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Abstract

Background: Clinical observations and electrophysiological studies have provided initial evidence for the involvement of the cerebellum in essential tremor (ET),

the most frequent hyperkinetic disorder. Recently, this hypothesis has been reinvigorated by post-mortem studies that demonstrated a number of pathological

changes in the cerebellum of ET patients compared with age-matched healthy controls. Advanced neuroimaging techniques have also made it possible to detect in

vivo which cerebellar abnormalities are present in ET patients and to reveal the core mechanisms implicated in the development of motor and cognitive symptoms in

ET.

Objective: We discuss the neuroimaging research investigating the brain structure and function of ET patients relative to healthy controls. In particular, we review

1) structural neuroimaging experiments assessing the density/volume of cortical/subcortical regions and the integrity of the white-matter fibers connecting them; 2)

functional studies exploring brain responses during motor/cognitive tasks and the function of specific neurotransmitters/metabolites within cortical–cerebellar

circuits.

Methods: A search in PubMed was conducted to identify the relevant literature.

Discussion: Current neuroimaging research provides converging evidence for the role of the cerebellum in the pathophysiology of ET, although some

inconsistencies exist, particularly in structural studies. These discrepancies may depend on the high clinical heterogeneity of ET and on differences among the

experimental methods used across studies. Further investigations are needed to disentangle the relationships between specific ET phenotypes and the underlying

patterns of neural abnormalities.
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Introduction

The hypothesis that essential tremor (ET), the most frequent

hyperkinetic movement disorder,1,2 was caused by cerebellar dysfunc-

tions was originally introduced after a series of clinical observations3

and electrophysiological studies.4 In particular, the action tremor, one

of the main clinical features of ET, is generally considered to be

indistinguishable from the intention tremor that occurs in cerebellar

diseases.3,5 In addition, electrophysiological results have shown that

ET patients display an absent or delayed acquisition of the conditioned

eye-blink,4 an index of motor learning that depends on intact

cerebellum.6

Recently, post-mortem studies have clearly revealed a broad

spectrum of neuropathological changes (e.g., Purkinje cell loss, axonal

torpedoes) within the cerebellum of ET patients.7–11 Over the last

years, these findings have been paralleled by a series of structural12–21

and functional neuroimaging studies22–30 that have confirmed, in vivo,

the fundamental role of the cerebellum in the pathophysiology of ET.

The aim of this review is to discuss the present neuroimaging literature

Freely available online

Tremor and Other Hyperkinetic Movements
http://www.tremorjournal.org

The Center for Digital Research and Scholarship
Columbia University Libraries/Information Services1

http://tremorjournal.org/article/view/67


in ET. Hence, this work can be also considered an extension or update

of a previous review on functional imaging in ET.31

In general, both structural and functional studies have reported

alterations in the cerebellum of ET patients relative to controls,

although some studies have obtained negative results (i.e., no

cerebellar abnormalities in ET).12,13 In addition, there is still a debate

whether the cerebellar abnormalities described in ET would simply

reflect electrophysiological disturbances within cortical–cerebellar

networks (due, for example, to an ion channel disease and/or to the

presence of false neurotransmitters) or whether, in contrast, the

cerebellar disturbances would be driven by a neurodegenerative

process.5 Although we believe that these views are not mutually

exclusive, a detailed discussion of the evidence in favor or against each

theory is beyond the scope of the current article given that this issue

has already been treated in other excellent papers.5,7

The present review is structured in three sections.

First, we will assess the contribution of structural neuroimaging

studies in exploring brain anatomical abnormalities in ET, particularly

within the cerebellum. In general, the most commonly employed

structural neuroimaging techniques measure the volume and density of

cortical and subcortical regions and the diffusivity of the water

molecules within the neural tissues with strong anatomical orientation

(i.e., axonal fibers). Voxel-based morphometry (VBM) is an example of

a statistical analysis that assesses the morphology and/or density of the

gray matter (GM) and white matter (WM) in cortical and subcortical

regions in the whole brain.32 Alternatively, manual and/or automatic

volumetry can be used to quantify the volume/density of distinct a

priori regions of interest (ROI).16 Finally, diffusion-weighted imaging

(DWI) and diffusion tensor imaging (DTI) are techniques that provide

a series of quantitative parameters reflecting microscopic aspects of the

WM, including, for example, neuronal damage from demyelization,

microtubule breakdown, and/or axonal loss.33

Second, functional neuroimaging studies in ET will be considered

and discussed. Functional neuroimaging is a broad group of methods

that typically measure 1) the change in brain oxygen consumption and

the variation in the cerebral blood flow during the execution of specific

motor and cognitive paradigms (e.g., positron emission tomography

[PET]; functional magnetic resonance imaging [fMRI]); 2) the ratio

between specific cellular metabolites (e.g., proton magnetic resonance

spectroscopic imaging [1H MRSI]); 3) the function of distinct

neurotransmitters (e.g., gamma-aminobutyric-acid [GABA], dopa-

mine [DOPA], 5-hydroxytryptamine [5-HT]), via the use of specific

radioligands. The radioligand is a substance that is infused in the

bloodstream and reaches its corresponding receptor localized in a

number of brain regions. There, the radioactive decay associated with

the quantity of the linked ligand can be detected via a PET scan. This

method therefore relies on a series of sensitive markers (radioligands)

that can be used to assess specific biological changes associated with

different neurological disorders such as ET. On the other hand, fMRI

experiments are commonly designed to localize the activations of

specific brain regions engaged when patients and control subjects

execute a particular motor (e.g., finger tapping) or cognitive task (e.g.,

working memory). These activations are thought to reflect the neural

computations tightly associated with a particular motor or neuropsy-

chological process. Alternatively, 1H MRSI represents a different

functional technique used to calculate the ratio between specific

cellular metabolites such as the N-acetylaspartate and total creatine

(NAA/tCr), a sensitive index of neuronal dysfunction and/or

degeneration.

The third section of this review will represent a conclusive summary

of the critical factors that may be responsible for the conflicting

findings reported in the literature and will provide some suggestions to

overcome the identified limitations.

Structural neuroimaging

In total, 10 structural neuroimaging studies have been considered

(see Figure 1 for a brief overview of the studies included and Table 1

for details on the methods used and results obtained). Overall, GM and

WM abnormalities of the cerebellum in ET represent the most

prevalent result among structural studies,14–18,20,21 although negative

findings (i.e., no cerebellar abnormalities) and/or alterations in other

brain areas (e.g., frontal and temporal cortices) have also been

reported.14,17,19–21

The first VBM investigation in ET did not find anatomical

alterations in the whole brain (including the cerebellum) of ET

patients compared with age- and gender-matched healthy controls.12

In addition, the lack of any significant effect was evident even at a

liberal (uncorrected) statistical threshold. At first glance, this result

would suggest that electrophysiological abnormalities are at the origin

of ET rather than brain anatomical damage, as suggested by some

authors.5,7 However, when ET patients were divided on the basis of

the type of tremor (ET patients with both intentional and postural

tremor [ET-ip] versus ET patients with postural tremor alone [ET-p]),

an unexpected increase in the GM volume in the bilateral temporal–

parietal junction was found in ET-ip patients relative to healthy

controls but not versus ET-p patients.12

In contrast to these initial findings, our group was the first in

identifying the presence of cerebellar abnormalities in a sample of 50

patients with ET, via two approaches (VBM and automated/manual

volumetry).15,16 The abnormality of the cerebellum was particularly

evident in those ET patients displaying hand and head tremor and not

in patients with hand tremor alone. More specifically, we found

volumetric abnormalities in the vermis and lobule IV of ET patients

with hand and head tremor and a trend effect for global cerebellar

volume loss (including cerebellar hemispheres) in ET patients with

isolated hand tremor.15,16 These findings may reflect the somatotopic

organization of the cerebellum in which the head and neck are

represented in the midline portion of the anterior lobe (mainly the

vermis and lobule IV–V), while the hand and leg are located in the

vermis/para-vermis and cerebellar hemispheres.34 This hypothesis has

been recently supported by Louis and collaborators35 who described,

in vitro, the presence of axonal torpedoes and other neuropathological

changes in the cerebellar vermis of ET patients with prevalent head

tremor.
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Figure 1. Spatial Location of the Structural Cerebellar Abnormalities in Essential Tremor (ET) Patients Relative to Healthy Controls.
(A) Evidence for gray matter abnormalities in ET patients relative to controls as detected by voxel-based morphometry (VBM) studies. (B) Evidence for white matter

changes as obtained with diffusion imaging techniques. Abbreviations: FA, fractional anisotropy.
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Two later VBM studies have found that ET may be characterized

not only by cerebellar damage, but also by neurodegenerative

processes that extend to other cortical and subcortical regions.17,20

Specifically, WM and GM losses have been observed within the

midbrain and in the occipital, temporal and frontal lobes of ET

patients relative to healthy controls.17,20

Partially conflicting results have also been obtained in structural

studies examining the fractional anisotropy (FA), a sensitive index of

the WM integrity. In particular, the first DTI study in ET13 did not

report WM abnormalities in a priori ROI (e.g., cerebellar regions) in

patients relative to healthy controls while Shin et al.14 have recently

found a FA reduction in the cerebellum, brainstem, and cerebral

Table 1. Structural Neuroimaging Studies Reporting Anatomical Neurodegenerative Processes in ET

Reference Sample Neuroimaging Method Main Finding

Daniels

et al.12

27 patients (14 with ET-PT; 13

with ET-IT)

27 HC

VBM ET,HC: No significant GM loss

ET-IT . HC: GM increase in the temporal and

occipital cortex

Martinelli

et al.13

10 ET

10 HC

DWI (ADC) ET,HC: No significant differences in ADC

values

Shin et al.14 10 ET

8 HC

DTI (FA) ET,HC: Reduced FA in pons, cerebellum,

midbrain, orbitofrontal cortex, lateral frontal

cortex, parietal cortex and temporal cortex

Quattrone

et al.15

50 patients (30 ET arm; 20 ET

head)

32 HC

VBM

Manual volumetry

ET,HC: No significant GM loss

ET head,HC: GM loss in the cerebellar vermis

Cerasa et al.16 46 ET (27 ET arm; 19 ET head)

28 HC

Automated subcortical

Segmentation

ET,HC: No significant GM loss

ET head,HC: GM volumetric atrophy of the

entire cerebellum

Benito-Léon

et al.17

19 ET

20 HC

VBM ET,HC: GM/WM losses in the bilateral

cerebellum, right frontal lobe, left medulla,

parietal lobes, right insula and right limbic lobe

Nicoletti

et al.18

25 FET

15 PD

15 HC

DTI (FA/MD) FET,PD,HC: Reduced FA of dentate nucleus

and superior cerebellar peduncle

FET,PD,HC: Increased MD of superior

cerebellar peduncle.

Jia et al.19 15 ET

15 HC

DTI (FA/ADC) ET,HC: Increased ADC of red nucleus

Bagepally

et al.20

20 ET

17 HC

VBM ET,HC: GM loss in bilateral cerebellum,

vermis, bilateral frontal and occipital lobes

Klein et al.21 14 ET

20 HC

DTI (FA/ADC) - TBSS

VBM

DTI-TBSS: ET,HC: Increased MD of inferior

cerebellar peduncle bilaterally, left parietal WM;

reduced FA in the right inferior cerebellar

peduncle.

VBM: ET,HC: No significant GM or WM losses

Abbreviations: VBM, voxel based morphometry; GM, gray matter; WM, white matter; DTI, diffusion tensor imaging; MD, mean diffusivity; FA, fractional anisotropy;

TBSS, tract-based spatial statistics; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; ET, essential tremor; ET-IT, essential tremor patients with

intentional tremor; ET-PT, essential tremor patients with postural tremor; ET arm, essential tremor with arm tremor; ET head: essential tremor with head tremor;

FET, familial essential tremor; PD, Parkinson’s disease; HC, healthy controls.

DTI provides estimation of GM/WM tissue composition by using two distinct MRI measures (MD, FA). VBM provides a probabilistic intensity value of GM/WM volume/

density voxel by voxel in the entire brain. Increased water in brain areas (where neuronal/axonal loss occurs) corresponds to increased ADC values. TBSS is a

technique for analyzing group effects in diffusion-based imaging voxel by voxel in the entire brain.
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hemispheres in 10 ET patients relative to eight healthy individuals.

Two further studies using similar methods (i.e., DTI, DWI) have been

conducted in samples of ET patients with sporadic21 or familial18

forms of the disease and have reported the presence of WM

abnormalities in the cerebellar peduncles (i.e., superior, middle, and

inferior cerebellar peduncle) as well as in the dentate nucleus, the main

output cerebellar nucleus. Finally, a recent DTI study19 has

demonstrated GM deficits within the red nucleus of ET patients

relative to healthy controls.

Taken together, these structural neuroimaging studies provide

support for the key role of the cerebellum in the pathophysiology of

ET, although some inconsistencies between the results deserve further

discussion. In particular, part of the conflicting findings might have

arisen from differences in demographic and clinical characteristics

across samples (e.g., age, gender, disease duration) and/or in the

methodological approaches employed. For example, the mean age of

ET patients reported in structural studies is extremely variable,

ranging from 3820 to 70 years.17 Furthermore, not all studies enrolled

samples of ET patients balanced for sex;13 hence, future studies will

need to take into account this demographic variable. A wide variability

in disease duration may also represent another important factor for

explaining variability in results. Some studies included ET patients

with an average clinical history of 9 years14,19 while others investigated

samples with a significantly higher disease duration (i.e., up to 20 years

of clinical history).16,18

It is also necessary to note that some of the discrepancies in the data

and some of the negative findings could be ascribed to significant

methodological differences among studies. For instance, some works

used whole-brain methods such as VBM12,14–15,17,20,21 while others

were focused on ROI analyses.13,18,19 In addition, VBM can produce

different results on the basis of the techniques employed to pre-process

the raw data (e.g., degree of smoothing and/or choice of template to

normalize the anatomical scans).32,36

Last but not least, none of the structural studies took into

consideration how non-motor symptoms (e.g., mild cognitive impair-

ments or even dementia) may have influenced the neuroimaging

results, although an increasing number of neuropsychological,

epidemiological, and fMRI studies have highlighted the importance

of evaluating the cognitive deficits in ET.29,30,37–40 In theory, part of

the variability in the anatomical results could be explained by the

presence of complicating non-motor clinical features (i.e., cognitive

impairments). In particular, the atrophy within the frontal and

temporal cortices that has been described in some works14,17,20,21

may depend on the presence of underestimated neuropsychological

deficits.

In conclusion, some inconsistencies have been reported in the

structural neuroimaging literature in ET, although the anatomical

alteration of the cerebellum represents a consistent finding and an

important pathophysiological mechanism of the disease. Nonetheless,

current data do not allow one to conclude whether ET is characterized

by abnormalities in specific regions of the cerebellum or whether,

alternatively, the anatomical damage is widespread throughout the

whole cerebellum. Pathological changes have been described in

different parts of the cerebellum, including motor (from lobule I to

V) and cognitive lobules (from lobule VI to IX, including crus I–II),

although there have been no studies addressing the precise relationship

between distinct clinical phenotypes and specific cerebellar areas. For

instance, it remains to be determined whether the degree of

abnormalities within the motor (i.e., anterior) lobules of the cerebellum

is associated with tremor severity and whether the cognitive deficits in

ET may eventually depend on structural damage of specific cerebellar

areas (i.e., posterior ‘‘cognitive’’ lobules).

Functional imaging in ET (PET and fMRI studies)

Figure 2 and Table 2 provide a summary of the functional

neuroimaging experiments discussed in this section and a brief

overview on their results and methods.

In 1990, the cerebral blood flow of a small sample of ET patients

and controls (n54) was recorded for the first time using PET.22 This

pioneering study measured brain activations while participants held a

specific pose (arms outstretched) that is known to trigger the typical

postural tremor of ET patients. Comparing the brain activity

associated with this position to that during a non-postural ‘‘resting’’

condition, Colebatch and collaborators22 found that ET patients

presented, relative to controls, enhanced blood flow in sensory motor

and premotor cortices contralateral to the side of tremor, and in the

cerebellar hemispheres bilaterally. Hence, the authors concluded that

the cerebellar overactivity in ET was directly associated with the

generation of tremor and that this would have depended on

electrophysiological abnormalities within cerebellar pathways.22 Of

note, this experiment represented the first in vivo demonstration of the

functional involvement of the cerebellum and other sensory motor

regions in the pathophysiology of ET.

Next, Jenkins et al.23 and Wills et al.24 confirmed the increased

activation of the bilateral cerebellum in a new sample of ET patients

and healthy controls under the same experimental conditions (i.e.,

holding a posture versus a resting condition).

Later, Bucher and collaborators25 extended these initial data by

comparing the brain activations of ET patients to those of healthy

controls and individuals suffering from a different type of tremor (i.e.,

the writing tremor). This fascinating research revealed that cerebellar

overactivity was associated with the occurrence of tremor per se,

independently of the triggering event (i.e., holding a posture in the case

of ET or using a pen in the case of the writing tremor).25

Furthermore, Boecker and co-workers26 explored how alcohol (i.e.,

ethanol), a common substance known to reduce tremor in ET,

influenced brain activation in ET patients and controls. Similar to

previous findings, this study26 confirmed that ET patients per se (i.e.,

not under action of ethanol) displayed, relative to healthy controls, an

increased bilateral cerebellar activation (including the vermis). In

contrast, the administration of alcohol led to a bilateral decrease in

cerebellar responses in both ET patients and controls and to increased

activation of the inferior olivary nucleus in ET patients alone (not

controls). Given the intense anatomical connections between the
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olivary nuclei and cerebellum, these data suggested that the

pharmacological mechanism of ethanol-induced suppression of tremor

in ET may depend on the interactions between specific regions within

the olivocerebellar circuit.26

Taken together, these PET experiments have consistently reported

functional abnormalities in the cerebellum of ET patients, although

the conclusions that can be drawn from these initial findings were

limited by the scarce statistical power of the studies (the sample size

typically comprised only four to seven individuals). On the other hand,

a later fMRI experiment using a similar experimental setting to that

employed in previous PET experiments (holding a posture vs.

maintaining a resting position)23,25,26,28 was conducted in a relatively

larger sample (12 ET patients and 15 controls) and unequivocally

confirmed that ET patients displayed, relative to controls, increased

responses in the bilateral cerebellum and in the primary sensory motor

cortex, globus pallidus, and thalamus contralateral to the side of the

tremor.

More recently, a PET study using a GABAA receptor radioligand,27

11C-flumazenil, has provided further insights into the core neurobio-

logical underpinnings of ET. In particular, increased 11C-flumazenil

binding was detected in the cerebellum, ventrolateral thalamus, and

lateral premotor cortex in eight ET patients compared with 11 healthy

controls.27 The enhancement of 11C-flumazenil binding in the

cerebellum of ET patients has been interpreted as reflecting receptor

upregulation that may be consequent to the atrophy of Purkinje cells

or, alternatively, to dysfunctions of the receptor itself.27 Independently

of the precise mechanism, this novel experiment has reinvigorated the

hypothesis that abnormalities in GABA, the most important inhibitory

neurotransmitter in the brain, play a key role in mediating functional

impairments in cortical–cerebellar motor pathways of ET patients.41,42

Nonetheless, the reader will have noted that the research discussed

thus far has only characterized the neural circuits implicated in the

genesis of motor symptoms (e.g., postural tremor) but has not

addressed how cognitive disturbances may emerge in ET. The

importance of studying neuropsychological functions in ET has been

emphasized by behavioral and epidemiological studies37–40,43,44 that

have challenged the historical notion that ET is a ‘‘pure’’ motor

condition. This new research has indeed demonstrated a broad

spectrum of cognitive deficits in ET, including attention, language, and

working memory impairments,37–40 and a significantly higher risk to

develop dementia in ET patients relative to individuals of the same

age.41,42 These data have therefore shown that cognitive symptoms

may be intrinsically linked to specific disease mechanisms in ET,

although the underlying pathophysiology remains largely unclear.

Some authors have proposed that neuropsychological deficits in ET

would depend on abnormalities similar to those described in

Figure 2. Summary of A Number of Positron Emission Tomography (PET) and Functional Magnetic Resonance Imaging Studies Demonstrating
A Key Involvement of the Cerebellum in the Pathophysiology of Essential Tremor (ET) While Participants Executed A Specific Motor Task (i.e.,
Holding A Posture) or A Cognitive Paradigm (i.e., Keeping in the Working Memory A Series of Letters). A PET study (Boecker et al.27) that employed a

specific gamma-aminobutyric-acid radioligand is also reported to further display the key role of functional abnormalities in the cerebellar circuits in ET patients.
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Table 2. Functional Neuroimaging Studies in ET

Reference Sample Neuroimaging

Method

Main Finding

Colebatch et al.22 4 ET patients with postural

tremor, 4 controls

PET ET. HC: increased activation in sensorimotor

cortex contralateral to the side of tremor and in

both lateral premotor regions, and in cerebellar

hemispheres when holding a posture (arms

outstretched) vs. a rest condition.

Jenkins I H et al.23 6 ET with postural tremor, 6

controls

PET Involuntary postural tremor in ET was associated

with bilateral cerebellar activation, and contralateral

striatal, thalamic, and sensorimotor cortex activation.

Wills AJ et al.24 6 ET with postural tremor, 6

controls

PET ET patients . HC: during arm extension ET patients

displayed abnormal increases in bilateral cerebellar

and abnormal red nuclear activation.

Wills AJ et al.25 7 ET patients, 6 patients with

writing tremor, and 6 controls

PET ET patients . HC: abnormally increased bilateral

cerebellar, red nuclear, and thalamic activation.

Writing tremor was associated with abnormal

bilateral cerebellar activation.

Boecker H et al.26 6 ET with postural tremor, 6

controls during administration

of alcohol

PET ET patients . HC: increased bilateral cerebellar

activation including the cerebellar vermis. Ethanol

ingestion: bilateral decreases of cerebellar blood flow

in both ET patients and controls. In contrast, alcohol

ingestion increased the activity in the inferior olivary

nuclei in ET but not controls.

Boecker H et al.27 8 ET with postural tremor, 8

controls

PET with GABA

radioligand

ET vs. controls: reduced GABAA receptor binding in

the cerebellum, the ventrolateral thalamus, and the

lateral premotor cortex.

Bucher SF et al.28 12 ET with postural tremor, 15

controls

fMRI ET patients . HC: increased activation of the

primary sensory motor areas, the globus pallidus, and

the thalamus, contralaterally to the side of tremor.

Bilateral increased activation of the nucleus dentate,

the cerebellar hemispheres, and the red nucleus.

Cerasa et al.29 12 ET, 12 controls fMRI ET . HC: increased activation in the parietal cortex

and dorsolateral prefrontal cortex during the

execution of a Stroop task . a sensory motor

baseline.

Passamonti et al.30 15 ET, 15 controls (different

sample from that included in

Cerasa et al. 2010)

fMRI ET . HC: increased activation in the cerebellum

during the execution of working memory trials with

high attentional load. Functional connectivity:

abnormalities were detected in the executive control

circuit and in the default mode network of ET vs.

controls. Patients with high cognitive scores also

showed increased neural abnormalities.

Abbreviations: PET, positron emission tomography; fMRI, functional magnetic resonance imaging; ET, essential tremor; HC, healthy controls; GABA, gamma-

aminobutyric-acid.
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Alzheimer’s and/or Parkinson’s disease (PD);7–11,45 however, there are

several reasons to suspect that the cerebellum plays a significant role in

cognitive symptoms in ET. Robust evidence from lesion studies (e.g.,

patients with strokes, tumors, or multiple sclerosis) and fMRI studies in

healthy volunteers has shown that the posterior cerebellar lobules are

critically implicated in high-level cognitive functions such as working

memory, attention, and language.46–52 We have therefore designed a

set of experiments to test whether the cognitive impairments in ET

were related to abnormalities of ‘‘cognitive’’ cortical–cerebellar loops,

although initial findings did not support this hypothesis.29 However,

we acknowledge that our preliminary negative results may have

depended on the use of a paradigm not directly assessing working

memory, a cognitive function that strongly relies on cerebellar

functions.29 In fact, in a more recent experiment,30 we have clearly

demonstrated abnormally enhanced cerebellar responses in crus I and

lobule VI in a selected group of ET patients, relative to age-, sex-, and

education-matched healthy controls during the execution of a verbal

working memory task that evoked robust cerebellar activations.

Because the behavioral performances of ET patients were similar to

those of controls, the cerebellar overactivations were thought to reflect

compensatory mechanisms. This interpretation was further supported

by the evidence that the ET patients with the highest cognitive scores

(people scoring high in a test of executive functions) were those who

showed the strongest responses in lobule VI of the cerebellum (vice

versa for patients with the lowest scores).30

Not surprisingly, crus I and lobule VI are parts of the posterior

cerebellar lobules that are known to be involved in a wide range of

cognitive functions including working memory.48,49,53–55 Specifically,

crus I and lobule VI mediate the ‘‘articulatory loop’’,48,49,55–57 a

cognitive process needed to ‘‘mentally refresh’’ the content of working

memory throughout a subvocal rehearsal that prevents memory

decay.57 Enhanced cerebellar response in ET patients would therefore

reflect an increased cognitive effort to rehearse the stimuli that have to

be kept in memory.

Of note, data from the same experiment have also been analyzed via

functional connectivity methods exploring brain abnormalities in ET

at a system (circuit) level rather than at the more simple level of single

regions. Interestingly, we found altered functional connectivity, in ET

patients versus controls, between crus I/lobule VI and regions

belonging to the executive control circuit (ECC) (i.e., dorsolateral

prefrontal cortex, inferior parietal lobule, and thalamus) and the

default mode network (DMN) (i.e., precuneus, ventromedial prefrontal

cortex, and hippocampus).30 The regions constituting the DMN

commonly show responses that are anti-correlated with those of the

areas belonging to the ECC.58 The interpretation of this phenomenon

is that the DMN underlies a group of mental processes (e.g., free recall,

future planning, mind wandering) that are unrelated to the ongoing

task and that tend to interfere with behavioral performance during the

execution of cognitive-demanding paradigms.59 Of note, connectivity

analyses also revealed that the degree of the individual cognitive deficit

in ET patients modulated the functional ‘‘communications’’ between

the cerebellum and regions of the ECC and DMN. In particular, lower

neuropsychological scores were associated with abnormalities in the

interplay between the cerebellar crus I/lobule VI and both the ECC

and DMN.30

In conclusion, our results offered new insights into the pathophy-

siological mechanisms of cognitive dysfunctions in ET, suggesting a

primary role of the cerebellum in mediating abnormal interactions

between the ECC and DMN. However, we think that our initial

identification of functional abnormalities within the DMN in ET

deserves further investigation because other functional neuroimaging

techniques (e.g., resting state analyses) are better suited to characterize

the DMN. In addition, given that resting state imaging does not

necessitate the execution of attention-demanding tasks and can thus be

easily applied to ET patients with severe cognitive impairments, future

studies using these approaches will be useful for advancing the

knowledge of brain mechanisms underlying dementia in ET.

Functional imaging in ET (MRSI studies)

Additional evidence for the cerebellar involvement in the patho-

physiology of ET comes from another line of research employing

MRSI, a functional technique measuring the ratio between specific cell

metabolites (e.g., N-acetylaspartate/total creatine ratio (NAA/tCr)).

Significant reductions in the NAA/tCr ratio are thought to represent a

sensitive measure of neuronal dysfunction and/or degeneration.

However, a major limitation of MRSI is that it only allows one to

explore a restricted number of regions at the same time and thus

requires a strong a priori hypothesis regarding the brain structures to be

explored. The fact that the ventral intermediate nucleus of the

thalamus (VIM) has been long considered the key region in the

pathogenesis of ET may be the reason why one of the initial studies,60

using MRSI in ET, concentrated on VIM rather than on the

cerebellum. This research found that the NAA/Cr ratio in the right

VIM was significantly higher than the same ratio in the left VIM in

ET, although no differences in the NAA/Cr ratio in the right and left

VIM were found when comparing ET patients versus controls.

More recently, Louis and collaborators61 have found that the NAA/

tCr ratio is reduced in the GM and WM of the cerebellum, thalamus,

and basal ganglia in 12 ET patients compared with 12 healthy

subjects. Of note, the blood concentrations of harmane, a neurotoxin

implicated in the etiology of ET, were associated with reduction of the

NAA/tCr ratio in the cerebellum but not in other brain regions. In

contrast, a different toxin (i.e., lead) was not found to be linked with

abnormalities in the NAA/tCr ratio in the cerebellum or other neural

areas. These remarkably specific results highlight the central role of the

cerebellum and harmane in mechanisms related to the development of

ET. Furthermore, previous findings from the same and other

groups62,63 showed that the symmetry in the NAA/tCR ratio between

the cerebellar hemispheres significantly differed between ET patients

and controls. Specifically, ET patients displayed a more symmetric

NAA/tCR ratio between the cerebellar hemispheres relative to

controls, and this would represent the neural correlate of a common

clinical feature of ET, the bilateral and symmetrical postural tremor.62
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Conclusion

Our review of the structural and functional neuroimaging literature

supports the hypothesis that the cerebellum is a key region involved

in the pathogenesis of motor and non-motor symptoms associated

with ET.

However, a number of earlier studies14,19,24–26 have provided some

evidence that abnormalities may also be present in other cortical and

subcortical brain regions such as the frontal and temporal cortices and

the red and olivary nuclei. More research is therefore necessary to

disentangle the role of cortical regions in ET, and their links with

cognitive dysfunctions. In addition, it is possible that the contribution

of the red and olivary nuclei in the pathophysiology of ET has been

underestimated because of technical difficulties in measuring the

structure and function of these small areas. The future advent of

sophisticated 7 Tesla scanners will likely facilitate new studies on the

role of these subcortical structures in ET.

It is also important to highlight that the actual evidence of

cerebellar involvement in the genesis of ET does not imply that the

complex relationships between the cerebellar dysfunctions and ET

have been fully characterized. A number of questions remain

unanswered. First, some inconsistent findings in the structural

neuroimaging literature have not been addressed yet. These

discrepancies may depend on the failure to disaggregate the specific

associations between distinct clinical phenotypes of ET and the

corresponding brain markers, although variability among experi-

mental designs may be another important source of confound.

Second, it still remains to be determined whether the cerebellum is

globally abnormal in ET or whether there are specific lobules that

present more intense deficits than others. Third, ET is an extremely

heterogeneous disease at the clinical and neuropathological level. For

example, ET patients with Lewy body disease in the brainstem are

thought to represent a distinct subgroup relative to patients with

prominent cerebellar damage and no Lewy bodies. Furthermore, a

recent study using dopamine transporter imaging64 demonstrated

that ET patients can present a degree of dopaminergic loss in the

caudate nucleus, although the distribution of the dopaminergic

depletion significantly varied between ET subjects and patients with

PD. New studies are therefore necessary to clarify the boundaries

between ET and PD syndromes, with clear implications for

improving future diagnosis and treatment of both these disorders.

In conclusion, we recommend that future neuroimaging experi-

ments should use standardized and quantitative approaches to

describe different clinical phenotypes while examining how the key

symptoms of ET are specifically associated with distinct patterns of

abnormalities in the cerebellum and other brain regions. Providing

a more detailed description of these relationships will greatly

advance the refinement of the current taxonomy of ET and will

reveal whether this disorder is constituted by a continuum of

associated disturbances or whether it is more appropriate to define

ET as an heterogeneous disorder constituted by separate clinical

entities.
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