as a 111-amino
acid protein with an N-terminal 11-amino acid signal sequence,
and is predominantly restricted to secretory granules of mucus-
secreting goblet cells (176). Unsurprisingly, RELMβ expression
is regulated by factors that influence goblet cell functions, e.g.,
IL-18 and IL-22 (177). Expression of RELMβ is dependent
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on the microbiota, being transcriptionally induced in germ-
free mice upon colonization with a conventional microbiota
(176). Moreover, oral antibiotic treatment of mice decreased
Firmicutes, with persistence of Bacteroidetes and Proteobateria,
and decreased RELMβ production, along with decreased IFNγ

and IL-17 production from CD4+ T-cells (178).
RELMβ is particularly reactive to helminth intestinal

infections, including Trichinella muris, Trichuris spiralis, and
Nippostrongylus brasiliensis as a part of a TH2-driven immune
response, mainly mediated through IL-4 and IL-13 (179).
Accordingly, RELMβ-deficient mice were more susceptible to
Heligmosomoides polygyrus and Nippostrongylus brasiliensis
infections (180). Detection of RELMβ in feces of mice with
gastrointestinal nematode infections has also been demonstrated
as a non-invasive tool to assess intestinal changes in response to
intestinal infections (181). Mechanistically, RELMβ is necessary
for IL-4-mediated intestinal worm expulsion, impairing the
ability of worms to feed on host tissues and generate ATP
(180). In addition, RELMβ can directly bind chemosensory
components of parasitic nematodes to block their sensory
functions (179).

Colonic RELMβ expression is increased during bacterial
infection (e.g., C. rodentium), with secreted RELMβ present in
feces (35). Indeed, RELMβ deficient mice are more susceptible
to C. rodentium infection, with decreased survival and increased
bacterial colonization deep within colonic crypts (35). Direct
microbial killing may be a key role of RELMβ in this gut
defense. RELMβ causes pore formation and bacterial death in
both Gram-positive and Gram-negative bacteria, including L.
monocytogenes, E. faecails, C. rodentium, and P. aeruginosa (80)
(Table 2). Although it is broad-spectrum bactericidal, RELMβ

preferentially kills Gram-negative bacteria, with antibacterial
functions observed for both monomeric and dimeric forms
of the protein (80). Additionally, colonic RELMβ may protect
againstC. rodentium indirectly, by promoting intestinal epithelial
cell (IEC) proliferation and chemoattracting T-cells. RELMβ−/−

mice infected with C. rodentium had increased mortality, with
reduced CD4+ T-cell infiltration, reduced IL-22 production,
and impaired IEC proliferation in colons (35). Interestingly,
RELMβ−/− mice displayed decreased expression of RegIII C-
type lectins (36, 37). Thus, decreased CD4+ T-cell infiltration
and IL-22 production in the colons of RELMβ−/− mice may be
major drivers of decreased RegIIIγ gene expression, as IL-22 is a
strong inducer of RegIIIγ production (153, 154).

RELMβ expression is induced in mice during DSS colitis,
with increased expression requiring IL-13, as IL-13−/− mice
were unable to induce RELMβ (36). Some pro-inflammatory
roles for RELMβ are postulated based on decreased colitis in
RELMβ−/− mice exposed to DSS (e.g., decreased weight loss,
colonic shortening, and mortality) (36). However, in the same
study, RELMβ−/− mice were more susceptible to TNBS-induced
colitis (36). These apparent conflicting results are likely due to
the underlying inflammatory mechanisms behind these 2 models
of colitis. While DSS colitis causes inflammation driven by direct
erosion of the epithelial barrier, TNBS-induced colitis is mediated

by potent TH1 immune responses (182). In addition, RELMβ−/−

mice responses to DSS and TNBS-induced colitis could be
regulated by RegIIIβ expression, which showed to reduce TNF-
α induced immune responses in monocytes and epithelial cells
(36, 183). Thus, RELMβ could undertake either pro- or anti-
inflammatory roles depending on the inflammatory stimuli or
surrounding immune activation.

RELMs may enhance gut mucosal barrier defenses against
pathogenic bacteria by promoting colonic mucin. RELMβ

upregulated MUC2 and increased secretion of MUC5AC
in mucin-producing colonic epithelial (HT29-Cl.16E) cells,
signaling through calcium and PKC (38). Moreover, mice
pre-treated with synthetic RELMβ experienced increased
mucus production and attenuated TNBS colitis (38). However,
RELMβ could still exert pro-inflammatory roles beyond a
mucin secretagogue effect. Mice genetically deficient in Muc2
(Muc2−/−) developed spontaneous colitis, an effect that was
diminished in mice double knock out for Muc2 and RELMβ

(Muc2−/−/RELMβ−/−) (37). Interestingly, RELMβ expression in
Muc2−/− mice induced expression of both RegIIIγ and RegIIIβ,
which corresponded to a decrease in Lactobacilli spp. (37). It
is likely that spontaneous colitis in Muc2−/− mice responds to
replenishment of Lactobacilli spp. and a pro inflammatory role
of RELMβ affecting healthy intestinal microbiota. Furthermore,
the presence of RELMβ in Muc2−/− mice could contribute to
increased RegIII expression, resulting in microbial dysbiosis
and more severe colitis in comparison to Muc2−/−/RELMβ−/−

mice (37). Effects of RELMβ on gut permeability could also
impact intestinal homeostasis. RELMβ−/− mice have decreased
trans-epithelial electrical resistance (TEER) and increased
permeability to (4-kDa) dextran in whole intestinal mounts
(36). RELMβ stimulation of rat jejunal tissue promoted glucose
transport mediated by alteration of glucose transporter proteins
(diminished SGLT-1 and increased GLUT2 expression) and
activation of PKC and AMPK signaling (184). Thus, the function
of RELMβ in colitis is, at least in part, due to its ability to
induce expression of RegIII proteins, modulate the intestinal
microbiota, and influence epithelial permeability.

Other RELMs, including RELMα, usually restricted to
immune cells (e.g., macrophages and dendritic cells) (169, 170),
are expressed by epithelial cells, macrophages, and eosinophils
during C. rodentium infection (185). However, RELMα could
promote gut inflammation without microbicidal activities.
RELMα−/− mice infected with C. rodentium did not show higher
pathogen burden, but decreased colitis with decreased CD4+ T
cell expression of pro-inflammatory IL-17A (185). Additionally,
intraperitoneal injection of mice with recombinant RELMα

increased C. rodentium-induced colitis, including increased
IL-17, whereas IL-17A−/− mice did not display increased
colitis in response to RELMα treatment (185). These data
demonstrate a pro-inflammatory role of RELMα during C.
rodentium infection, working mainly through the induction of
IL-17. Similarly, RELMα−/− mice have decreased inflammation
during DSS colitis (186, 187). Thus, influence of RELMs on
intestinal inflammation and infection is complex and involves
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direct antimicrobial activity, regulation of intestinal RegIII C-
type lectins, modulation of the microbiota, and potential direct
immunomodulatory effects.

CONCLUSIONS

Aspects of major HDPs (i.e., cathelicidins, β-defensins, and
members of RegIII and RELM families) in the colon and their
relevance in pathogenesis of infectious colitis reviewed herein
aid to uncover roles of these peptides in promoting epithelial
defenses beyond direct microbial elimination (Figure 1). The
presence of HDPs abundantly secreted into the intestinal
lumen by epithelial cells and leukocytes during inflammation
must be critical components of the innate immune response
against enteropathogenic bacteria. They are bactericidal
against enteric pathogens as well as the microbiota, while
simultaneously modulating numerous cellular responses
including leukocyte chemotaxis and migration, wound healing,
cytokine production and pathogen sensing (Tables 1, 2). In
fact, crude colonic mucus isolates from uninfected mice had
no direct antibacterial activity against C. rodentium (96). Thus,
there is increasing interest to decipher major mechanisms of
HDPs in innate defense, which seem to be largely attributed to
immunomodulatory functions.

To date, our understanding of HDP function in the colon
is mostly limited to studies using mice genetically deficient
in a single HDP, or via stimulation of mice with a specific
exogenous peptide (commonly a synthetic peptide derived from
an endogenous HDP). We propose a theoretical framework
of how these peptides may work together in the gut. Host
defense peptides would form an interactive peptide network
capable of preventing colonization of enteropathogens by:
(1) direct bacterial killing and (2) fine-tuning of the host
immune response in the colon (i.e., modulation of epithelial cell
responses and migration of leukocyte populations to the site of
infection). In these activities, HPDs likely have overlapping and
potentially complementary roles. Cathelicidins from different
species displayed synergistic antibacterial activity against P.
aeruginosa, E. coli, E. faecalis, and MRSA (188). Additionally,
cathelicidins demonstrated synergistic antibacterial ability with
human lysozyme (188). Thus, in the real scenario of numerous
HDPs co-existing with other innate factors (e.g., MUC2 mucin,

lysozyme), antibacterial activity against specific pathogenic
species is likely enhanced.

The synergistic effects of multiple HDPs could apply to
cytokine and chemokine signaling in the gut. Combined hBD-
3 and LL-37 showed a synergistic reduction in secretion of
proinflammatory factors (GRO-α, G-CSF, MCP-1, and IL-6) in
gingival fibroblast-epithelial cells exposed to LPS, although they
displayed only additive effects reducing IL-8 secretion (189).
Other synergies can be predicted to occur during infectious
colitis based on the effects of single HDPs. RELMβ regulates
T-cell migration, IL-22 production and RegIIIγ in the colon
(35–37), while cathelicidins, β-defensins, and RELMβ have all
been demonstrated to regulate both mucus production and
epithelial permeability (9, 11, 14, 15, 36, 38, 137, 138). This HDP
network may decode how the intestinal innate immune system
functions to quickly restore gut homeostasis and avoid damaging
inflammation associated with pathogen colonization. Exploring
how these peptides act synergistically in innate immune defenses
and the complex signaling networks they activate during
infectious colitis should lead to identification of therapeutic anti-
infectious targets, or development of synthetic HDPs that work in
combination to resolve intestinal infections. Such synthetic HDPs
could be used either alone or in combination with reduced doses
of antibiotics. These strategies of infectious disease control would
be greatly beneficial, as emergence of antimicrobial resistance is
rendering conventional antibiotics use unsustainable.
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