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ABSTRACT Smartphone usage and contact frequency are unprecedentedly high in this
era, and they affect humans mentally and physically. However, the characteristics of the
microorganisms associated with smartphones and smartphone hygiene habits remain unclear.
In this study, using various culture-independent techniques, including high-throughput
sequencing, real-time quantitative PCR (RT-qPCR), the ATP bioluminescence system, and elec-
tron microscopy, we investigated the structure, assembly, quantity, and dynamic metabolic
activity of the bacterial community on smartphone surfaces and the user’s dominant and
nondominant hands. We found that smartphone microbiotas are more similar to the nondo-
minant hand microbiotas than the dominant hand microbiotas and show significantly
decreased phylogenetic diversity and stronger deterministic processes than the hand micro-
biota. Significant interindividual microbiota differences were observed, contributing to an aver-
age owner identification accuracy of 70.6% using smartphone microbiota. Furthermore, it is
estimated that approximately 1.75 � 106 bacteria (2.24 � 104/cm2) exist on the touchscreen
of a single smartphone, and microbial activities remain stable for at least 48 h. Scanning elec-
tron microscopy detected large fragments harboring microorganisms, suggesting that smart-
phone microbiotas live on the secreta or other substances, e.g., human cell debris and food
debris. Fortunately, simple smartphone cleaning/hygiene could significantly reduce the bacte-
rial load. Taken together, our results demonstrate that smartphone surfaces not only are a
reservoir of microbes but also provide an ecological niche in which microbiotas, particularly
opportunistic pathogens, can survive, be active, and even grow.

IMPORTANCE Currently, people spend an average of 4.2 h per day on their smartphones.
Due to the COVID-19 pandemic, this figure may still be increasing. The high frequency of
smartphone usage may allow microbes, particularly pathogens, to attach to—and even sur-
vive on—phone surfaces, potentially causing adverse effects on humans. We employed var-
ious culture-independent techniques in this study to evaluate the microbiological features
and hygiene of smartphones, including community assembly, bacterial load, and activity.
Our data showed that deterministic processes drive smartphone microbiota assembly and
that approximately 1.75 � 106 bacteria exist on a single smartphone touchscreen, with
activities being stable for at least 48 h. Fortunately, simple smartphone cleaning/hygiene
could significantly reduce the bacterial load. This work expands our understanding of the
microbial ecology of smartphone surfaces and might facilitate the development of elec-
tronic device cleaning/hygiene guidelines to support public health.

KEYWORDS smartphone microorganism, microbial community assembly, skin
microbiota, smartphone hygiene, human health, potential pathogen, surface
microbiota

Smartphones are now one of the most commonly used personal items. Global
smartphone users increased by 40% from 2016 to 2020, reaching 3.5 billion, and

these users spent an average of 4.2 h per day on their phones (1). Due to the COVID-19

Editor Henning Seedorf, Temasek Life Sciences
Laboratory

Copyright © 2022 He et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Yongqi Shao,
yshao@zju.edu.cn.

The authors declare no conflict of interest.

Received 26 April 2022
Accepted 11 August 2022
Published 30 August 2022

September/October 2022 Volume 10 Issue 5 10.1128/spectrum.01508-22 1

RESEARCH ARTICLE

https://orcid.org/0000-0002-3331-5880
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/spectrum.01508-22
https://crossmark.crossref.org/dialog/?doi=10.1128/spectrum.01508-22&domain=pdf&date_stamp=2022-8-30


pandemic, these figures may still be increasing (2, 3). Currently, the effects of smart-
phones on people’s mental and physical well-being manifest in various ways (4, 5). It
has been shown that, on average, people touch their phones 2,617 times per day (6);
this number may be even higher in the current era. Despite recent studies having
focused on problems associated with smartphones (e.g., sleep disturbance, mental
issues, and nonionizing radiation) (7–9), microbial features and smartphone hygiene
are largely ignored aspects of research (the small amount of research that has been
done has mostly involved hospital workers) (10).

The hand represents a critical connection between humans and the external world
and plays a vital role as a vector by which microorganisms are transmitted among
body sites, individuals, items, and the environment (11). The hand microbiota could
thus contribute to the formation of a microbial fingerprint on our possessions (12).
Since smartphones are one of the items we contact with high frequency, it is not sur-
prising that the features of microbial communities on smartphones could present high
similarities with those of the owners’ hands (13, 14) with the potential even for identifi-
cation for forensic purposes (15). A previous study found personalized traits and simi-
larities in microbiome composition between the thumb, index finger, and smartphone
(13). Nevertheless, there is still a limited understanding of the relationship between the
hand (the dominant and nondominant hands [DH and NH, respectively]) and smart-
phones. Furthermore, little is known about the assembly processes of microbial com-
munities on smartphones. Are smartphone microbiotas transferred from human hands
randomly? Is their assemblage governed by deterministic processes in the smartphone
microenvironment? Do transferred microorganisms form a microbial community and
interact with each other?

Moreover, extensive and active pathogen contamination was reported for the surfa-
ces of the phones of university students (10, 16) and hospital workers, including inten-
sive care unit (ICU) workers (17, 18). The existence of characteristic and perhaps active
microbial communities on smartphones indicates the potential of these items as a res-
ervoir of human pathogens. Furthermore, people attach little importance to phone
hygiene. A recent report showed that most of the studied clinicians disinfected their
phones only when they were dirty (18). Therefore, smartphones, as a pathogen reser-
voir, might undermine our sanitation efforts.

To date, research on smartphone-associated microorganisms has involved mostly cul-
ture-dependent methods (17–19). In this study, we investigated the microbial communities
on the hands of 14 healthy volunteers and the surfaces of their smartphones. Several cul-
ture-independent techniques were employed to characterize the microbial communities,
including high-throughput sequencing, real-time quantitative PCR (RT-qPCR), the ATP bio-
luminescence system, and electron microscopy. In particular, the ATP bioluminescence sys-
tem is widely used to monitor hygiene practices in food industries and the health care
environment (20). The aims of the present study were to (i) evaluate the composition and
relationship of microbiotas on smartphones, dominant hands, and nondominant hands, (ii)
elucidate the assembly processes (determinism or stochasticity) of smartphone microbio-
tas, (iii) assess the potential of the smartphone microbiome profile for identifying the
owner, and (iv) quantify the absolute abundance and activity of bacteria on smartphones.
We hypothesized that smartphone microbiotas primarily originate from human hands,
given the high touch frequency of smartphones in this era. Thus, smartphone microorgan-
isms were expected to be in a state of rapid species turnover (transient), and thus, there is
no sufficient time, resources, or activity to form a “community” and interact with each
other, contributing to the same or more stochastic assembly processes among smartphone
microbiotas as among hand microbiotas.

RESULTS
Characterization of bacterial communities on the smartphone surface (SS) and

the owner’s dominant and nondominant hands (DH and NH). After quality control
and sample pairing, the bacterial communities of 14 graduate students were characterized
using amplicon sequencing. Detailed information on the subjects with their anonymous
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serial numbers (V1 to V14) is available in the supplemental material (Table S1). After
sequence processing and rarefaction, 1,062 unique bacterial operational taxonomic units
(OTUs) were identified. According to the taxonomic classification, the bacteria belonged
mainly to Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes (Fig. 1a), accounting
for a mean relative abundance of 92.7%. Here, the OTUs present in all the samples (both
hand and smartphone) were defined as the core OTUs. The taxonomy and average

FIG 1 Smartphone microbiotas have lower phylogenetic diversity than hand microbiotas and are more similar to nondominant hand
(NH) microbiotas than to dominant hand (DH) microbiotas. (a) Bar plot showing the four most abundant bacterial phyla represented
on the NH, DH, and smartphone surface (SS). No significant difference was observed between the two hands and SS (Kruskal-Wallis H
test). (b and c) Tukey boxplot of alpha diversity of the communities on hands and SS measured by the richness index (b) and Faith’s
phylogenetic diversity (PD) (c) index. Dots represent outliers. (d) Bar chart representing three sets of beta diversity, based on Jaccard
similarity, between each owner’s NH, DH, and SS. The error bar represents the standard error. (e) The potential contribution of NH
and DH microbiotas to the SS microbiota in each individual, based on source tracking analysis using FEAST. (f) Abundances of
significantly changed genera in each group based on DESeq2. False-discovery rate (FDR)-corrected P values are shown. Box plots
show median (line), 25th and 75th percentiles (box), and 1.5� the interquartile range (IQR, whiskers). Dots represent outliers. *,
P # 0.05; **, P # 0.01. n.s., nonsignificant (P . 0.05).
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abundance of all 16 core OTUs, including Cutibacterium acnes, Staphylococcus, Strepto-
coccus,Moraxella osloensis, are displayed in Table S2. The core OTUs accounted for an aver-
age relative abundance of 48.56% in each sample.

To further reveal the differences between hands and SS, the alpha diversity of each
community was calculated (Table S3). Smartphone microbiotas are expected to origi-
nate from hand microbiotas and be transient and, therefore, to have comparable diver-
sity. No significant difference was observed between hands and SS based on the
Chao1 and Sobs richness indices (P = 0.165 and 0.110, respectively, t test [Fig. 1b and
Table S3]), neither of which incorporated the phylogenetic information among taxa. In
contrast, unexpectedly, Faith’s phylogenetic diversity (PD) (Fig. 1c) of the bacterial
communities on SS was significantly lower than that on hands (P = 0.038, t test).
Additionally, phylogeny-based metrics (weighted UniFrac dissimilarities, 29.61% and
18.23%) could better explain the variation in the microbiota composition than taxon-
omy-based metrics (Bray-Curtis dissimilarities, 18.83% and 13.08%) in the first two axes
of the multidimensional scaling, confirming the altered phylogenetic structure of the
microbiota on the SS. However, no major variation was observed between hands and
SS based only on difference analyses (ADONIS, R2 = 0.024 and P = 0.449; analysis of
similarity [ANOSIM], R = 0.136 and P = 0.046) (Table 1 and Table S4). Given that the dif-
ference between hands and SS might be masked by similarity per se or high interindi-
vidual difference (Table 1 and Table S5), we further dissected the masking effects of
interindividual variation by considering the interaction effect using two-way ADONIS
(Table 2) and found significant differences between hands and SS (hands/SS, R2 =
0.027 and P = 0.025; individual, R2 = 0.572 and P , 0.001; interaction effect, R2 = 0.254
and P = 0.004, weighted UniFrac distance).

To evaluate the difference in the microbiotas between two hands (DH and NH) regarding
their similarity to smartphone microbiotas, Jaccard similarity was calculated for pair compari-
son in each individual across three sites, including NH, DH, and SS (Fig. 1d and e), which
could eliminate the effects of interindividual variation. The similarity between DH and NH
was significantly higher than that between SS and NH (P = 0.003, paired t test). Interestingly,
the similarity between SS and NH was significantly higher than that between SS and DH
(P = 0.038, paired t test). This result indicated that SS microbiotas were more similar to
microbiotas from the NH than from the DH, which was validated by the source tracking
analysis based on fast expectation-maximization for microbial source tracking (FEAST), which
showed significantly more potential sources from the NH than from the DH (P = 0.008,
paired t test). Differential analysis revealed that some microbes were significantly enriched
or depleted on the SS (Fig. 1f and Fig. S1). For example, Cutibacterium and Staphylococcus
were significantly depleted on the SS, whereas UCG-002 was enriched on the SS.
Consistently, we also found asymmetry between hands compared with the SS at the genus
level, e.g., for Bifidobacterium (lower on the NH) and Subdoligranulum (lower on the DH).
Accordingly, these results not only indicated that bacteria are affected by the SS but also
suggested the presence of asymmetry of the DH and NH from the microbiological
perspective.

With regard to potential pathogens, several opportunistic pathogens, such as

TABLE 1 Results of differential analyses of bacterial community composition of all the
samples using ADONIS and ANOSIM, based on weighted and unweighted UniFrac distancesa

Parameter

Weighted UniFrac Unweighted UniFrac

ADONIS ANOSIM ADONIS ANOSIM

R2 P R P R2 P R P
Individual 0.57 0.001 0.438 0.001 0.418 0.001 0.371 0.001
Sex 0.03 0.257 0.036 0.169 0.025 0.382 0 0.439
NH/DH/SS 0.045 0.538 20.008 0.564 0.046 0.655 20.017 0.734
Hands/SS 0.027 0.356 0.135 0.039 0.023 0.549 20.01 0.528
aThe bold values reprensent significant (P, 0.05) variables.
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Haemophilus parainfluenzae (1.89%), Haemophilus influenzae (0.32%), Corynebacterium
durum (0.13%), Corynebacterium tuberculostearicum (3.87%), and Corynebacterium amy-
colatum (0.13%), were detected on the SS. Additionally, functional profiles were pre-
dicted and a potential pathogenic phenotype (predicted by BugBase) and a functional
subset related to human disease (predicted by Tax4Fun2) were found on the SS (Fig.
S2 and S3), suggesting pathogenic potential on the SS.

Stronger deterministic processes in smartphone microbiotas. Unexpectedly altered
phylogenetic diversity (Fig. 1c) and community structure on the SS (Table 2) suggested a
disagreement in the assembly processes (e.g., the selection pressure) between the SS and
hands. To further elucidate the assembly processes, we introduced Sloan’s neutral model.
Model fitness was indicated by lower Akaike information criterion (AIC) scores (Fig. 2a),
which showed better performance of the neutral model than binomial and Poisson models
in predicting the assembly of smartphone microbiotas. Consistent with the lower phyloge-
netic diversity, the communities on SSs exhibited a lower R2 value (0.381 versus 0.695) and
migration rate (0.028 versus 0.047) than the communities on hands (Fig. 2b and c). The
lower R2 value indicated a more niche-based (selection; determinism), rather than neutral or
stochastic, community assembly processes on the SS, while low migration rates revealed
that smartphone microbiotas were limited by dispersal. Normalized stochastic ratios (NST)
were calculated and revealed a significantly lower proportion of stochasticity in the SS com-
munity (Fig. 2d). Consistent trends were observed using another data set (Fig. S4), confirm-
ing that deterministic processes exerted greater influence on the community on the SS.

Interindividual variation and owner identification. We further evaluated the intra-
and interindividual variation in microbiome composition at the genus level. Most of the
bacterial communities consisted of Cutibacterium (14.29%), Staphylococcus (9.08%), and
Moraxella (8.02%) (Fig. 3). We found that the microbiome composition of the hand and SS
samples corresponding to each individual were similar. For example, Cutibacterium was
more abundant in the samples from volunteer no. 3 (V3) than those from the other individ-
uals. In addition, Deinococcus was primarily associated with V10. Interindividual variations
were also observed in dimension reduction analyses (Fig. 4a and Fig. S5), which was further
supported by the distribution of intraindividual and interindividual dissimilarity (Fig. 4b).
The abundances of the core OTUs also exhibited intraindividual similarity but interindivid-
ual dissimilarity (P, 0.01, Kruskal-Wallis H test [Fig. S6]).

To assess whether the SS microbiota could serve as a fingerprint of its owner, ran-
dom forest (RF) classification was performed for owner identification. The hand micro-
biotas of all 14 individuals were used as training sets, and the SS microbiotas were
used as validation sets. We obtained an average prediction accuracy of 70.6%, which is
much higher than the accuracy of random expectation (7.14%). In addition, owner
identification was conducted with OTU tables generated by different OTU filtering
strategies. Only a slight increase in prediction accuracy was observed (Table S6). In con-
trast to the 97% cluster threshold, we also examined the OTUs clustered at the 99%
threshold for identification and obtained only 64% prediction accuracy, implying the
presence of noise within OTUs when using a 97% clustering threshold. Finally, to evalu-
ate how many dominant OTUs (at 97% similarity) are enough for owner identification,
we calculated the distribution of the prediction accuracy of the RF models with 2 to
1,062 OTUs (Fig. 4c). The prediction accuracy increased rapidly to 60% with the

TABLE 2 Results of two-way ADONIS analysis of differences in community composition
between hands and smartphones, considering individual variation and interactiona

Parameter df SS R2 F P
A, individual 13 5.785 0.572 4.170 0.001
B, hands/SS 1 0.255 0.027 2.541 0.030
A� B, interaction effects 13 2.657 0.254 1.854 0.001
Residual 14 1.649 0.148
Total 41 10.34 1
aThe bold values reprensent significant (P, 0.05) variables.
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increase in OTUs within the interval from 0 to 50. Then accuracy increased slightly and
gradually stabilized with the rise in OTU number from 50 to 260.

The microbe-microbe correlation and microbial metabolic activity on smart-
phones. To explore the potential interactions among smartphone microbiotas, we performed
a correlation test at the genus level (Fig. 5a). The results indicated strong correlations (jRhoj .
0.61 and false-discovery rate [FDR], 0.05) among some genera, albeit with the high interindi-
vidual variation described above. Correlations among community members suggest that there
might be microbial activity (not transient or dead bacteria but potentially active) on the SS.
Thus, we assessed the temporal dynamics of bacterial activity on the SS by measuring the
ATP contents. ATP levels were determined by a bioluminescence assay designed to exclusively
measure intracellular bacterial ATP and are displayed as relative light units (RLU). To minimize
sampling bias, we sampled four subareas of each SS at each time point (Fig. 5b). The results
showed that the bacterial activities (RLU) on the smartphones were detectable for at least
48 h (Fig. 5c). The microbial activity remained stable during the first 3 h (P = 0.153, Wilcoxon
signed-rank test) but decreased within the next 9 h (P = 0.024, Wilcoxon signed-rank test; the
median value decreased by approximately 49.4%). The median RLU values at four time points
for each individual ranged from 47.5 to 110 per 100 cm2, which exceeded the hygiene thresh-
old given by the manufacturer, namely, 30 RLU per 100 cm2 (an alcohol-sterilized smartphone
or a new smartphone had values below 10 RLU per 100 cm2). The metabolic activity on the
SS could represent active microbes and, more importantly, could also partially reflect activity
of potential pathogens.

FIG 3 The bacterial taxonomic composition of microbiotas on smartphones and the owners’ hands. The 25 most abundant genera on the NH, DH, and SS
of each individual are shown.

FIG 2 Stronger deterministic processes affect smartphone microbiotas. (a) AIC scores comparing the performances of the neutral, binomial, and Poisson
models for explaining the community assembly process. (b and c) Sloan neutral model prediction of microbiota on hands (b) and SS (c), indicated by R2

values (fit to neutral assembly process) and m values (estimated migration rate). Operational taxonomic units (OTUs) are represented by data points and
colored according to whether the taxon fit above, within, or below the 95% confidence interval (dashed lines). (d) Taxonomic normalized stochasticity ratio
(NST) among the NH, DH, and SS.
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Enumeration and visualization of bacteria on smartphones. Given the potential
pathogenic bacteria detected on the smartphone, we further assessed the bacterial
load by applying absolute qPCR with the universal primer. The average number of 16S
rRNA gene copies on hands and the SS were 6.89 � 106 and 8.90 � 106, respectively
(Fig. 5d). In addition, the number of bacteria was estimated by the rRNA Operon Copy
Number Database (rrndb) based on taxonomic composition, which demonstrated an
average of 1.75 � 106 bacteria on a smartphone in this study. It is worth noting that
the actual microbial counts could be more due to possible incomplete sampling of bio-
mass on the SS.

Moreover, we divided the smartphone samples into two groups, high (daily or weekly)
and low (monthly or more) cleaning frequencies based on the results of a questionnaire,
and compared their bacterial loads (Fig. 5e). Surprisingly, no significant difference was found
(P = 0.13, Wilcoxon rank sum test), suggesting the rapid recovery of bacterial load due to
high contact frequency during daily use. To test the effects of cleaning/hygiene procedures
on bacterial reduction, we randomly selected and cleaned smartphones with only tap water
and paper napkins and then measured their bacterial loads under the same conditions.
Notably, simple SS cleaning/hygiene procedures significantly reduced (P , 0.01, Wilcoxon
rank sum test) the bacterial load, by approximately 1 order of magnitude (Fig. 5e).

Finally, the SS was examined in situ using scanning electron microscopy (SEM)
(Fig. 6). We found large fragments and various microorganisms, including rod shapes
and coccus-like shapes, on the SS.

DISCUSSION
Determinism impacts smartphone microbiota assembly. The principles governing

the microbiome on smartphones or other commonly used electronic devices remain poorly
understood. Inconsistent with the expectation, our results revealed a deterministic/niche-
based assembly process of smartphone microbiotas (to a greater extent than hand micro-
biotas), as supported by phylogenetic diversity characterization and ecological model

FIG 4 Interindividual variation in the microbial communities on smartphones and hands. (a) Multidimensional scaling (MDS) based on
weighted UniFrac distance. Point shapes represent sampling sites. Circles, triangles, and squares indicate samples from the NH, DH, and SS,
respectively. Different colors indicate samples from different individuals. The R2 value represents interindividual variation (PERMANOVA). (b)
Distribution of weighted UniFrac distances calculated between samples from different individuals and between samples from the same
individual. A Wilcoxon test produced a significant P value lower than 0.001, suggesting that samples from the same individual share a large
degree of their microbial communities. (c) The prediction accuracy distribution of RF with a given number of OTUs. ***, P # 0.001.
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analyses. One of the most plausible explanations for this finding is that smartphone micro-
biotas are not transient during species turnover but likely form a “community” and are
affected by determinism. In other words, microorganisms on smartphones can be filtered
and selected by environmental factors such as screen material and substrate availability,
with fitness differences resulting in the alteration of phylogenetic structures (21). This phe-
nomenon was also reported for microbiotas on microscope oculars (22), suggesting that it is
likely a common occurrence among surface microbiomes. Additionally, there were strong
correlations among bacteria, albeit with dramatic interindividual differences, thus suggest-
ing the complexity (not only selection pressure on SS but also potential microbe-microbe

FIG 5 Microbe-microbe correlation, metabolic activity, and bacterial load on the smartphone surface. (a) The left bar plot represents the relative abundance of
genera within smartphone samples. The error bar represents the standard error. The right panel shows the pairwise correlation (the proportionality of change
[Rho]) matrix for the 20 most abundant genera on smartphones. Significant Rho coefficients were marked with a 0.61 cutoff (a final FDR estimate of 0.05). Circle
color and size represent the correlation strength. (b) Schematic representation of the ATP test for measuring microbial metabolic activity on smartphone surfaces
at different time points. Subareas with the same number were used to measure activity at a certain time point. (c) Temporal dynamics of bacterial activity on
smartphone surfaces at different time points, determined by ATP using a bacterium-specific bioluminescence assay (n = 10). RLU, relative light unit. The gray
dashed line represents the reference hygiene threshold (30 RLU per 100 cm2). (d) Boxplot of 16S rRNA gene copies on NH, DH, and SS (Kruskal-Wallis H test). The
dashed line corresponds to the average 16S rRNA gene copies in all the measured samples. Boxes that do not share a letter are significantly different. Dots
represent outliers. (e) Boxplot of 16S rRNA gene copies on smartphone touchscreens with different owner cleaning frequencies (high cleaning frequency, daily and
weekly; low cleaning frequency, monthly and longer) and with simple cleaning using potable water. The dashed line corresponds to the average 16S rRNA gene
copies on smartphone touchscreens without recent cleaning.
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interactions) underlying the deterministic assembly process of smartphone microbiotas.
Consistent with our microbial activity measurement, previous studies found that a consider-
able proportion of microbiotas on inanimate surfaces (expectedly nonnutritive) are live and
stable (23, 24). As suggested by SEM data, commonly touched inanimate surfaces (such as
smartphones) are unlikely to be strictly nonnutritive. In contrast, microorganisms could live
on the secreta (e.g., sweat and sebaceous gland secretion) and/or other things (e.g., human
cell debris and food debris) encountered because of our frequent contact, as evidenced by
microenvironments on the skin (25). Collectively, our findings indicate that the smartphone
is not only a reservoir of microbes but also a niche in which microbes can survive, be active,
and even grow, resulting in decreased phylogenetic diversity and stronger deterministic as-
sembly processes. This has, to our knowledge, never been described before in smartphone
microbiota studies. Nonetheless, it should be noted that caution is warranted when inferring
processes from DNA-based microecological patterns of small-scale studies. Approaches tar-
geting active microbiota (e.g., metatranscriptomics and culture-based methods) with larger
sample sizes might provide a more comprehensive landscape of smartphone microbiota
and the principles governing their community assembly.

Smartphone microbiota features. By comparing hands, our results demonstrate a
previously unknown asymmetry between dominant and nondominant hands from a micro-
biological point of view. Specifically, dominant and nondominant hands exhibited different
microbiome characteristics in certain taxa (such as Bifidobacterium and Lawsonella) and in
their similarity to the smartphone microbiome (the nondominant hand microbiota was
more similar than the dominant hand microbiota to the smartphone microbiota). At first
glance, it appears paradoxical that the smartphone microbiota is more similar to the micro-
biota of the nondominant hand. However, the observed hand asymmetry likely originates
from genetics, resulting in neural asymmetry and underuse of nondominant hands. Such
seemingly contradictory findings might potentially be reconciled by the overuse of the
dominant hand, enabling more frequent contact with other objects and the exchange of
bacteria, resulting in larger and more stochastic/chaotic fluctuations of the dominant hand
microbiota. The difference between dominant and nondominant hands has been described
in various studies, such as in rehabilitation science, kinesiology, and neuroscience (26–29).
Advanced techniques such as metagenomics may provide novel insights into the microbio-
logical relationship between human hands and smartphones.

Several studies have indicated that microbial community structure could reflect
environmental characteristics, such as in corpse decomposition prediction in mammals
(30) and cancer diagnostic approaches (31). Given frequent contact with hands, smart-
phone microbiotas could also reflect characteristics of the owners, enabling us to

FIG 6 Scanning electron micrographs of the smartphone surface. Images 1, 3, and 5 show debris on the SS magnified by 1,000 times. The
zoomed-in images 2, 4, and 6 show a magnified view of the areas highlighted by the white rectangles in images 1, 3, and 5. Images 2, 4, 6,
7, and 8 together showed representative microbes on the SS, magnified 5,000 times. Scale bars are shown on the lower right. (Blue arrow,
suspected microbes; orange arrow, certain debris or fragments on the smartphone surface).
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identify who they are and explore where they may have been recently (15, 32).
Concordant with previous research (13), significant interindividual differences between
hands and phones were observed, and our results showed an accuracy of identification
prediction comparable to that reported by a previous study (33). Based solely on the
microbiome composition, some samples were hard to predict, suggesting potential
contamination from the environment and the insufficiency of the information recorded
for short-read amplicon sequencing-based determination of the microbial community
composition (32–34). Therefore, to increase the accuracy of owner identification,
higher taxonomic resolution for profiling community composition, together with other
characterization techniques (e.g., bacterial pangenome presence/absence), is needed
(14). For instance, recent research reported that a combination of microbiota structures
and exact sequence variants of Cutibacterium acnes 16S rRNA genes could increase ac-
curacy rates from 71.7% to 93.3% (33).

Smartphone hygiene. Pathogen transmission mediated by smartphones has been
suggested to be a potential global public health risk (10). Numerous bacteria detected
in this study have been reported to be opportunistic pathogens, such as H. parainfluen-
zae, H. influenzae, C. tuberculostearicum, and C. durum (35–38). Under immunocompro-
mised conditions, opportunistically pathogenic microbiotas can cause severe disease
(25). Moreover, some species are naturally competent to exchange genetic material
(e.g., antibiotic resistance genes [ARGs]), which could occur on the smartphone surface
(39, 40). Previous studies have reported diverse pathogens and ARGs on various inani-
mate surfaces, e.g., doorknobs (12), hospital devices (23), and paper money (41) and
surfaces in metro systems (42). Thus, the contaminants and pathogens on such fre-
quently and regularly touched surfaces may pose a risk of horizontal gene transfer,
human infection, and even mortality (42–44).

With regard to the bacterial load on smartphones, previous studies were mostly focused
on identifying finite culturable pathogen groups and antibiotic resistance capacity in hospitals
(16, 45). In this study, culture-independent qPCR showed a considerably high bacterial load
(estimated at 106) on the smartphone touchscreens of healthy university students; the load is
much higher than that reported for secondary school students (approximately 103) (46), likely
due to the elevated frequency of usage or the different habits of university students.
Furthermore, the bioluminescence assay quantitatively demonstrated the ability of microor-
ganisms on smartphones to maintain activity for at least 48 h, consistent with the findings of
a previous report based on culture-dependent methods and bacterial viability staining (24,
47). Therefore, smartphones should also be recognized as a potential vector for transmitting
pathogens. Smartphones are portable devices that can exert extensive effects on the environ-
ment and humans. For example, standardized hand washing/hygiene practices can efficiently
reduce or even kill foreign bacteria from the environment, thus restoring the hand microbiota
to a natural skin microbiome and decreasing the risk of pathogens spreading to other body
parts by the hands (11). Nonetheless, frequent contact with smartphones could undermine
hand hygiene efforts since hands can reacquire contaminants and perhaps pathogenic micro-
biotas from the smartphone reservoir of microbes. In addition to indirect transmission by
hands, smartphone surfaces are considered particularly high-risk surfaces since they can come
into direct contact with the face or mouth while a person is talking into a smartphone (48).
The recolonization of microorganisms might thus exert adverse effects on the user and pose a
biothreat risk for infections with the potential to spread globally. Moreover, our results showed
a significant reduction in bacterial load even with simple cleaning practices (e.g., with water),
which is consistent with the findings of previous studies (19). Although the use of alcohol
might damage a phone’s screen, both Apple and Samsung revised their support guidelines
during the COVID-19 pandemic (e.g., to include gently wiping the surface using 70% isopropyl
alcohol), given that smartphones could be a vector for pathogens. Collectively, these findings
emphasize the necessity of smartphone hygiene, including daily cleaning, even simply wiping
with water, to reduce potential biothreats. Clarifying the underlying mechanisms responsible
for smartphone microbiota assembly is of particular importance under global change. The dis-
tinctive features and potential pathogenicity of microorganisms, their considerable loads on
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smartphones or other surfaces, and particularly their role in pathogen dissemination in our
daily lives merit future investigation (47).

Conclusion. This study investigated the structure, assembly, quantity, and dynamic met-
abolic activity of the microbiome on the smartphone surface and its relationship with the
microbiome of the owner’s hands using multiple culture-independent techniques. Our
results not only indicate that the smartphone could be a niche for microbial activity with
deterministic control on community assembly but also demonstrate the health risk of the
smartphone microbiota due to the considerable microbial count, stable activity, and the
presence of opportunistic pathogens. Comprehensive research on the microbiotas of elec-
tronic devices used daily, especially mobile communication devices such as smartphones,
could facilitate the development of device cleaning guidelines and strategies to promote
public health, particularly under pandemic conditions.

MATERIALS ANDMETHODS
Sample collection. Samples were collected from the left and right hands of 14 healthy volunteers

and the surfaces of their smartphones (i.e., the touchscreen). All the subjects were required not to wash
their hands for 2 h before sample collection to ensure bacterial community characterization and biomass
collection (49). Subjects were instructed to collect samples using sterilized swabs premoistened with sa-
line for 30 s. Swabs were used immediately for DNA extraction. A questionnaire was administered to the
subjects about their sex, dominant hand, whether their phones were film protected, cleaning habits
(e.g., wiping the touchscreen using moistened tissue paper or more effective methods), the frequency
with which they cleaned their smartphone (high cleaning frequency, daily and weekly; low cleaning fre-
quency, monthly and longer), and whether the cleaning involved sterilization (using the disinfectants
such as ethanol, isopropyl alcohol, or Clorox disinfecting wipes). All screen protectors are made of tem-
pered glass, which has properties similar to those of the smartphone surface. To test the bacterial reduc-
tion efficiency of simple cleaning/hygiene, we cleaned a smartphone surface by spraying 1 mL of tap
water (nonsterile) and wiping it evenly with normal paper napkins (nonsterile) until there were no visible
traces of dirt. The samples were handled in a completely anonymous manner and assigned serial num-
bers from V1 to V14.

DNA extraction and high-throughput sequencing. DNA was extracted from 42 samples using a Mag-
Bind bacterial DNA 96 kit (Omega, GA, USA) according to the manufacturer’s instructions. The final DNA concen-
tration and purity were measured by a NanoDrop 2000 UV-visible (UV-Vis) spectrophotometer (Thermo Scientific,
MA, USA). DNA quality was checked by 1% agarose gel electrophoresis. For high-throughput sequencing, a
primer pair (338F-806R) (Table S7) targeting the V3-V4 region was used to generate amplicons (50, 51). The PCRs
were conducted using the following program: 3 min of initial denaturation at 95°C; 30 cycles of 30 s at 95°C, 30 s
of annealing at 55°C, and 45 s of elongation at 72°C; and a final extension at 72°C for 10 min. PCRs were con-
ducted in triplicate 20-mL mixtures containing 4 mL of 5� FastPfu buffer, 2 mL of 2.5 mM deoxynucleoside tri-
phosphates (dNTPs), 0.8 mL of each primer (5 mM), 0.4 mL of FastPfu polymerase, and 10 ng of template DNA.
PCR products were separated on a 2% agarose gel, and target bands were purified using the AxyPrep DNA gel
extraction kit (Axygen Biosciences, CA, USA) and then quantified using QuantiFluor-ST (Promega, WI, USA)
according to the manufacturer’s protocol. Afterward, purified amplicons were pooled in equimolar concentra-
tions and paired-end sequenced (PE300) on an Illumina MiSeq platform (Illumina, CA, USA) following standard
protocols provided by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). Saline-premoistened swabs
exposed to the air for 30 s were processed with the same DNA extraction and PCR amplification kits as negative
controls to test for reagent and laboratory contamination (52).

Data processing. Raw sequence reads were demultiplexed, quality filtered, and merged as previously
described (53, 54). Chimeric sequences were recognized and removed using UCHIME. Operational taxonomic
units (OTUs) were clustered using UPARSE (version 7.0 [http://drive5.com/uparse/]) at a 97% similarity cutoff
(55). After quality control, we obtained 2,135,282 clean reads in all samples ranging from 9,470 to 71,808,
with an average read count of 50,209 and an average length of 419 bp. The taxonomy of each 16S rRNA
gene sequence was assigned using the Ribosomal Database Project (RDP) classifier against the Silva (SSU138)
16S rRNA database at a confidence threshold of 0.7. OTUs representing chloroplasts or mitochondria and
those with low frequency (,0.05% in all samples) were removed prior to further analyses. Samples were rare-
fied to a sequencing depth of 9,000 sequences per sample. To ensure that the samples had sufficient read
numbers and were paired within each individual, only biological samples with sufficient sequences (more
than 9,000) among the hand and smartphone samples were used. For comparison, two extra filtering strat-
egies (keeping OTUs containing reads $4 and no filter) were employed, with outputs of 2,385 and 2,805
remaining OTUs, respectively. Rarefaction curves were calculated to ensure that the sequencing depth was
sufficient.

Bacterial quantification. Absolute quantification of total bacterial 16S rRNA gene copies was con-
ducted by RT-qPCR assay using the Roche LightCycler 480 system (Roche, Basel, Switzerland) as previously
described (56). The amplification reaction was performed in triplicate with SYBR green (Vazyme Biotech,
Nanjing, China), using a universal primer pair (785F-907R) (Table S7) (57). The thermocycler started with a
DNA denaturation step at 95°C for 5 min, followed by 40 cycles of denaturation at 95°C for 10 s, annealing at
60°C for 10 s, and extension at 72°C for 10 s. After amplification, a melting-curve step (from 65°C to 95°C,
0.11°C/s) was performed. Standards were developed from PCR products of the 16S rRNA gene (27F-1492R)
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(Table S7) from the mixed DNAs from each sample with an equivalent amount and 10-fold serial dilutions
thereof. For this, PCR amplicons were purified using an E.Z.N.A. gel extraction kit (Omega, GA, USA), and the
concentration was determined using a NanoDrop (Thermo Scientific, MA, USA). A standard curve was made
with a series of 10-fold dilutions with the same reaction parameters. The 16S rRNA gene copy numbers for
each reaction were calculated from the standard curve. The melting curve was obtained to confirm the
appropriate size of the amplified products and remove the undetectable samples from the RT-qPCR analyses.
The average copy number of 16S rRNA genes per bacterium is currently estimated at 5.09 based on the rRNA
Operon Copy Number Database (58).

Bacterium-specific bioluminescence assay. A bacterial metabolic activity assay was performed by
determining ATP content on the smartphone surface at four time points by the ATP bioluminescence
system (SystemSure Plus; Hygiena, CA, USA), which could break the cell, combine the ATP, and measure
the relative light units (RLU) of collection of a single swab. To selectively determine the bacterial ATP (by
eliminating human sources), we introduced the following bacterium-specific bioluminescence assay
modified from references 59 and 60. First, after biomass collection, the swab was mixed with 90 mL of
Triton X-100 (Solarbio, Beijing, China) for 2 min to lyse somatic cells; 0.1 U of apyrase and 10 mL of 10�
reaction buffer (New England Biolabs, Ipswich, England) were added to catalyze the hydrolysis of ATP
from the outer bacterial cell membranes (e.g., human cells) over a period of 10 min at 30°C, followed by
20 min at 65°C to inactivate the apyrase. Finally, RLUs were measured with an ATP bioluminescence sys-
tem according to the manufacturer’s instructions (SystemSure Plus; Hygiena, CA, USA). To track the mi-
crobial activity over a 48-h period, 10 additional smartphones that had not been sterilized in 24 h were
collected. To minimize the sampling bias, we delineated a 6.5-cm by 12-cm area and divided it into 16
subareas with the same size. Each swab was utilized to sample four subareas (approximately 20 cm2).
ATP hygiene monitoring thresholds were established according to the instruction manual. Notably, the
actual ATP content could be greater than that detected due to the possible incomplete collection by
swabs.

SEM. Difference analysis of bacterial community structure and bacterial load showed no significant
differences between film-protected and non-film-protected smartphones, suggesting no obvious influ-
ence of screen protective films on microbes on the contacted smartphone surface. Therefore, we
employed smartphone protector films as an alternative for scanning electron microscopy (SEM) observa-
tion. Smartphone protector films were cut into 1-cm2 subareas as SEM specimens. Specimens were fixed
in 2.5% glutaraldehyde in phosphate buffer (0.1 M, pH 7.0) for more than 4 h and then rinsed three times
in phosphate buffer (0.1 M, pH 7.0) (15 min each time). Then specimens were postfixed with 1% osmium
tetroxide (OsO4) in phosphate buffer (0.1 M, pH 7.0) in a fume hood for 1 to 2 h at room temperature
and washed three times in phosphate buffer (0.1 M, pH 7.0) for 15 min at each step. Afterward, speci-
mens were dehydrated in a series of ethanol solutions (50%, 70%, 80%, 90%, 95%, and 100%) for 20 min
at each step and incubated with absolute ethanol for 20 min, followed by dehydration in a Hitachi
model HCP-2 critical point dryer. The dehydrated sample was coated with gold-palladium in a Hitachi
model E-1010 ion sputter for 4 to 5 min and examined using a GeminiSEM 300 field emission scanning
electron microscope (Zeiss, Göttingen, Germany).

Statistical analyses. All statistical analyses were performed in the R environment (v3.6.3). Normal
distribution and homoscedasticity were assessed by Shapiro-Wilk and Levene’s tests, respectively. The
Chao1 index and Faith’s phylogenetic diversity (PD) index were calculated using the R packages “vegan”
and “picante.” Microbiota dissimilarity between samples was represented by dimension reduction analy-
sis, using Jaccard and Bray-Curtis distances (taxonomic composition) and unweighted and weighted
UniFrac distances (phylogenetic composition) as well as Aitchison distance (taxonomic composition)
and PhILR Euclidian distance (phylogenetic composition) (61, 62). The analyses of variation in bacterial
community structure between different groups were performed by permutational multivariate analysis
of variance (PERMANOVA) with the adonis function and analysis of similarities (ANOSIM) with anosim
function, using the R package vegan. Source track analysis was performed by fast expectation-maximiza-
tion for microbial source tracking (FEAST) using hand microbiota from each individual as the “source”
and their smartphone microbiota as the “sink” as previously described (63, 64). Differential analysis was
performed using DESeq2 and analysis of compositions of microbiomes with bias correction (ANCOM-BC)
(65, 66). Functional prediction was performed using the R package “Tax4Fun2” (67). Organism-level
microbiome phenotypes were predicted using BugBase (https://bugbase.cs.umn.edu/). To evaluate the
degree of neutral or niche-based community assembly process, Sloan’s neutral model (68) analysis was
performed based on species abundance distribution, as previously described (69, 70). Briefly, the micro-
bial community group with a higher R2 value is consistent with the neutral bacterial community assem-
bly process. The estimated migration rate (m) represents the dispersal limitation. The neutral model fit
was compared with the binomial and Poisson models based on Akaike information criterion (AIC) scores.
The taxonomic normalized stochasticity ratio (NST) was used to measure the importance of the stochas-
tic ratio in the process of community assembly (ranging from 0 to 1) (71), that is, whether the commu-
nity assembly was dominated by deterministic (,50%) or stochastic (.50%) processes.

For owner identification, a random forest method was implemented with the “randomForest” pack-
age in R (72). In each test, 6,000 decision trees were generated. The hand samples were set as the train-
ing set, and smartphone samples were set as the validation set with 100 repeats. The model accuracy
was calculated from the out-of-bag (OOB) error rate. Owner identification was determined with two
other OTU tables produced by different filtering strategies. To evaluate how many of the most abundant
OTUs were needed for owner identification in this study, we calculated the distribution of prediction ac-
curacy for a given number within 2 to 1,062 based on RF modeling. RF modeling was conducted at a
given number of OTUs. The 20 most abundant genera detected in the smartphone samples were utilized
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for correlation analysis. For each genus pair, we measured proportionality of change, i.e., Rho metrics, a
rigorous method for calculating the correlations in compositional microbiome data, using the R package
“propr” (73, 74). The P values from multiple tests were corrected with false-discovery rate (FDR) using
the “p.adjust” function in R.

Data availability. The raw sequencing data have been deposited into the NCBI Sequence Read
Archive (SRA) database under accession number PRJNA657188.
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