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Abstract 

Background:  The aim of this study was to detect CMY-type beta-lactamases in E. coli isolates obtained from paediat‑
ric patients.

Methods:  In total, 404 infection-causing E. coli isolates resistant to third and fourth generation cephalosporins (3GC, 
4GC) were collected from paediatric patients over a 2 years period. The identification and susceptibility profiles were 
determined with an automated microbiology system. Typing of blaCMY and other beta-lactamase genes (blaTEM, blaSHV, 
blaCTX-M, blaVIM, blaIMP, blaKPC, blaNDM, blaOXA and blaGES) was realized by PCR and sequencing. Phenotypic detection 
of AmpC-type enzymes was performed using boronic acid (20 mg/mL) and cloxacillin (20 mg/mL) as inhibitors, and 
the production of extended-spectrum beta-lactamases was determined with the double-disk diffusion test with 
cefotaxime (CTX) and ceftazidime (CAZ) discs alone and in combination with clavulanic acid. The CarbaNP test and 
modified carbapenem inhibition method (mCIM) were used for isolates with decreased susceptibility to carbapen‑
ems. The clonal origin of the isolates was established by pulsed-field gel electrophoresis (PFGE), phylotyping method 
and multilocus sequence typing.

Results:  CMY-type beta-lactamases were detected in 18 isolates (4.5%). The allelic variants found were CMY-2 (n = 14) 
and CMY-42 (n = 4). Of the E. coli strains with CMY, the AmpC phenotypic production test was positive in 11 isolates 
with cloxacillin and in 15 with boronic acid. ESBL production was detected in 13 isolates. Coexistence with other 
beta-lactamases was observed such as CTX-M-15 ESBL and original spectrum beta-lactamases TEM-1 and TEM-190. 
In one isolate, the CarbaNP test was negative, the mCIM was positive, and OXA-48 carbapenemase was detected. 
Phylogroup A was the most frequent (n = 9) followed by B2, E and F (n = 2, respectively), and through PFGE, no clonal 
relationship was observed. Eleven different sequence types (ST) were found, with ST10 high-risk clone being the most 
frequent (n = 4). Seventy-two percent of the isolates were from health care-associated infections; the mortality rate 
was 11.1%.

Conclusions:  This is the first report in Mexico of E. coli producing CMY isolated from paediatric patients, demonstrat‑
ing a frequency of 4.5%. In addition, this is the first finding of E. coli ST10 with CMY-2 and OXA-48.

Keywords:  CMY beta-lactamases, AmpC, E. coli, Paediatrics, Mexico

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Of the family Enterobacteriaceae, Escherichia coli is 
one of the main causative agents of infections, both in 
the hospital environment and in the community [1]. 
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In E. coli, the main mechanism of resistance to beta-
lactam antibiotics is the production of beta-lactamases 
[2]. Among the different types of beta-lactamases, the 
AmpC-type has emerged as an important group of 
enzymes [3]. AmpC types are present in the chromo-
some of some enterobacteria but can pass to mobile 
genetic elements, such as plasmids, and be transferred 
horizontally between different species. These enzymes 
confer resistance to oxyimino-cephalosporins (cef-
tazidime, cefotaxime), cephamycins (cefoxitin) and 
monobactams (aztreonam). However, this spectrum of 
hydrolysis can be extended and affect fourth genera-
tion cephalosporins (4GC) (cefepime) [4]. Eight fami-
lies of plasmid AmpC have been described based on 
differences in the amino acid sequence: CMY (cepha-
mycin), FOX (cefoxitin), ACC (Ambler class C), LAT 
(latamoxef ), MIR (Miriam hospital in Providence), 
ACT (AmpC type), MOX (moxalactam), and DHA 
(Dhahran hospital in Saudi Arabia) [3, 5]. Of these 
groups, CMY-2 is the most common type in E. coli and 
has been reported in Asia, Europe and North America 
[6–9]. In 2014, as part of the International Network 
for Optimal Resistance Monitoring (INFORM) pro-
gram, 2,813 E. coli isolates were collected in 69 hos-
pital centres in the USA, and CMY-2 was reported in 
74 isolates (2.6%) [10]. In the Study for Monitoring 
Antimicrobial Resistance Trends (SMART) performed 
in 12 countries of the Asia–Pacific region in the 2008–
2014 period, CMY-2 was reported in 1739 E. coli iso-
lates at a frequency of 10.2% (n = 178) [11]. There have 
been reports of CMY-2 in Latin America: Argentina 
(0.9%), Colombia (3.5%) and Brazil (0.5%) [12–14]. In 
Mexico, only one study has reported E. coli produc-
ing CMY, causing a urinary tract infection in an adult 
patient [15]. Other studies have reported the presence 
of these enzymes in isolates obtained from animal ori-
gin, such as dogs (11.3%), sheep (0.64%) and turtles 
(9.8%) [16–18]. However, there is no information on 
the molecular or epidemiological characteristics of E. 
coli isolates producing CMY-type beta-lactamases in 
the Mexican paediatric population.

The aim of this study was to detect CMY-type beta-
lactamases in isolates from E. coli obtained from pae-
diatric patients attended at a tertiary care hospital.

Methods
Study site
The National Institute of Paediatrics (INP) is a tertiary 
care and teaching hospital in Mexico City with 235 
beds and 40 medical subspecialties. In 2018, the INP 
had 6072 discharges.

Isolates
In total, 404 non-duplicate 3GC and/or 4GC resistant 
E. coli isolates were collected from paediatric patients 
(0 to < 18  years) from the National Institute of Paedi-
atrics (INP) over a 2-years period (February 2013–
January 2015). These isolates were obtained from 
various clinical samples causing confirmed infections. 
We reviewed the medical files in order to collect clini-
cal information such as: date of admission, gender, age, 
antibiotic treatments, among others. An infection was 
considered HAI if it appeared on or after the 3rd day 
of admission, according to the definitions of the Cent-
ers for Disease Control and Prevention (CDC) [19]. The 
strains were identified using the Phoenix Automated 
Microbiology System® (Becton Dickinson, New Jersey, 
USA).

Antimicrobial susceptibility profiles of E. coli isolates
The susceptibility profile of the isolates was determined 
using the Phoenix® automated system (Becton Dickin-
son, New Jersey, USA). The tested antibiotics were cef-
triaxone (CRO), ceftazidime (CAZ), cefepime (FEP), 
imipenem (IMP), meropenem (MEM) and ertapenem 
(ETP). The minimum inhibitory concentration (MIC) to 
cefoxitin was determined using the broth microdilution 
method following the guidelines of M07 of the Clinical 
and Laboratory Standards Institute [20]. The interpre-
tation of the results was performed in accordance with 
CLSI document M100 [21].

Molecular detection of blaCMY and other beta‑lactamase 
genes
Total DNA extraction was performed using the QIAamp® 
DNA Mini Kit (QIAGEN, Hilden, Germany) following 
the manufacturer’s instructions. Detection of blaCMY and 
other beta-lactamases (blaCTX-M-1, blaCTX-M-2, blaCTX-M-9, 
blaCTX-M8/25, blaTEM and blaSHV) was performed by end-
point monoplex PCR. For the isolates with decreased 
susceptibility or resistance to carbapenems, carbapen-
emase genes were amplified; multiplex PCR (blaVIM, 
blaIMP and blaKPC), and blaNDM, blaOXA-48 and blaGES 
were individually amplified. We used previously pub-
lished primers [22–25]. The reaction was performed in 
an AB9700 thermocycler (Applied Biosystems, Foster 
City, CA, USA) using AmpliTaq Gold® 360 MasterMix 
(Applied Biosystems, Foster City CA, USA). The frag-
ments obtained were purified with a QIAquick PCR puri-
fication kit (QIAGEN, Hilden, Germany) and sequenced 
on a 3500 XL system (Applied Biosystems, Foster City, 
CA, USA). The sequences were analysed with the blastn 
program [26, 27], and multiple alignments were made 
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with the BioEdit v7.2 program (Ibis Biosciences, Carlsbad 
CA, USA) to determine the beta-lactamase subtype.

Phenotypic tests for AmpC, ESBL and carbapenemases
The phenotypic detection of AmpC enzymes was per-
formed with double-disc synergy using ceftazidime disks 
(Becton Dickinson, New Jersey, USA) alone and in com-
bination with cloxacillin (20  mg/mL) and boronic acid 
(20 mg/mL) (Sigma Aldrich, Milwaukee, WI). A test was 
considered positive if there was an increase in the inhibi-
tion diameter ≥ 5 mm of the ceftazidime in the presence 
of cloxacillin or boronic acid compared to the diameter of 
the ceftazidime without inhibitor [28].

The phenotypic detection of ESBL was performed by 
the combined disc method, using disks of cefotaxime 
(30  μg) and ceftazidime (30  μg) alone and in combina-
tion with clavulanic acid (30  μg/10  μg) (Becton Dickin-
son, New Jersey, USA) following the guidelines of the 
CLSI The presence of ESBL was confirmed by an increase 
of > 5  mm in the diameter of the zone of inhibition for 
any agent tested in combination with clavulanic acid 
compared with the diameter of the zone of inhibition for 
the agent alone [21].

Isolates with decreased susceptibility or resistance to 
carbapenems (IMP, MEM, ETP) were tested for carbap-
enemases production using CarbaNP and mCIM accord-
ing to the guidelines of the CLSI [21].

Molecular typing
The phylogenetic group of the isolates was obtained with 
the Clermont method [29]. The clonal relationship was 
determined using PFGE following the protocol for E. coli 
O157:H7 from PulseNet (CDC, Atlanta, GA) [30]. The 
Salmonella enterica serotype Braenderup ATCC BAA-
664 strain was used as a molecular size marker. The band 
patterns were interpreted using Tenover criteria [31]. The 
ImageLab v5.2.1 program (Bio-Rad, Hercules, CA, USA) 
was used to create a 0/1 matrix, and DendroUpGMA 
(https​://genom​es.urv.cat/UPGMA​/) and MEGA-X pro-
grams [32] were used to construct the dendrogram.

For detection of the E. coli ST131-O25b clone, trpA, 
pabB and rfb genes were amplified [33].

The MLST technique was performed by amplifying 
seven housekeeping genes (adk, fumC, gyrB, icd, mdh, 
purA and recA) using primers and conditions previously 
reported [34]. The sequences were analysed using the 
database available at https​://enter​obase​.warwi​ck.ac.uk/
speci​es/index​/ecoli​.

Results
Detection of blaCMY and other beta‑lactamase genes
Of the 404 E. coli isolates, CMY-type beta-lactamases 
were detected in 18 (4.5%). The susceptibility profile of 

the isolates with CMY was FEP 22.3% (n = 4), IMP 94.4% 
(n = 17), MEM 94.4% (n = 17) and ETP 77.7% (n = 14); 
three isolates were intermediate to CAZ, one was to FOX 
and none was susceptible to ceftriaxone. The allelic vari-
ants found were CMY-2 (n = 14) and CMY-42 (n = 4). 
In 15 isolates, coexistence with other beta-lactamase 
genes was observed such as CTX-M-15 ESBL, TEM-1 
and TEM-190 OSBL and OXA-48 carbapenemase. 
The genes blaSHV, blaCTX-M-2, blaCTX-M-9, blaCTX-M-8/25, 
blaGES, blaKPC, blaNDM, blaVIM, blaIMP were not detected 
(Table 1).

Phenotypic tests
The AmpC phenotypic production test was positive in 
11 isolates with cloxacillin (61.1%) and 15 isolates with 
boronic acid (83.3%); 13 isolates were positive for the 
ESBL confirmatory phenotypic test. Of the four strains 
of E. coli with decreased susceptibility to ertapenem, one 
was negative for the CarbaNP test and positive for mCIM 
(Ec445). The remaining three strains were negative for 
both tests (Ec24, Ec668 and Ec686) (Table 1).

Molecular typing
Regarding molecular typing in the CMY-producing E. 
coli isolates, phylogroup A was the most frequent (six 
isolates with CMY-2 and three with CMY-42) (Table 1). 
Using PFGE, no clonal relationship was observed 
between isolates, two of which were non-typable by this 
technique (Fig. 1). Eleven different STs were found: ST10 
(n = 5), three isolates with CMY-2 and two with CMY-
42 (Table  1). One isolate corresponded to ST131-O25b 
clone (Ec223). The known high-risk clones ST10, ST69, 
ST405 and ST648 were detected. It was not possible to 
assign the ST in two isolates.

Regarding epidemiological analysis of patients with 
CMY-producing E. coli, 83% had comorbidities, 56% 
were male, and the median age was 3.5  years (range 
0.6–14  years). Seventy-two percent of the isolates were 
from health care-associated infections. The main sample 
was urine (50%), followed by secretion (wound and intra-
abdominal, 22.2%) and blood (16.7%). Eleven patients 
received 3GC as empirical treatment. Ten patients 
received carbapenems as definitive treatment, and just 
two received cefepime. The largest number of isolates 
was reported in 2014 (n = 10). Two patients died from 
septic shock (Table 2).

Discussion
This study represents the first report in Mexico of E. coli 
isolates producing CMY in the paediatric population. 
Previous studies in our country have documented the 
presence of these enzymes only in adult patients and ani-
mals [16–18]. In this study, the frequency of blaCMY in E. 

https://genomes.urv.cat/UPGMA/
https://enterobase.warwick.ac.uk/species/index/ecoli
https://enterobase.warwick.ac.uk/species/index/ecoli
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coli was 4.5%, like that reported in three paediatric hos-
pitals in Chicago, USA. (4.4%) [35]. Another study in the 
same country found 27.9% of E. coli isolates with CMY 
[36]. In contrast, in Chinese children, CMY was reported 
only in 1% of isolates [37]. Although ESBL, specifically 
CTX-M-15, are predominant in E. coli, in recent years, 
there have been an increase in reports of strains produc-
ing AmpC, mainly CMY.

CMY-2 is the most frequent AmpC-type beta-lacta-
mase in E. coli, according to reports from countries, such 
as Spain and Japan [38, 39]. In our study, this subtype was 
present in 77.8% of isolates with CMY, and the rest was 
CMY-42. This variant has been described mainly in India 
and Egypt [40, 41]. The selection pressure has caused the 
emergence of variants with hydrolytic activity towards 
extended-spectrum cephalosporins.

Resistance to cefoxitin, together with sensitivity to 
cefepime, has been used as a marker of AmpC-type 
enzyme production. However, in this study, an isolate 
with CMY presented intermediate sensitivity to cefoxi-
tin, and 14 (78%) were resistant to cefepime. Twelve iso-
lates (67%) were positive for the ESBL phenotypic test, 
higher than reported in the literature (9.9–36%) [42], 
which explains the resistance to cefepime. In two iso-
lates with a negative ESBL test (Ec394, Ec480), CMY-42 
could have been responsible for resistance to cefepime. 

The detection of these enzymes is complicated due to the 
simultaneous production of ESBL and AmpC in an iso-
late, which makes difficult the interpretation of the anti-
microbial susceptibility test.

Due to the lack of standardized methods for the pheno-
typic detection of these enzymes, their prevalence may be 
underestimated. One of the phenotypic methods for this 
purpose is based on the use of cloxacillin and boronic 
acid as inhibitors with a specificity of 50–90% [43, 44]. 
In this study, boronic acid was a better inhibitor (83.3%) 
than cloxacillin (61.1%). In contrast, other reports have 
indicated greater sensitivity using cloxacillin (77–94%) 
[28, 41]. However, three isolates with CMY were negative 
for the phenotypic test with both inhibitors. Given the 
limitations of phenotypic tests and the lack of standard-
ized methods by international guidelines, such as CLSI 
or EUCAST, molecular methods, such as PCR, should be 
considered for the detection of these enzymes.

The presence of ESBL and CMY was observed in 11 
isolates (61.1%), all with CTX-M group enzymes, mainly 
CMY-2 with CTX-M-15 (n = 9). In Japan, CTX-M-15 
was detected with CMY in 72% of E. coli strains [45]. In 
one isolate (Ec394) with a positive ESBL test, only TEM-
190 was detected, which is not an ESBL, thus the ESBL 
profile may have been due to another enzyme that was 
not determined in this work. Although the frequency of 

Fig. 1  Dendrogram obtained by UPGMA (unweighted pair group method with arithmetic mean). Different pulsotypes of the CMY producing E. coli 
isolates are shown
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CMY is lower than that of ESBL, it is clinically significant 
because when combined with the loss of porins (OmpC, 
OmpF), it can confer resistance to carbapenems, one of 
the last-line antibiotics for the treatment of infections 
[46]. On the other hand, CMY enzymes have relevance 
in resistance to recently introduced antimicrobials, for 
instance in a study carried out in centers in USA; two 
E. coli isolates were found, in which genes encoding the 
CTX-M-15 and CMY-2-like beta-lactamases coexisted; 
both isolates were resistant to ceftolozane-tazobactam 
with MIC 64  µg/mL and 128  µg/mL, respectively [47]. 
The existence of these two mechanisms of resistance in 
the same isolate can complicate the interpretation of the 
antibiogram and, consequently, the proper selection of 
antimicrobial treatment.

In one isolate (Ec445), co-production of CMY-2 with 
the carbapenemase OXA-48 was detected, which rep-
resents the first report of this coexistence in Mexico. 
This combination was reported in the USA, in isolates 
obtained from dogs and cats [48]. In other studies, the 
simultaneous production of CMY with other carbapene-
mases has been reported. CMY-42 has been described in 
coexistence with NMD-5 in Italy [49] and Spain [50], and 
the presence of CMY-42 with NDM-1 and CTX-M-15 
has been reported in China [51] and CMY-42 with OXA-
181 in India [52]. The simultaneous production of differ-
ent beta-lactamases decreases the therapeutic options for 
the treatment of infections.

In Malaysia and the USA, patients colonized by CMY-
2-producing E. coli have been described at frequencies of 
6.4% and 24%, respectively [53, 54]. In the Netherlands, 
it was reported that 1.1% of adult carriers were colo-
nized by E. coli with CMY-2 [55]. In Mozambique, E. coli 
was detected with CMY-2 in 20% of university students 
[56]. The presence of these enzymes has also been docu-
mented in dogs and cats, with frequencies ranging from 
3.8 to 85% [57, 58]. In addition, the coexistence of CMY-2 
with the mcr-1 gene has been detected in poultry, in Ger-
many [59] and in food-producing animals, in Portugal 
[60]. These studies indicate that people and animals are 
reservoirs for the dissemination of E. coli strains with this 
type of enzyme or can transfer resistance genes to other 
species.

Fifty percent of E. coli isolates with CMY were clas-
sified into commensal phylogroup A (33.3% CMY-2, 
16.7% CMY-42), in contrast to that reported in Spain, 
where pathogenic phylogroup B2 was the most frequent 
among E. coli with CMY-2 [61]. Other studies in New 
Zealand and the USA, have reported D as the main 
phylogroup [62, 63]. In France, a higher frequency was 
reported in commensal phylogroups (A, B1 and C) than 
in pathogenic phylogroups (B2, D and F) [64]. Thus, 
CMY presents a heterogeneous distribution among 

phylogroups, and commensal E. coli can acquire resist-
ance genes as well as the capacity to cause infections.

There are reports indicating that the dissemination of 
E. coli isolates producing CMY is non-clonal [61, 62]. In 
this study, 11 different STs were obtained, and the main 
was ST10, which is considered a high-risk clone. This 
ST has been reported in isolates from humans and in 
chicken meat in Germany [59]. High-risk clones ST69, 
ST405 and ST648 were also detected. ST69 with CMY-2 
has been described in dairy cows in the Czech Republic 
[65] and in an E. coli strain with mcr-1 obtained from 
a urinary tract infection case, in England [66]. ST405 
and ST648 with CMY-2 have been described in strains 
isolated from pets in the USA coexisting with OXA-48 
[48]. E. coli ST457 with CMY-2 has been reported in 
molluscs and poultry in Brazil [67, 68] and in an iso-
late obtained from a paediatric patient in the USA [69]. 
E. coli ST23 with CMY-2 has been detected in chicken 
faeces and meat in Denmark [70], and a strain of E. 
coli ST361 with CMY-42 from the urinary tract was 
reported in India [40]. In this study, these two clones 
(Ec480-ST361 and Ec481-ST23) had CMY-42. On the 
other hand, E. coli ST12 with CMY-2 was reported in 
poultry in Italy [71], E. coli ST350 in chicken carcasses 
in Brazil [72], E. coli ST101 with CMY-42 was described 
in a paediatric patient with bacteraemia [69] and E. coli 
ST1284 with CMY-2 in a dog with skin and soft tissue 
infection [73]. Due to the diversity of ST found in this 
study and those reported in other studies, the dissemi-
nation of CMY enzymes seems not to be related to a 
specific lineage of E. coli, but rather to the transfer of 
mobile genetic elements. Likewise, there are several 
reservoirs for these beta-lactamases, such as animals, 
food and aquatic environments.

In this study, only one isolate with CMY-2 belonged to 
the E. coli ST131-O25b clone, which is responsible for the 
global dissemination of CTX-M-15. This ST with CMY 
has been reported in strains that cause urinary tract 
infections and bacteraemia [62, 74, 75] and in strains 
obtained from chickens in Germany [59]. Although there 
are few reports of E. coli ST131-O25b with CMY, it is 
important to surveillance the distribution of this clone 
due to its epidemic potential.

Different risk factors associated with the acquisition 
of E. coli with AmpC, such as comorbidities, previous 
use of antimicrobials, use of medical devices, urinary 
tract abnormalities and prolonged hospital stay have 
been described in adult patients [76, 77] In the cur-
rent study, most of the patients had comorbidities and 
had previously received broad-spectrum antimicrobials 
(3GC, 4GC and carbapenems). Three patients had uri-
nary tract pathologies, which could have caused greater 
susceptibility to urinary tract infections. Two patients 
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died from septic shock derived from CMY-producing 
E. coli infections.

Conclusions
This study represents the first report of E. coli produc-
ing CMY in the paediatric population in Mexico, with a 
frequency of 4.5%. The dissemination of these enzymes 
in our study was associated with high clonal diversity. A 
high proportion of E. coli producing CMY also harbour 
ESBL enzymes. The difficulty of detecting CMY only 
by phenotypic tests, makes the use of molecular tech-
niques essential.

Due to the emergence of high-risk E. coli clones in 
our hospital, it is necessary to maintain an epidemio-
logical surveillance programme that allows the timely 
detection of these strains to prevent outbreaks.

In addition, this is the first report of E. coli ST10 with 
CMY-2 and OXA-48 in Mexico.
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