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A B S T R A C T

Artificial Intelligence (AI) can potentially impact many aspects of human health, from basic research discov-
ery to individual health assessment. It is critical that these advances in technology broadly benefit diverse
populations from around the world. This can be challenging because AI algorithms are often developed on
non-representative samples and evaluated based on narrow metrics. Here we outline key challenges to bio-
medical AI in outcome design, data collection and technology evaluation, and use examples from precision
health to illustrate how bias and health disparity may arise in each stage. We then suggest both short term
approaches—more diverse data collection and AI monitoring—and longer term structural changes in funding,
publications, and education to address these challenges.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Keywords:

Health disparities
Artificial intelligence
Machine learning
Health policy
Race/ethnicity
Genetic ancestry
Sex
Gender
.

V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction

The use of computer-aided diagnoses dates back to the 1950s
with significant gains in the 1970s and exponential growth since
2008 [1]. Fueled by burgeoning health data from devices, genomics,
and electronic health records as well as increasing computational
capabilities, digital technologies have the potential to improve diag-
nostic and therapeutic efficacy.

The expanding use of AI in health and medicine, limited here
to data-driven algorithms for making predictions, is promising.
Deep learning, for example, allows digital technologies to diag-
nose melanoma, breast cancer lymph node metastasis and dia-
betic eye disease better than specialists when it is working well
[2]. Ambient intelligence—where healthcare spaces are fitted with
passive, contactless sensors—can assist clinicians and surgeons to
improve the quality of healthcare delivery [3]. AI-driven techni-
ques can achieve cardiologist-level diagnosis of heart conditions
from electrocardiogram waveforms [4].

The concern, however, is that these new technologies may
exacerbate existing structural health disparities [5]. Sex, gender,
and race bias has long plagued health and biomedicine, stretching
back to the advent of modern medicine in the eighteenth century
and beyond [6�10]. Health inequalities related to socioeconomic
status, ethnicity, gender, geographical area, and other social fac-
tors are stark both within countries such as the U.S. and the U.K,
and between developed and developing countries [11�14]. Most
papers on AI in health and medicine were conducted in the US,
Europe, and China, [1] raising the possibility that, if exported,
these technologies may not work as well in other parts of the
world.

Researchers have begun to investigate steps where bias may enter
digital technologies: at problem conception where critical decisions
about cohorts and outcomes are made; at intermediate stages where
data is collected, models developed, and where attributes like race
may affect model predictions [15,16]; and finally at deployment
where clinicians may be unaware that particular models are poor
predictors for particular groups and where less privileged patients
have less access to technologies and may distrust mainstream medi-
cine [17�19]. In this article, we use concrete biomedical examples to
illustrate how algorithmic bias and disparity can arise due to inade-
quate outcome choice, data collection, and model evaluation. We
highlight personalised medicine as an especially salient challenge
because of its growing importance and because it builds on individu-
ally specific data. We then discuss both short-term technical
approaches and longer-term structural changes to improve the reli-
ability and broaden the benefit of biomedical AI. This article focuses
on statistical AI algorithms; embodied AI (e.g. robotics) may have
additional challenges of bias due to physical appearance that may
reinforce social or cultural stereotypes [20].
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1.1. Outcome choice

Obermeyer et al. found that commercial algorithms designed to
predict the health needs of patients with multiple comorbidities
encoded bias when cost was used as a proxy for illness. They identi-
fied outcome choice as one of the most important decisions made in
developing predictive algorithms. The team tested algorithms
designed to identify patients in need of coordinated care in efforts to
reduce catastrophic events, such as visits to emergency rooms. In the
U.S., Black patients have more health needs, but when cost is used as
a proxy for need, these needs are not adequately identified [21]. At
equal levels of health (measured by number of chronic illnesses),
Black patients generate lower costs than whites potentially because
they receive fewer inpatient surgeries and outpatient specialist con-
sults. After experiments testing how label choice affected both pre-
dictive performance and racial bias, the team recommended using an
index variable that combined health prediction with cost prediction
[22].

1.2. Instrumentation and data collection

Medical devices, such as the pulse oximeter, collect a wealth of
health-related information, including oxygen levels, sleep heart rate,
arrhythmia, etc. The problem with devices that use infrared and red
light signaling is that these signals interact with skin pigmentation,
and accuracy may vary with skin tone. This physical bias in devices
means basic data collection can be flawed [23].

Let’s take a common medical device, the pulse oximeter, first pat-
ented in Japan in 1972 [24]. Oxygen saturation has become a vital
sign along with temperature, blood pleasure, pulse rate, and respira-
tory rate. Pulse oximeters—able to measure oxygen levels without
drawing arterial blood—are among the first defenders in emergency
rooms, for example, against COVID-19. Yet, pulse oximeters may
overestimate arterial oxyhemoglobin saturation at low SaO2 in
patients with darker pigmented skin, [25] meaning that patients may
not get the supplemental oxygen needed to avoid damage to vital
organs, such as heart, brain, lungs, and kidneys [26]. A recent study
compared oxygen saturation measures taken with pulse oximeters
with those taken from arterial blood gas. Analysis of over 47,000
paired readings found that oximeters misread blood gases 12 percent
of the time in Black patients compared to 4 percent of the time in
white patients [27].

Medical researchers have known since 1989 that both deoxyhe-
moglobin and melanin in skin are primary light absorbers [28]. An
early oximeter patent to adjust for skin tone was filed in 1999 [29].
Further patents were filed in 2017 [30] and 2019, [31] both of which
take tissue colour (e.g. skin tone or melanin content) into account.
Device developers, however, have been slow to take action [5].

Pulse oximeter data are fed into algorithms that increasingly
guide hospital decisions. Algorithmic tools can only be as good as the
devices feeding data into them. The pulse oximeter case exemplifies
a broader phenomenon whereby darker-skin data is often underrep-
resented in evaluations of medical devices, findings, and algorithms.
A recent survey of 36 papers describing cutaneous manifestation
associated with COVID-19 showed that none of these papers included
photos of darker skins [32].

1.3. Post-development evaluation and monitoring of medical AI

The growing emphasis on reliable and fair AI has exposed limita-
tions in how medical AI algorithms are evaluated and monitored by
the community. A recent study reviewing 130 medical AI devices
approved for use by the U.S. Food and Drug Administration (FDA)
found that 126 out of the 130 devices were evaluated on retrospec-
tive data collected before the devices were developed [33]. Retro-
spective evaluation is more vulnerable to overfitting by ML algorithm
compared to randomized prospective studies that are the norm
for evaluating new medicines. Moreover only 28% of the approved
devices publicly reported evaluation results from more than one
clinical site. Less than 13% of the approved AI devices did not
report their performance stratified by sex, gender, or race/ethnic-
ity in the public summary. While the FDA may have additional
internal performance metrics, the lack of public information
makes it challenging for physicians, hospitals, and patients to
assess the reliability of the algorithm. This is especially concern-
ing as AI algorithms are known to have heterogeneous perfor-
mance in different subpopulations due to imbalances in the
training data. This study of FDA approved AI further demon-
strated how an algorithm predicting pneumothorax that passes
the bar when evaluated at one hospital may be much less accu-
rate when tested at a different hospital—the algorithm’s predic-
tion accuracy can drop by more than 10% across sites [34]. One
contributing factor to the drop in performance is the different
composition of race/ethnicity, sex, and gender in the test patients
across different sites, and the fact that the thoracic detector had
different performances across demographic groups.

1.4. Algorithms for personalised health and medicine

Personalised health is a major application area of machine learn-
ing. The idea of personalised health is to discover attributes—e.g.
omic biomarkers or wearable sensor readouts—that characterizes an
individual’s health status and to recommend actionable interventions
to reduce future disease risks. Because personalised health efforts
typically require large datasets and predictive modeling of future out-
comes, it is a key domain for machine learning algorithms and exem-
plifies the outcome design, data collection, and monitoring
challenges we discuss here.

Precision diet based on microbiome is one intriguing example of
personalised health and medicine. Models using features of an indi-
vidual’s microbiota—the collection of 100 trillion microbes that live
on or within a person’s body—have been shown to accurately predict
that individual’s response to food, e.g. glycemic response to different
types of bread [34]. Several startups now offer personalised diet to
manage diabetes and other diseases powered by microbiome-based
algorithmic predictions. Similarly, recent studies have explored deep
monitoring of individuals using wearables and longitudinal measure-
ments of multi-omics including transcriptome, microbiome, and pro-
teome [35,36]. Computational analyses integrating these data have
identified personalised trajectories of diabetes progression, though
these studies have been validated primarily on data from small num-
ber of participants.

The high-dimensional data used in personalising health, such as
multi-omics, can greatly vary across individuals and are profoundly
affected by environment and behaviours. For example, jetlag can alter
the microbiome composition by increasing the relative representa-
tion of Firmicutes, a type of bacteria associated with obesity and met-
abolic diseases [37]. Studies have also demonstrated systematic
variation in the microbiome across different ethnic groups [38]. Indi-
viduals in each part of the world have unique taxa of microbes that
are more abundant in their body, likely due to both genetic and envi-
ronmental differences. A major machine learning challenge is to
ensure that the personalised predictive modeling for diet and disease
management work reliably across diverse race/ethnicity, sex, gender,
and geography. The danger for algorithmic bias can be especially
high for personalised health since the underlying data and individual
outcomes are highly heterogeneous. Many of the recent personalised
health projects have been conducted in the U.S., Europe, and Israel,
and have involved relatively small number of participants often
recruited near universities where the researchers are affiliated. How
well the technology works in other ethnic groups needs to be care-
fully evaluated.
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2. Short-term technical solutions

2.1. Increasing the diversity of medical data resources

Appropriate data collection is a first crucial step toward develop-
ing and evaluating medical AI algorithms. On the one hand, many of
the commonly available public datasets, especially for medical imag-
ing, fail to properly represent minorities [39]. On the other hand, pri-
vate datasets that may be more diverse are typically restricted to a
specific hospital or academic center, and do not capture variation
across sites. Remedying this gap is an important step towards
improving the reliability of medical AI across different populations.
Several encouraging efforts are under way. For example, as discussed
in case studies above, the paucity of annotated photos of darker-skin
individuals is a significant barrier for dermatology and telehealth
algorithms. The Stanford Skin of Color Project is an ongoing crowd
science effort to collect and curate the largest publicly available data-
set of dermatologically relevant images from darker skin tones. This
data can help to train and assess machine learning models. In
genetics, there are similar efforts to prioritize the collection and
analysis of non-European genetics data, which is necessary for
genetic understandings of diseases such as polygenetic risk scores
to benefit diverse populations [40]. For example, the recent PAGE
study demonstrates a robust framework to identify new genetic
correlates of phenotypes using over 49,000 non-European indi-
viduals [41]. Especially when collecting data from underrepre-
sented groups, it is important to have transparent consent so that
participants gain trust on how the data will be used. As we dis-
cussed in this article, collecting diverse data is one important
step toward bias mitigation; carefully assessing algorithm design,
evaluation metrics, and the accessibility of the technology in
deployment is also important.

2.2. Monitoring medical AI algorithms post deployment

A key challenge for AI algorithms is that its performance can
quickly change over time. This may be due to the algorithm itself
being updated as more data is used to train it. This may also be due to
changes in user characteristics over time (e.g. as the algorithm
becomes more widely-adopted in low resource settings). The usage
of the algorithm itself can also lead to changes in the user behavior,
thus creating a feedback loop [42]. These phenomena together are
called data drift. Careful and continuous monitoring of medical AI
systems is therefore critical for ensuring their safe and unbiased
application. Post deployment monitoring of AI algorithms is an
emerging area of research. Researchers have developed statistical
tests to detect if the data that an algorithm is applied to is substan-
tially different from the data that the algorithm was trained on. These
tests trigger real-time warnings that the deployed AI algorithm may
have biases due to its training data. This can be a practical approach
for monitoring [43]. We recommend that hospitals and regulators
such as the FDA consider the monitoring framework and the AI algo-
rithm as a holistic package to be evaluated and deployed together.

3. Long-term structural solutions

3.1. Policy and regulatory agencies

Given the growing importance of AI in biomedicine and health
care, some regulatory agencies have taken action. The American Med-
ical Association, for example, recommends that AI for health care be
“thoughtfully designed, high-quality, [and] clinically validated” [44].
This has been criticised, however, as not going far enough to advance
health equity. The American Heart Association, by contrast, has
issued a “call to action” to overcome structural racism [45] complete
with a structural racism and health equity language guide [46].
The FDA has set out five criteria for excellence in its Digital Health
Innovation Action Plan. The specific guidelines to certify medical
computer-aided systems, however, do not mention sex, gender, or
other axes of health disparities in data collection [47]. Ferryman rec-
ommends expanding the current FDA guidelines for software as a
medical device (SaMD) to include a four-part pre- and post-market
review of ML health tools: an analysis of health disparities in the clin-
ical domain of interest; a review of training data for bias; transpar-
ency surrounding decisions made regarding model performance,
especially in relation to health disparities; and post-market review of
health equity outcomes [48]. It is worth noting that most of the medi-
cal AIs approved by the FDA focus on automating relatively low-level
aspects of the clinical workflow and that human experts are still
responsible for making final decisions. It is therefore important to
assess the algorithm not just in isolation but in the context of human
usage.

Where regulatory agencies such as the FDA, International Medical
Device Regulators Forum, or European Medicines Agency have no
jurisdiction, Institutional Review Boards (IRB) may provide oversight
to ensure that sex, gender, race, and ethnicity analyses are appropri-
ately integrated into research with enhanced and rigorous reviews.
An important part of US IRBs’ remit is to ensure that study designs
are sound [49]. If study participants are limited to the institution’s
geographic location, however, the limits of the study should be
clearly stated.

3.2. Curriculum and team development

Universities have joined the effort to develop socially responsible
AI by reforming curricula. In 2019, Harvard University initiated an
Embedded EthiCS curriculum—in response to student demand—that
integrates ethical issues into the core computer science (CS) curricu-
lum. Barbara Grosz et al. argue that embedding ethical reasoning
throughout the entire CS curriculum has the potential to “habituate
students to thinking ethically as they develop algorithms and build
systems, both in their studies and as they pursue technical work in
their careers” [50]. These courses are taught by interdisciplinary
teams of humanists and computer scientists. Stanford University and
the Technical University of Munich have implemented similar
approaches [51,52].

Across the European Union, a 2020 survey of 61 universities
showed that two thirds teach ethics in CS courses (this includes pro-
fessional codes of ethics in addition to the social issues that are the
focus of our interests here). Ethics is most often taught in stand-alone
modules (39%) and not linked to core curricula (28%�the other 33%
combine both approaches) [53]. The AI for biomedicine community
can also benefit from curriculum that incorporates ethics into compu-
tational training by drawing from the relevant material in both CS
and medical ethics.

Additional problems may arise from the lack of gender and ethnic
diversity in AI teams, a situation that can contribute to perpetuating
unconscious biases in research design and outcomes. Teams should
be diverse in terms of participants and also in terms of skill sets and
methods [54]. AI researchers themselves should understand the
basics of sex, gender, diversity, and intersectional analysis as these
relate to their technical work [55]. In addition, McLennan et al. rec-
ommend embedding ethicists directly into AI development teams to
enhance robust analysis of social issues—from the beginning of devel-
opment (and not after the fact) [56].

Next steps will be to review what is included in “ethics”. Much the
discussion of ethics revolves around narrow, formalist principles or,
as we saw in university curricula, codes of professional ethics. Rather
than ethics per se, what is needed are robust analyses of social, cul-
tural, and legal issues brought by humanists, social scientists, and
legal experts that can anticipate how technologies might reinforce
social inequities and suggest structural solutions for overcoming
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them [56]. This type of interdisciplinary collaboration may require
changing how universities are structured and how researchers are
trained. Researchers need to learn to collaborate across disciplinary
divides in seamless and productive ways.

3.3. Funding agencies

Funding agencies can serve as gatekeepers to excellence in sci-
ence, including CS [20]. The European Commission has embraced
“ethics by design” for the development of AI systems since 2018. This
requires that ethical and legal principles based on the General Data
Protection Regulation be implemented in the design process [57]. In
2019, the Stanford University Human-Centered AI Institute imple-
mented an Ethics Review Board, modeled loosely on Institutional
Review Boards, to assess grant proposals for social implications of the
research before funding [58]. In 2020, the German Research Founda-
tion (DFG)—which includes biomedical research—implemented
guidelines for sex, gender, and diversity analysis in proposals, where
relevant, in efforts to enhance fairness in research outcomes [59].
Implementation of any of these policies depends on training
researchers, evaluators, and staff in issues surrounding social equities
and regular reviews of the efficacy of such policies.

3.4. Conferences and peer-reviewed journals

A number of ML and AI conferences have policies to encourage
diversity, equity, and inclusion in participation. NeurIPS (Neural
Information Processing Systems) conference requires in its call for
papers that authors detail “the potential broader impact of their
work, including its ethical aspects and future societal consequences.”
[60,61]. As they state, “regardless of scientific quality or contribution,
a submission may be rejected for ethical considerations, including
methods, applications, or data that create or reinforce unfair bias or
that have a primary purpose of harm or injury.” [62]. Although some
worry that this may simply lead to “ethics washing” [52] and not be
taken seriously, we recommend that other conferences adopt similar
policies and that all conferences plan to evaluate this policy every
five years.

Editorial boards of peer-reviewed journals and peer-review con-
ferences can also require sophisticated ethical analysis when select-
ing papers. The journal Nature Machine Intelligence is considering
requiring authors to include a statement on the broader societal
impacts and ethics of their work—but this has yet to be implemented
[63]. The Lancet has pledged to advance racial equality through edito-
rial oversight in publications [64] and also to conduct editorial checks
for appropriate use of sex and gender analysis before accepting
manuscripts for publication [65].

3.5. Outstanding questions

The numerous articles we reviewed reveal important examples of
how health disparities surrounding race/ethnicity, sex and gender,
geographic location, socioeconomic status, etc. are often amplified by
AI. These studies, however, tend to treat each factor separately—
either race/ethnicity, or sex, or gender, or socioeconomic status, or
abilities, etc. What is needed now are intersectional analyses in
health and medical research. Intersectionality analyses how overlap-
ping or intersecting forms of discrimination related to a patient’s
social and cultural life course function in health outcomes [66].

An iconic example of intersectional analysis from facial recogni-
tion found that systems that analysed sex and race separately failed
to capture the full severity of the bias for Black women. The sex anal-
ysis found that systems performed better on men’s faces than on
women’s faces. The race analysis found that systems performed bet-
ter on lighter-skin than darker-skin. Intersectional analysis found
that these single axes missed that systems performed significantly
worse for Black women. Error rates were 35% for darker-skinned
women, 12% for darker-skinned men, 7% for lighter-skinned women
and less than 1% for lighter-skinned men [67].

Returning to pulse oximetry, given that outcomes are worse for
Black patients (undifferentiated by sex), would they be significantly
worse for darker-skinned women or gender-diverse individuals?
Findings are inconclusive. Feiner et al. suggested in 2007 that women,
especially those with smaller fingers, exhibit greater variability in
oximeter performance, especially at low SaO2. One study that took an
intersectional approach found that SpO2 values less than 97% were
6 times more frequent in white males than in Black females [68]. A
very small 2020 study pointed out, however, that low hemoglobin
levels were prevalent in females; thus it was not possible to statisti-
cally separate the contributions of sex and low hemoglobin to oxime-
ter bias [69]. A recent study of 47,000 plus patients found that
oximeters misread hypoxemia more often in female than in males—
but the difference was slight compared to differences related to skin
tone [70]. Researchers should take steps to learn what these findings
might mean for an intersectional analysis of sex and skin tone. Inter-
sectionality is a technique that needs to be incorporated into analyses
to overcome health inequalities. Device makers should consider rele-
vant intersectional analyses when calibrating medical instruments.

While the impact of sex on pulse oximetry remains unclear, that
of gender may be significant. A randomized, blind study found that
nail polish (worn more often by people who identify as women than
as men) interfered with oximetry, with black, blue, and green colours
lowering the accuracy of reading more than purple or red [71]. The
recommendation is that medical professionals remove patient nail
polish before employing an oximeter.

More research is needed to understand intersecting human char-
acteristics of sex, gender, race/ethnicity, socioeconomic status, age,
etc. to enhance health outcomes across the whole of society. It is also
important to perform life course analysis to assess the impact of algo-
rithms over time, where possible.

4. Conclusion

AI holds tremendous potential to improve many aspects of human
health, from early stage biomarker discovery to more effective per-
sonalised diagnosis and treatment. As with other biomedical technol-
ogies such as genome sequencing and editing, it is critical that
innovation in biomedical AI is complemented by efforts to reduce
human risk and to ensure that its benefits are broadly shared by
diverse countries and populations. Here we have outlined key chal-
lenges that can lead to bias and disparity in biomedical AI. Many of
these challenges are fundamentally linked to how we design and col-
lect the data used to train and evaluate the algorithms. We also pro-
pose both short term approaches—e.g. better post-deployment
monitoring of medical AI can be readily adopted—as well as long
term structural changes—e.g. ensuring that social, cultural, and ethi-
cal analyses are integrated into medical AI curriculum—as steps
toward this goal. Clearly, technology alone is not the fix; large social
problems that undergird structural inequality need to be addressed
[72,73]. Nonetheless, researchers and educators can do their part to
develop education and technologies that strive toward social justices.

4.1. Search strategy and selection criteria

Data for this Review were identified by searches of PubMed and
Google Scholar, and references from relevant articles using the search
terms “artificial intelligence”, “machine learning”, “sex”, “gender”,
“race”, “ethnicity,” “health disparities,” “precision health”. Impor-
tantly, to find articles about sex in biomedicine, one often needed to
search “gender”; medical researchers tend to use these distinct terms
interchangeably and often incorrectly [74]. Only articles published in
English between 2000 and 2021 were included.
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