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Abstract. An anti-cell adhesion globulin was purified
from human plasma by heparin-affinity chromatography.
The purified globulin inhibited spreading of osteosar-
coma and melanoma cells on vitronectin, and of endo-
thelial cells, platelets, and mononuclear blood cells on
vitronectin or fibrinogen . It did not inhibit cell spread-
ing on fibronectin . The protein had the strongest anti-
adhesive effect when preadsorbed onto the otherwise
adhesive surfaces . Amino acid sequence analysis re-
vealed that the globulin is cleaved (kinin-free) high
molecular weight kininogen (HKa) . Globulin fractions
from normal plasma immunodepleted of high molecu-

CELL attachment and spreading on extracellular ma-
trices are central events in a variety of biological
phenomena such as embryogenesis and organogenesis,

tumor metastasis, wound healing, and thrombus formation .
These events are recapitulated by in vitro assays in which
cells attach and spread on protein-coated surfaces. Such as-
says have given considerable insight about the molecular
basis of cell attachment and spreading and led to the identi-
fication of the integrin group of heterodimeric adhesion re-
ceptors (Hynes, 1987 ; Ruoslahti and Pierschbacher, 1987;
Hemler, 1990) . The integrins interact with specific substrate-
adsorbed adhesion proteins, often by an Arg-Gly-Asp (RGD)
sequence in the adhesion molecules .
Increasing attention is being paid to the molecular basis

of anti-adhesion . Regulatory substances such as transform-
ing growth factor-ß and interleukin 8 influence adhesion by
changing the expression of cell adhesion receptors by the ad-
hering cell (Gimbrone et al ., 1989 ; Heino and Massagu6,
1989) . Matrix-associated molecules such as tenascin (Chi-
quet-Ehrismann et al ., 1988 ; Lotz et al ., 1989 ; Spring et al .,
1989), thrombospondin (Lahav, 1988 ; Murphy-Ullrich and
Hö6k, 1989), and SPARC (Sage et al ., 1989) inhibit ad-
hesion when adsorbed to a potentially adhesive substrate .
We were interested in whether anti-adhesive molecules other
than thrombospondin are generated as a result of blood co-
agulation . Herein we report the purification and character-
ization ofapotent anti-adhesive globulin fromdextran sulfate-
treated human plasma . This globulin inhibits adhesion of
a variety of cells to vitronectin- or fibrinogen-coated sub-
strates . Amino acid sequence analysis revealed that the glob-
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lar weight kininogen (HK) or from an individual de-
ficient of HK lacked adhesive activity. Uncleaved single-
chain HK preadsorbed at neutral pH, HKa preadsorbed
at pH > 8.0, and HKa degraded further to release its
histidine-rich domain had little anti-adhesive activity.
These results indicate that the cationic histidine-rich
domain is critical for anti-adhesive activity and is
somehow mobilized upon cleavage . Vitronectin was
not displaced from the surface by HKa . Thus, cleavage
of HK by kallikrein results in both release of brady-
kinin, a potent vasoactive and growth-promoting pep-
tide, and formation of a potent anti-adhesive protein .

ulin is the cleaved (kinin-free) form of high molecular weight
kininogen (HK), I a well-characterized plasma protein (Taka-
gaki et al ., 1985 ; Kellermann et al ., 1986 ; Müller-Esterl et
al ., 1986) previously implicated in the "Woman effect that
controls adsorption to surfaces of adhesive proteins from
complex mixtures (Vroman et al ., 1980) .

Materials and Methods

Materials and Cells
The following chemicals were purchased from Sigma Chemical Co ., St .
Louis, MO : dextran sulfate, benzamidine HCl, PMSF, aprotinin, barium
chloride, ammonium sulfate, EDTA, BSA, leupeptin, and trypsin inhibitor
type 1-S from soybean. Polyvinyldene difluoride membranes were pur-
chased from Millipore Corp., Bedford, MA . Fresh frozen human citrated
plasma was generously donated by the Badger Red Cross, Madison, Wl .
îz51 and "Cr were obtained from Du Pont Co. (Wilmington, DE) . Iodo-
gen (chloramide-1,3,4,6-tetrachloro-3a-6a-diphenylglycouril) was obtained
from Pierce Chemical Co ., Rockford, IL . Gelbond film was obtained from
FMC Corp ., Rockland, ME . CNBr-activated Sepharose CL-4B and
heparin-Sepharose was obtained from Pharmacia Company, Uppsala,
Sweden . Liquid chromatography columns DEAF-5PW and 300SW were
from Waters/Millipore (Bedford, MA).
Human vitronectin, fibronectin, fibrinogen, and thrombospondin were

purified by the methods of Dahibick and Podack (1985), Mosher and John-
son (1983), Mosher and Blout (1973), and Murphy-Ullrich and Mosher
(1985), respectively. Antithrombin Ill and histidine-rich glycoprotein were
obtained as byproducts of heparin-affinity chromatography described be-
low. Platelet factor 4 was a byproduct of purification of thrombospondin

1. Abbreviations used in this paper: HK, high molecular weight kininogen ;
HKa, kinin-free HK; HKi, HKa missing its histidine-rich domain .
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purification (Murphy-Ullrich and Mosher, 1985) . Von Willebrand factor
was purified according to the method of van Mourik and Mochtar (1970) .
Kinin-free high molecular weight kininogen and low molecular weight
kininogen were purified by the published methods of Ohkubo et al . (1984,
1988) and Higashiyama et al . (1986) . The proteins appeared >95 % homo-
geneous by SDS-PAGE with or without reduction followed by staining with
Coomassie brilliant blue.

The following cells and culture media were used: MG-63 human os-
teosarcoma and C-32 human melanoma cells, MEM with 10% FCS ; G-361
human melanoma cells, McCoy's medium with 10% calf serum ; human
foreskin fibroblast, F12 with 10% FCS ; and bovine aortic endothelial cells,
DME with 15% FCS. Cell lines were obtained from the American Type
Culture Collection (Rockville, MD) . Strains of human foreskin fibroblasts
were established locally. Human peripheral mononuclear cells were iso-
lated by the method of Schwartz and Edgington (1981) . Human platelets
were isolated by differential centrifugation and suspended in a divalent
cation-free modified Tyrode's-Hepes buffer (Schafer et al ., 1986) . Platelets
and mononuclear cells were labeled with "Cr before use in adhesion as-
says (Santoro, 1986) .

Purification ofAnti-Cell Adhesion Globulin (HKa)
280 ml fresh-frozen human citrated plasma was thawed at 37°C . Immedi-
ately upon thawing, dextran sulfate was added to a final concentration of
0 .1% and stirred for 10 min . Then the following protease inhibitors were
addedto the following concentrations : benzamidine(3mM),PMSF(2 mM),
aprotinin (10 kallikrein inhibitor units/ml), and EDTA (4 mM) . Subsequent
steps were performed at room temperature in plastic containers. 1 M barium
chloride was added to a concentration of 90 ml/liter, and adsorbed proteins
were removed by centrifugation . Barium chloride-adsorbed plasma was
precipitated with ammonium sulfate (30-60% saturation) . The precipitate
was collected by centrifugation and resuspended and dialyzed against 50
mM phosphate buffer, pH 6.3, containing 0.4 M sodium chloride, 0.1 mM
PMSF, and 0.5 M EDTA (buffer A) before applying to a heparin agarose
column (2 .5 x 10 cm) (Fig . 1 A) . After extensive washing with buffer A
without inhibitors, bound proteins were eluted with a 0.4 liter linear gra-
dient from 0.4 to 1 .2 M sodium chloride . Fractions with peak anti-adhesive
activity were pooled and extensively dialyzed with 50 mM Tris HCI, 0.02 M
sodium chloride, 0.01 M citric acid, pH 8 .3. The concentrated pool was ap-
plied to a DEAE-5PW column in the Waters 650 system (Waters Instru-
ments, Inc., Rochester, MN) . Proteins were eluted with a linear gradient
(as described in Fig . 1 B) . Fractions containing anti-cell spreading activity
were pooled, concentrated after extensive dialysis against 20 mM Tris, 150
mM sodium chloride, pH 7.4 (TBS), and stored at -120°C until use .

Purification ofHK
The protease inhibitors listed above along with soybean trypsin inhibitor
(50 mg/ml) and leupeptin (0.5 mg/ml) were added immediately upon thaw-
ing . No dextran sulfate was added . Further purification steps were the same
asthose describedabove except that0.1 mM EDTA and0.1 mM PMSF were
added to all buffers. After purification, fractions containing 140- and 120-
kD proteins (as determined by SDS-PAGE) were pooled, extensively dia-
lyzed with TBS, and stored at -120°C until use .

Purification ofDegradedAnti-CellAdhesion
Globulin (HKi)
Fresh-frozen human citrated plasma was processed and ammonium sulfate
precipitation, heparin-Sepharose chromatography, and DEAE chromatog-
raphy were performed as described for HKa above except that protease in-
hibitors were omitted and the steps were done at4°C. After DEAEchroma-
tography, the and-cell adhesive fraction was dialyzed against 50 mM
phosphate, pH 6 .4, 0.4 M sodium chloride, and then reapplied to heparin-
Sepharose equilibrated in the same buffer. The heparin-Sepharose unbound
fractions that contained 84413 two-chain protein were extensively dialyzed
with TBS, pH 7.4 . Aliquots of degraded globulin were stored at -120°C
until use .

Purification ofAnti-Cell Adhesion
Globulin by One-Step Chromatography on
a Large Heparin-Sepharose Column
Fresh-frozen human citrated plasma was thawed and treated with dextran
sulfate and protease inhibitors as described above. The dialyzed ammonium
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sulfate globulin fraction was applied to heparin-Sepharose (2 .6 x 40 cm)
and eluted with a 0.75 liter linear gradient from 0.4 to 1 .0 M sodium chlo-
ride . Anti-cell adhesive globulin eluted with 0.75 M sodium chloride . Ac-
tive fractions were extensively dialyzed with TBS and then aliquoted and
frozen at -120°C until use.

Amino-terminal Sequence Analysis
Purified globulin was separated on SDS-PAGE without reduction and trans-
ferred to a polyvinyldene difluoride membrane . The 105-kD band was cut
out and directly subjected to automated amino acid sequence analysis with
aprotein sequencer (model 470; Applied Biosystems, Inc., Foster City, CA) .

Electroimmunoassay ofAnti-CellAdhesion Globulin
Antiserum against the purified globulin wasproduced in rabbits by standard
techniques (Harlow and Lane, 1988) . The serum was heat-treated at 56°C
for 1 h and adsorbed by the globulins that did not bind to heparin-agarose .
The IgG fraction from the adsorbed antiserum was purified by 33% ammo-
nium sulfate precipitation followed by chromatography on DEAE-
Sepharose . The specificities of the antibodies were analyzed by immu-
nodiffusion, immunoelectrophoresis, and crossed immunoelectrophoresis
(Laurell, 1965) . The concentration of purified globulin was estimated by
Laurell's "rocket" electroimmunoassay (Laurell, 1966) .

HK-depleted Plasma Globulins
HK-depleted globulins were produced by using an affinity column contain-
ing immobilized mAb L-7 to the light chain of HK (Ishiguro et al ., 1987) .
The affinity column was prepared by coupling L-7 to CNBr-activated
Sepharose (2 mg of antibody/ml resin) as recommended by the manufac-
turer (Pharmacia Fine Chemicals, Piscataway, NJ) . A 30-60% ammonium
sulfate fraction ofnormalhuman plasma (0.5 ml) was applied to the affinity
column . The unadsorbed fraction was passed over the column a second
time . The unbound fraction contained no detectable antigen as assessed by
immunoblotting using polyclonal antibodies describedabove to the anti-cell
adhesive globulin. Heparin-Sepharose was used to deplete globulins of
heparin-binding proteins as described above. A globulin fraction was also
made from plasma from an individual lacking HK (George King Biomedi-
cal, Overland Park, KS) .

Transelution ofAntibodies
and Western Immunoblotting
Some purified globulin fractions contained two bands (105 and 95 kD) on
nonreduced SDS-PAGE gel . Both proteins were blotted to nitrocellulose pa-
per after SDS-PAGE . Rabbit polyclonal anti-cell adhesive globulin IgGs
were incubated with nitrocellulose at 4°C overnight . After washing, anti-
bodies against individual proteins were eluted from nitrocellulose by 0.2 M
glycine HCl, pH 2 .7 (Olmsted, 1987) . After 1 min incubation, 1 M sodium
hydroxide was added to neutralize the solution to pH 7.4 and the antibodies
were extensively dialyzed with TBS . Eluted antibodies were then used to
probe fresh nitrocellulose paper containing 105- and 95-kD proteins .

Cell Adhesion Assays
Cell attachment and cell spreading were measured by using the method of
Grinnell (1976) with some modification. 2-cm' well (24-well plates;
Costar Corp ., Cambridge, MA) polystyrene plates were coated with 2 1cg
vitronectin or heat-denatured BSA (400 1d protein solution in TBS/well) .
Plates were coated for 3 h at 37°C and then blocked with 1 ml of 1% heat-
denatured BSA in TBS for 1 h at 37°C. Plates were washed with TBS/0.2%
BSA several times . MG-63 osteosarcoma or other cells were released from
stock monolayers by incubation for 5 min at 37°C with trypsin (1 mg/ml)
in 20 mIvl sodium phosphate, 135 mM sodium chloride, 0.5 mM EDTA,
pH 7.4 . Trypsinization was stopped with the addition of trypsin inhibitor
to a final concentration of0.5 mg/ml . The cellswere pelleted twice and then
resuspended in DME containing 0.2% BSA . 0.3-ml aliquots of suspended
cells (3.5 x 10° cells/ml) were pipetted into coated wells, and cells were
allowed to adhere to the vitronectin- or BSA-coated surface for 60-90 min
at 37°C. Plates were examined by phase microscopy and sometimes pho-
tographed . Nonadherent cells were removed by washing with TBS . Adher-
ent cells were fixed with 3 % paraformaldehyde solution for 1 h and stained
with 0.1% amido black solution. The number ofattached cells and attached
and spread cells were determined visually with a microscope equipped with
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Figure 1. Chromatographic separation of the anti-cell adhesive
molecule. (A) Heparin-Sepharose chromatography. A 30-60%
saturated ammonium sulfate globulin fraction of plasma was sub-
jected to chromatography on heparin-agarose (2 .5 x 10 cm).
Bound proteins were eluted with a 0.4-liter linear salt gradient from
0.4 to 1.2 M sodium chloride. The flow rate was maintained at 100
ml/h, and 3.5-ml fractions were collected. Thick solid line, protein
concentration ; thick dotted line, anti-cell adhesive activity; thin
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dotted line, salt gradient . The first (small) peak of activity was not
0 .s

	

seen constantly or analyzed further. (B) FPLC (DEAE) chroma-
0 .s

	

tography. Fractions with high anti-cell adhesive activity in the
0 .4 i

	

heparin-Sepharose chromatogram were pooled and subjected to
FPLC on a DEAE column (0.8 x 7.5 cm). Proteins were eluted
with a 30-ml linear salt gradient from 0.02 to 0.32 M sodium chlo-
ride. The flow ratewas maintained at 1 ml/ml. Thicksolid line, pro-
tein concentration ; thick dotted line, anti-cell adhesive activity ;
thin dotted line, salt gradient . (C) Large heparin-Sepharose chro-
matography (one-step purification) . A 30-60% ammonium sulfate
globulin fraction of plasma was subjected to chromatography on
large-scale heparin-Sepharose (2 .6 x 40 cm) . Proteins were eluted
with 0.75-liter linear gradient from 0.4 to 1.0 M sodium chloride .
The flow rate was maintained at 150 ml/h, and 10-ml fractions were
collected. When higher salt concentrations were used to strip the
column, additional protein, mostly antithrombin 111, was eluted
(not shown) . Thick solid line, protein concentration; thick dotted
line, anti-_celladhesive activity ; thin dotted line, salt gradient. (D)
300SW gel filtration chromatography. The peak activity fraction inr

	

DEAE chromatography was applied to 300SW gel filtration
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column (0.8 x 30 cm) equilibrated with 50 mM Tris HCI, 0.15 M
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sodium chloride, pH 7.4 . 1-ml fractions were collected . Absor-
bance was detected at A2, 0 . Thick solid line, protein concentra-
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tion; thick dotted line, anti-cell adhesive activity. (E) SDS-PAGE
of HK (lanes 1 and 4), the anti-cell adhesion globulin (HKa)
purified by the two-step method (lanes 2 and 5)o
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phase contrast objectives . We counted the cells in five areas randomly cho-
sen in the central and peripheral regions in 2-cmz wells. Duplicate wells
were counted for each sample . Spread cells were designated as those that
were polygonal and dark as determined by phase microscopy (see Fig . 3) .
Cell spreading was routinely determined visually. There was little am-
biguity as to whether a given cell was spread or not and little variation
(<10-20%) between duplicate wells or in numbers obtained by different ob-
servers .
To validate this subjective method, in some experiments photographs

were taken at 200x and analyzed by a computer image processing package
(IMAGE 1® ; Universal Imaging Corp., West Chester, PA) todetermine cell
area and diameter in collaboration with Horng-Ban Lin and Stuart Cooper
of theDepartmentofChemical Engineering, University ofWisconsin (Mad-
ison, WI) . The mean t SD area of spread MG-63 cells on a vitronectin-
coated surface was 365 t 81 Frn2 . Cells that were attached but not spread
had an image area of 148 f 28 um .

1 U of anti-spreading activity in serial dilution assays was defined as the
amount of factor required for 50% inhibition of spreading of MG-63 cells .
The basic assay was modified to study effects of protein preadsorption,
cations, etc ., as explained in the text .

Adhesion of platelets and mononuclear cells was quantified using 51 Cr
(Santoro, 1986) .

Iodination ofProteins
Vitronectin was radioiodinated by the Iodogen method (Fraker and Speck,
1978) . The specific radioactivity is 0 .45 uCi/pg . Preparations were >96%
precipitable by 10% TCA, and nonreduced labeled protein migrated as a
75-kD single band under non-reducing conditions and as 75- and65-kD sin-
gle bands under reduced conditions when analyzed by SDS-PAGE and auto-
radiography.

Analyses of Irtronectin on Surfaces Treated
with Heparin-binding Proteins
Polystyrene microtiter plates for tissue culture were coated with vitronectin
at concentrations up to 2 Ag/ml in TBS for 12 h at 4°C and then blocked
with TBScontaining 1% BSA . The wells were rinsed three times with TBS,
and then various heparin-binding proteins (100 pl in TBS) were added and
incubated for 1 h at room temperature. The wells were rinsed three times
withTBS, andthen200 Al of rabbit antiserum (1 :1,000 dilution inTBS/0.1%
BSA) raised against human native vitronectin was added to the well for 2 h
at 37°C. Plates were washed three times with TBS and incubated with 200
/Al/well of a 1 :1,000 dilution of goat anti-rabbit IgG conjugated to alkaline
phosphatase in TBS. Plates were washed and incubated at 37°C with phos-
phatase substrate until maximum absorbance (in the wells coated with 2 Ag/
ml vitronectin with no additional treatment) was at least 0.7. Data are ex-
pressed as a percent of the maximum absorbance obtained in each assay and
represent the mean of quadruplicate determinations . Parallel cell adhesion
experiments were performed to relate retained vitronectin antigen to cell
adhesive activity.

Polystyrene microtiter plates for tissue culture were coated with a mix-
ture of nonradiolabeled vitronectin (2 14g/ml) and 125 1-radiolabeled vitronec-
tin (1.0 x 105 cpm/well) for 12 h at 4°C, and blocked with TBS containing
1 % BSA . After rinsing three times with TBS, 100 pl of heparin-binding pro-
teins (10 tcg/ml) were addedto the wells. After 1 h at 37°C the supernatant
was removed and the wells were washed . Bound protein was solubilized by
incubation with 2% SDS, 1 M sodium hydroxide for 24 h at room tempera-
ture . Radioactivity was quantitated using a gamma counter. Data represent
the average of six determinations.

Results

Purification andCharacterization ofan Anti-Cell
Adhesion Molecule Globulin from Plasma
To search for anti-adhesive proteins in plasma, it is neces-
sary to remove the adhesive proteins first . This was accom-
plished by preparation of globulins precipitated by 30-60%
saturated ammonium sulfate: fibronectin is precipitated by
<30% saturated ammonium sulfate (Mosher and Blout,
1973), whereas vitronectin requires 70-85% saturated am-
monium sulfate to be precipitated (Dählback and Podack,
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1985 ; Preissner et al ., 1985) . We also began with plasma
that had been treated with dextran sulfate to activate the
intrinsic blood coagulation system (Fujikawa et al ., 1980) .
An anti-cell adhesive molecule was purified from a globu-

lin fraction of dextran sulfate-treated human plasma (Ta-
ble 1) . When the globulin fraction was separated on heparin-
Sepharose at pH 6.4, anti-adhesive activity toward human
MG-63 osteosarcoma cells was eluted by 0.8 M sodium chlo-
ride in fractions that also contained histidine-rich glycopro-
tein and antithrombin III (Fig . 1 A) . These fractions were
separated further using a DEAE column at pH 8.3 (Fig . 1
B) . Histidine-rich glycoprotein and antithrombin III eluted
before the anti-cell adhesion molecule . The increase in
specific activity from the globulin fraction was 625-fold (Ta-
ble I) . Although we could not measure anti-cell adhesion ac-
tivity in whole plasma, no activity could be detected in
globulins that did not bind to heparin-Sepharose (Table II) .
In subsequent purifications, it was found that anti-cell adhe-
sive globulin could be separated cleanly from histidine-rich
glycoprotein and antithrombin III in a single chromato-
graphic step by using a larger capacity heparin-Sepharose
column and a shallower salt gradient (Fig . 1 C) . When the
peak fraction from the DEAE column in the two-column
purification was applied to a 300SW filtration column, pro-
tein and activity peaks coincided (Fig . 1 D) .

Analysis by SDS-PAGE of anti-cell adhesive globulin
purified by the two-step method revealed a major 95-kD
band and a minor 84-kD band under nonreducing condition
and 62- and 44-kD bands under reducing condition (Fig. 1
E) . The purified globulin migrated in the a, zone in
agarose gel electrophoresis (not shown) . We purified a major
105-kD band and a minor 95-kD band under nonreducing
conditions when protease inhibitors were added to the buffer
of DEAE column . The 105- and 95-kD proteins could be
separated on a sulphopropyl column at pH 6.5, with the 95-
kD protein eluting later in a salt gradient . Peptide mapping
by digestion with V8 protease and gel electrophoresis as de-
scribed by Cleveland et al . (1977) revealed that the cleavage
patterns ofthe 105- and 95-kD proteins were almost identical
(not shown) . Antibodies were elicited in rabbits to proteins
eluted from the 105- and 95-kD positions . In immunoblots
of nonreduced SDS-treated human plasma, these antibodies
recognized a major band of 140 kD, a minor band of 105 kD,
and a major band of 60 kD (not shown) . Adsorption of the
antibodies with the human globulins that did not bind to
heparin-Sepharose removed the antibodies that reacted with
the 60-kD band . Antibodies to the 95- and 105-kD bands
reacted with one another and also with the 140-kD band
when analyzed by the transelution technique (Olmsted,
1987 ; Thelu, 1988) .

TheAnti-CellAdhesion Globulin Is Kininfree HK
Estimates of the plasma concentration of the globulin as de-
termined by Laurell's electroimmunoassay (Laurell, 1966)
were of the order of 50-70 jAg/ml, making it likely that this
globulin was an already described plasma protein. We there-
fore carried out microsequencing of -100 pmol of the 105-
kD band . A single sequence, Ser-Ser-Arg-IIe-Gly-Glu-IIe-
Lys, was obtained . This corresponds to the amino terminus
of the light chain of kinin-free HK; i .e., HKa or HK that has
been cleaved twice by kallikrein to release bradykinin and
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Table I. Purification ofan Anti-Cell Adhesion Globulinfrom Human Plasma

' A unit (U) was defined as the amount in 1 ml required for 50% inhibition of cell spreading .
t We could not measure inhibition of cell adhesion in whole plasma and therefore have related the purification to the globulin fraction.

create a two-chain protein held together by a disulfide bond
(Takagaki et al ., 1985 ; Kellermann et al ., 1986 ; in the num-
bering system for the mature protein of Kellermann et al .
[1986] the observed sequence begins at Ser 372) . The amino
terminus of single-chain HK and of the heavy chain of HKa
is blocked by pyroglutamic acid (Kellermann et al ., 1986)
and would not give rise to a detectable sequence . All of the
original data on the purified globulin are compatible with its
identity to kinin-free HK (HKa) (Fig. 2) . Treatment ofplasma
with dextran sulfate is known to cause activation ofkallikrein
and release of bradykinin from HK (Fujikawa et al ., 1980) .
The 140-kD band recognized by our antibodies in blots of
untreated plasma corresponds to single-chain HK. The ma-
jor 60-kD band in untreated plasma recognized by our unab-
sorbed antibodies corresponds to low molecular weight ki-
ninogen (LK), a second product generated by differential
splicing of the kininogen gene (Takagaki et al ., 1985) . The
95-kD band probably corresponds to an additional cleavage
between Arg 418 and Lys 419 (Tait and Fujikawa, 1986) .
To corroborate further the identity between our purified

globulin and HKa, we found that human HKa purified by a
published method (Ohkubo et al ., 1984, 1988) had anti-cell
adhesion activity and that anti-HK antibodies kindly given
to us by John Griffin of the Research Institute of Scripps
Clinic (La Jolla, CA) recognized our purified globulin in im-
munoblots (not shown) . Also, we found that globulins pro-

Table H. Anti-Cell Adhesive Activity of30-60% Saturated
Ammonium Sulfate Globulin Fraction

The proteins were tested in a 1-h adhesion assay to vitronectin-coated wells .
Values represent mean t range of duplicated wells . LK, low molecular weight
kininogen .

Asakura et al . Anti-Cell Adhesion

HKCt

HKq

469

HK .

duced from plasma from an individual deficient in HK or im-
munodepleted of HK by a mAb (Ishiguro et al ., 1987) lacked
anti-cell adhesive activity (Table II) .

Further Characterization ofthe Anti-adhesive
Activity ofHKa
Our principal model system was the MG-63 cell line from
which integrin adhesion receptors for fibronectin (Pytela et
al ., 1985a) and vitronectin (Pytela et al ., 1985b) were
characterized . Spreading ofthese cells on vitronectin-coated
tissue culture plastic was prompt and robust (Fig . 3 A) . In
the presence of HKa, 1-10 /,tg/ml, cells were rounded (Fig .
3 B) . After washing, few cells remained attached to the sub-
stratum when HKa had been present .
To elucidate the mechanism(s) of these effects, HKa was

introduced into the cell adhesion assay in three different ways
(Fig . 4) . First, vitronectin-coated wells, after blocking with
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Figure 3. Spreading of Mg-63 cells . Wells were coated with
vitronectin as described in Materials and Methods. MG-63 cells in
medium containing 0.2% BSA were incubated with vitronectin-
coated wells in the absence (a) or presence (b) of 10 Fig/ml HKa.
After 60 min incubation at 37°C, cells were photographed . Few of
the round cells in b remained when the plate was washed, whereas
those in a were not washed away. Bar in lower right comer of b,
40 /,m.

0.2% albumin, were incubated for 1 h with various concen-
trations of HKa, after which the HKa-containing solutions
were removed and cells were added. Second, cells and vari-
ous concentrations of HKawere added simultaneously to the
vitronectin-coated wells. Third, cells and various concentra-
tions of HKa were incubated together for 1 h and added to
vitronectin-coated wells. HKa was most effective when pre-
incubated with the vitronectin-coated wells (Fig . 4) . Preincu-
bation ofHKawith cells also resulted in greater anti-adhesive
activity than if HKa and cells were added together to the
vitronectin substratum .
A study was performed to learn the minimal time ofcondi-

tioning surfaces with HKa. Cell spreading was inhibited in
vitronectin-coated wells exposed to HKa, 10 ttg/ml, for as
little as 5 s (Fig . 5) . Exposure of the wells to HKa before
coating with vitronectin also resulted in a surface that did not
support cell adhesion (Fig . 6) . Histidine-rich glycoprotein
and antithrombin III, two other heparin-binding proteins,
did not inhibit cell adhesion to vitronectin, either when
added in soluble form to adhesion assays (Fig . 1 Band addi-
tional experiments, not shown, with purified proteins) or
when used to coat wells (Fig . 6) . As a further test of speci-
ficity, it was found that incubation of HKa with polyclonal
immune IgGs before addition to adhesion assays neutralized
the anti-adhesive activity of HKa (Fig . 7) .
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Figure 4. Effect of assay conditions on HKa-dependent anti-cell
adhesion . Anti-cell adhesion activity was analyzed in assays in
which varying concentrations of HKa were introduced by the fol-
lowing protocols : MG-63 cells and HKa were added simultane-
ously to vitronectin-coated wells (A); cells were preincubated for
60 min with HKa and added to vitronectin-coated wells (e); and
HKa was preincubated with vitronectin-coated wells and, after
washing the wells with TBS, cells were added to the wells (m).

Comparison ofthe Anti-adhesive Activities ofHKa,
Uncleaved HK, andHKi
The anti-adhesive activity of HKawascompared with the ac-
tivities of HK, the single chain precursor of HKa (140- and
120-kD bands under nonreducing conditions and 120-kD
band under reducing conditions), and an 84-kD two-chain
degraded form of HKa (HKi). SDS-PAGE analyses of these
proteins are shown in Fig. 1 E. HK was purified in the pres-
ence of protease inhibitors . Even so, -10% of purified HK
wasdegraded to the two-chain form (Fig . 1 E) as previously
described (Ohkubo et al ., 1988) . The 84-kD HKi protein
arose spontaneously if protease inhibitors were not in-
cluded . It did not bind to heparin-Sepharose and therefore
could be separated easily from HKa by heparin-affinity chro-
matography. We could not obtain reliable sequence data on
the degradation product but we think that the 84-kD protein
probably arose from cleavage of HKa between Lys 523 and
Thr 524, a hypothesis compatible with the observed reduc-
tion in the size ofthe lightchain (Fig . 1 E), known glycosyla-

Figure S. Effect of precoating time on HKa activity. Vitronectin-
coated wells were preincubated with HKa (10 ug/ml) for various
lengths of time . Plates were washed with TBS, then blocked with
TBS containing 2% BSA. MG-63 cells were added in medium con-
taining 0.2% BSA. Cell attachment (m) and cell spreading (e)
were ascertained after 60 min incubation at 37°C .
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Figure 6. Comparison of the effects of HKa and other heparin-
binding globulins on cell adhesion . Vitronectin and/or other pro-
teins were adsorbed to wells . VN/HKa indicates that vitronectin
(2,ug/ml) was incubated in the well, and the well was then blocked
with 2% BSA, washed with TBS, and incubated with HKa (10
jig/ml) . After a 1-h incubation, wells were washed with TBS, MG-
63 cells (8 x 10 3 cells) were added, and spread cells were
counted . HKa/VN indicates that HKa and vitronectin were ad-
sorbed in the reverse order. Control heparin binding proteins, an-
tithrombin III (AT III, 10 )Ag/ml) and HRGP (10 jg/ml) were also
tested, either alone or in sequential adsorptions. (-) indicates that
no second protein was adsorbed . Bars represent means of duplicate
wells ; all duplicates agreed to within 15% of values shown .

tion of Thr 524 (Kellerman et al ., 1986) that would make se-
quencing difficult, and the previous characterization of a
similar degradation product (Kato et al ., 1981 ; Ohkubo et
al ., 1988) . The missing sequence, Ser 372-Lys 523, is ex-
tremely rich in histidine and also contains short stretches
with multiple arginines and lysines, explaining the loss of
affinity for heparin (Tàkagaki et al ., 1985 ; Kellermann et al .,
1986) . LK, which lacks the light chain completely, had no
anti-adhesive activity (Table II) .
MG-63 cells spread vigorously on vitronectin-coated

wells preincubated at pH 7.4 with HKi using conditions in
which cell spreading was inhibited by HKa (Fig . 8) . Intact
HK inhibited cell adhesion to vitronectin but was not as ac-
tive as HKa (Fig . 8) . Further investigation revealed that the
pH at which HKa and HK were preincubated with the wells
had a profound effect on subsequent anti-adhesive activity
(Fig . 9) . Vitronectin-coated wells conditioned with HK or

Figure 7. Neutralization of an-
ti-cell adhesive activity with
polyclonal antibody against
HKa . HKa (10,g/ml) was in-
cubated at 22°C for 30 min
with the IgG fraction of rabbit
anti-HKa at a molar ratio of
0.5 :1 to 200 :1 . The mixtures
were incubated with the vitro-
nectin substratum . MG-63

cells were added and spread cells were quantified . Note loss ofHKa
activity (return ofcell spreading to control values) when IgGs were
present at 100-200 molar excess .
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Figure 8. Effect of HK, HKa, and HKi on cell adhesion of MG-63
cells to vitronectin . Vitronectin (2 /Ag/ml) was coated onto wells,
and, after blocking with 1% BSA in TBS, various concentrations
of HK (A), HKa (m), or HKi (e)were added followed by MG-63
cells in DME/0.2 % BSA . Cell spreading was quantified at 1 h .

HKa at pH <7.0 did not support cell spreading ; i .e ., HK or
HKa were active inhibitors of adhesion . Coating with HK at
pH >7.6 and with HKa at pH >8.0 resulted in wells with full
adhesive activity. The pH dependency suggests that histi-
dines are important for expression of anti-adhesive activity
and is consistent with the critical role of the histidine-rich
region suggested by the experiments described above .

Effects ofHKa on the Attachment andSpreading
of Various Cells on Various Substrates
Cell spreading of bovine aortic endothelial cells on fibrino-
gen-coated wells was inhibited by HKa in a concentration-
dependent manner (Fig . 10) . The concentration of HKa that
caused half-maximal inhibition was Nl j,g/ml and was inde-
pendent of the concentration of fibrinogen used to coat the
wells and the number ofcells spreading on fibrinogen in the
absence of HKa. HKa also inhibited spreading of endothelial
cells on von Willebrand factor (Table III) .
HKa inhibited attachment of platelets and peripheral

mononuclear cells to fibrinogen and vitronectin, and spread-
ing ofhuman melanoma cells to vitronectin (Table III) . HKa
did not inhibit spreading of MG-63 cells on fibronectin (Ta-

pH

Figure 9 Effect of pH during precoating of HK or HKa .
Vitronectin-coated wells were incubated with 10,ug/ml of HK (A)
or HKa (m) at different pH in 20 mM phosphate buffer containing
0.15 M sodium chloride for 1 h . After washing with TBS, pH 7.4,
MG-63 cells were added and cell spreading was quantified after
1 h . There was little variation (<10%) between duplicate wells .
This experiment is representative of the four times that the experi-
ment was done .
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Figure 10. Effect of HKa on spreading of BAE to fibrinogen sub-
stratum . Various concentrations of fibrinogen (fg) were coated on
the polystyrene dishes. After blocking with 1% BSA in TBS, vari-
ous concentrations of HKa were added followed by endothelial cells
in serum-free DME, and cell spreading was quantified . Results are
expressed as maximum spreading seen in wells receiving 100 pg/ml
fibrinogen ; i .e ., 210 spread cells per 7.5 mm2. The same results
were found in a second complete experiment and in two experi-
ments in which only selected concentrations were tested .

ble III), even when used at a concentration of 20 pg/ml or
when precoated at pH 6.5 (data not shown) .

Effects ofDivalent Cations on HKa Activity
Zn2+ enhances the binding of HK to platelets (Greengard
and Griffin, 1984) . Cellular adhesion is also dependent on
divalent cations and is especially enhanced by Mn2+ (Evans
and Jones, 1982) . The effects of divalent cations on the
spreading of cells on vitronectin in the presence of HKa were
therefore investigated . MG-63 cell spreading supported by
Cat+ was inhibited by HKa (Fig. 11 A) . In contrast, cell
spreading supported by >0.3 mM Mn2+ was not overcome
by HKa. To learn the mechanism of its contrary action to
HKa, Mn2+ was incubated with vitronectin or HKa during
coating of the substrate or with cells during the adhesion as-
say (Fig . 11 B) . Only when Mn2+ was present during the
adhesion assay was it able to counteract the anti-adhesive
effects of HKa. In studies not shown, Zn2+ did not support
cell adhesion and had no effect on the anti-adhesive effects
of HKa.

Effects ofHKa on Substrate-adsorbed Fitronectin
Woman et al . (1980) and subsequent investigators (Brash et

Table III. Inhibition by HKa ofAdhesion of Various Cells
to Substratum Coated with Vitronectin (VN), Fibronectin
(FN), Fibrinogen (Fg), or Von Willebrand Factor (vRT)

Figure 11. Effect ofdivalentcations on cell adhesion to the vitronec-
tin substratum with or without HKa . (A) Various concentrations of
calcium or manganese ions dissolved in TBS with or without HKa
(final concentration 10 14g/ml) and MG-63 cells (8 x 10 3 cells) in
HBSS were added together on the vitronectin-coated wells, and cell
spreading was quantified . (B) Four different protocols (a-d) were
tested : (a) 1 mM Mn2+ dissolved in TBS was incubated in the
wells with vitronectin for 1 h, the wells were washed with TBS,
HKa (final concentration of 10 Ig/ml) was incubated with the wells,
the wells were washed, and then MG-63 cells (8 x 103) were
added to the wells . (b) Mn2+ was incubated with HKa during the
passivation of the vitronectin-coated wells, and wells were washed
before the spreading assay. (c) Mn2+ was incubated with the cells
during the spreading assay. (d) Cells were incubated with vitro-
nectin-coated wells in the absence ofHKa as a control . 1 mM Ca2+
was present during spreading assay in all experimental condition
(a-d) . Thus, the comparison of c to d is similar to the comparison
of Mn2+ alone to Cat+ alone in Fig. A .

al ., 1988) noted that HK can displace fibrinogen from
artificial hydrophilic surfaces . HKa did not, however, dis-
place '25I-labeled vitronectin from tissue culture plastic
(Fig . 12 A) . This is compatible with the known resistance of
vitronectin to the "Woman effect" (Bale et al ., 1989) . The
antigenicity of adsorbed vitronectin, as assessed by a high
titer polyclonal antiserum, was decreased in a dose-depen-
dent manner by HKa when measured by ELISA using poly-
clonal antibodies (Fig . 12 B) . When a surface coated with
2 t g/ml vitronectin was exposed to 10 j.g/ml ofHKa, the an-
tigenicity fell to the level corresponding to a surface coated
with 0.25 ug/ml vitronectin and not treated with HKa (Fig .

472

Concentration of HKa causing
50% inhibition*

Cells Substratum : VN Fg FN vWF

'sglm1
Bovine aortic endothelial cell line (BAE) 7.5 1 .5 ND 3.0
(MG-63) human fibrosarcoma cell line 1 .4 ND >20 ND
(C-32) human melanoma cell line 0 .9 ND ND ND
(G-361) human melanoma cell line 6 .0 ND ND ND
Human peripheral mononuclear cell 0 .7 1 .5 ND ND
Human platelet 0 .7 0 .2 ND ND

* HKa was assayed as in Figs . 8 and 10 .
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Figure 12. Displacement of vitronectin by HKa, histidine-rich gly-
coprotein, and other heparin-binding proteins . (A) Measurement of
I'll-radiolabeled vitronectin remaining in the well after incubation
with HKa or histidine-rich glycoprotein (HRGP) as described in
Materials and Methods. Data are presented as the mean t SD of
sixdeterminations. (B) Measurement ofvitronectin antigenicity by
an ELISA . HKa, HK, HKi, histidine-rich glycoprotein, platelet
factor 4 (PF4), or antithrombin III (AT 111), 1-10 Ag/ml, were in-
cubated with vitronectin-coated wells. The antigenicity ofvitronec-
tin was measured by ELISA using a polyclonal antibody against
vitronectin as described in Materials and Methods . Control A^°5
was that found when incubation with a second protein was not done.
Data presented are the means ofquadruplicate determinations. (C)
Comparisons of loss of vitronectin antigenicity and cell spreading
activity in the presence of HKa . Indicated concentrations of
vitronectin were coated in 24- or 96-welltissue culture plates at4°C
overnight . After blocking with 1% BSA in TBS, 10 ug/ml ofHKa
were added for 30 min at 37°C. MG-63 cells were added to the 24-

12 C) . This level of vitronectin, in the absence of HKa, sup-
ported 100% cell spreading (Fig . 12 C) . However, no spread-
ing was observed when HKa was present (Fig . 12 C) .

Discussion
We purified an anti-adhesive protein from dextran sul-
fate-treated human plasma and found that this protein is the
cleaved form of HK (HKa) . We considered the possibility
that low density lipoprotein, previously shown to have anti-
adhesive activity (Myllyld et al ., 1966), was present in our
preparation . However, our experiments indicate that HKa is
the active moiety and is responsible for the major anti-cell
adhesive activity in the globulin fraction made with 30-60%
saturated ammonium sulfate . First, anti-cell adhesive activ-
ity was found in the same fractions as HKa after gel filtration
chromatography (Fig . 1 D) . Low density lipoprotein is a
high molecular weightparticle (-1 million) and should elute
in void volume. Second, there was no anti-cell adhesive ac-
tivity in the globulin fraction of normal plasma immunode-
pleted by passage over an immobilized monoclonal anti-HK
antibody column or ofkininogen-deficient plasma (Thble II) .
HK (Fig . 2) is a well-characterized component of blood

plasma, circulating at a concentration of 30-90 Jig/ml (Man-
dle et al ., 1976 ; Thompson et al, 1977; Proud et al ., 1980 ;
Schmaier et al ., 1983a) in complex with prekallikrein or
blood coagulation Factor XI (Mandle et al ., 1976 ; Thomp-
son et al ., 1977) . During the contact activation of blood
coagulation, HK binds to the activating surface alongside
Factor XII ; three zymogens-Factor XII, Factor XI, and
prekallikrein-are thus concentrated in a way that allows ac-
tivation via reciprocal cleavages (Heimark et al ., 1980) . HK
can be cleaved several times during contact activation, by
kallikrein to release bradykinin and create the two-chain
molecule (HKa) and by activated Factor XI (XIO to release
the cationic histidine-rich domain (Han et al ., 1978 ; Scott
et al ., 1985) and create HKi . HKa binds more strongly to
activating surfaces than HK (Scott et al ., 1984 ; Brash et al .,
1988) .
The primary structure of HK, starting at the amino termi-

nus, contains (Fig . 2) : (i) a signal sequence, (ü) one incom-
plete and two complete copies of the cystatin homology, (iii)
the bradykinin moiety, (iv) the cationic, histidine-rich do-
main, and (v) the anionic domain that binds prekallikrein and
Factor XI (Tàkagaki et al ., 1985 ; Kellermann et al ., 1986;
Tait and Fujikawa, 1986) . Thus, HK inhibits cysteine pro-
teases (Ohkubo et al ., 1984, 1988; Sueyoshi et al ., 1985 ;
Higashiyama et al ., 1986) ; is one source ofbradykinin, a po-
tent vasodilating (Rocha e Silva et al ., 1949 ; B6nner and
Schunk, 1984) and growth-promoting (Owen and Villereal,
1983) peptide ; and facilitates activation ofblood coagulation
pathways on negatively charged surfaces (Schiffman and

wellplates for 1 h at 37°C. Spread cells were counted and expressed
as percentage ofcontrol in which wells were coated with vitronectin
(2,ug/ml) and not incubated with HKa . o, Without HKa; c, with
HKa . Àntigenicity ofvitronectin in the absence or presence ofHKa
was detected under the same conditions in 96-well tissue culture
plates as described in Fig . B. e, Without HKa ; m, with HKa . The
24- and 96-well plates were purchased from the same manufacturer
(Costar Corp.) .
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Lee, 1975) . The cystatin sequences are defined by character-
istic sets of disulfides (Kellermann et al ., 1989) . HK is syn-
thesized by endothelial cells (Schmaier et al ., 1988) and is
present in a granules of platelets (Schmaier et al ., 1983a) .
There are four kininogen genes in rodents (Kageyama et al .,
1985 ; Kato et al ., 1985), and a homologue ofHK is the prin-
cipal acute phase reactant of rats (Anderson and Heath,
1985 ; Kageyama et al ., 1985) .
HK is important for the "Woman effect," in which the rate

and extent of adsorption of fibrinogen on artificial surfaces
depend on the plasma or serum concentration from which
the proteins are adsorbed and on the time course of adsorp-
tion (Vroman et al ., 1980) . Fibrinogen, which is deposited
immediately after blood contact, becomes replaced by HK,
especially the two-chain or HKa form (Scott et al ., 1984 ;
Brash et al ., 1988) . This phenomenon is not seen with
plasma samples lacking Factor XII or HK (Schmaier et al .,
1983b ; Brash et al ., 1988) . We found that HKa was inhibi-
tory for adhesion to surfaces coated with a wide range of
fibrinogen concentrations (Fig . 10) and did not displace ra-
diolabeled vitronectin from polystyrene-coated surfaces
(Fig . 12 A) . The antigenicity of vitronectin was decreased in
a concentration-dependent manner by HKa (Fig . 12 B) .
However, antigenicity was not decreased to a value that, in
the absence of HKa, was associated with diminished cell
spreading . HKa also inhibited cell adhesion to a third adhe-
sive protein, von Willebrand factor (Tàble III) . If HKa acts
by displacement and/or modification of adhesive proteins, its
actions must be different and unique for each protein .
HKa did not inhibit cell adhesion to substrates coated with

fibronectin . These results contrast with results with tenascin,
which counteracts the adhesive activity of fibronectin (Chi-
quet-Ehrismann et al ., 1988) . Vitronectin, fibrinogen, and
von Willebrand factor are ligands of 03 integrins, whereas
fibronectin is a ligand for ß l and 03 integrins (Hemler,
1990) . The anti-adhesive activity of HKa was overcome by
Mn", which enhances cell adhesion in a variety of situa-
tions (Evans and Jones, 1982 ; Grinnell, 1984 ; Edwards et
al ., 1987) and is thought to increase activity of integrins by
binding to sites for divalent cations in a subunits (Gailit and
Ruoslahti, 1988) . Thus, we favor the hypothesis that HKa
specifically interferes with the function of 03 integrins . It
could do so by direct interaction with the integrin in an an-
tagonistic fashion or by interaction with other cell surface
molecules that counteract the effects of interaction between
integrins and substrate-adsorbed ligand .
HK binds to platelets (Greengard and Griffin, 1984 ;

Gustafson et al ., 1986) and neutrophils (Gustafson et al .,
1989a,b) in suspension . Gustafson et al . (1989b) showed that
fibrinogen and HK can displace each other from the surface
of the neutrophil and activated platelet . They speculated that
fibrinogen and HK do not share the same receptors on either
neutrophil or platelet surfaces and concluded that the inhibi-
tory effect of HK on the binding offibrinogen to platelets and
neutrophils may result from steric hindrance since both HK
and fibrinogen are large asymmetric proteins . We are not
sure how these findings are related to our results because
there is no requirement for cleavage of HK in suspension
binding assays, and the binding requires Znz+, a cation that
had no activity in our experiments . In addition, low molecu-
lar weight kininogen, which has no anti-adhesive activity,
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has recently been shown to also bind to platelets (Meloni and
Schmaier, 1991) .

Adsorption of HKa to surfaces is usually thought of as a
procoagulant event (Scott et al ., 1984) . However, because of
the lack of bleeding diatheses in patients congenitally
deficient in plasma Factor XII, prekallikrein, or HK, and in
some patients with Factor XI deficiency, the contact system
is not considered an important part ofthe hemostatic mecha-
nism (Furie and Furie, 1988) . Indeed, patients congenitally
deficient in Factor XII probably have excess thrombosis
(Lämmle et al ., 1991) . Our results suggest a possible mecha-
nism whereby generation of HKa is anti-thrombogenic, inas-
much as spreading of platelets and mononuclear cells on
vitronectin- and fibrinogen-coated substrates is inhibited by
HKa. In addition to its roles in blood coagulation, HKa may
function locally in tissues . HK is made by endothelial cells
(Schmaier et al ., 1988) . The ß-amyloid precursor protein is
a specific inhibitor of Factor XIa (Smith et al ., 1990), a pro-
tease that we suspect destroys the anti-adhesive activity of
HKa. Further investigation, therefore, may reveal that a ma-
jor role ofproteases ofthe contact activation system and their
inhibitors is to control the anti-adhesive activities ofHK and
its derivatives .
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