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ABSTRACT
Objective: To assess associations between dietary
intake and carotid intima media thickness (CIMT) by
carotid ultrasound (CUS), a surrogate marker of
cardiovascular disease (CVD) risk, in those with type 2
diabetes.
Design: Cross-sectional analysis of baseline data from
325 participants from three randomised controlled
trials collected in the same way.
Setting: Risk Factor Modification Centre, St. Michael’s
Hospital, Toronto, Canada.
Participants: 325 participants with type 2 diabetes,
taking oral antidiabetic agents, with an HbA1c between
6.5% and 8.0% at screening, without a recent
cardiovascular event.
Main outcome measures: CIMT by CUS and
associations with dietary intake from 7-day food
records, as well as anthropometric measures and
fasting serum samples.
Results: CIMT was significantly inversely associated
with dietary pulse intake (β=−0.019, p=0.009),
available carbohydrate (β=−0.004, p=0.008), glycaemic
load (β=−0.001, p=0.007) and starch (β=−0.126,
p=0.010), and directly associated with total (β=0.004,
p=0.028) and saturated (β=0.012, p=0.006) fat intake
in multivariate regression models adjusted for age,
smoking, previous CVD event, blood pressure
medication, antidiabetic medication and
ultrasonographer.
Conclusions: Lower CIMT was significantly
associated with greater consumption of dietary pulses
and carbohydrates and lower total and saturated fat
intake, suggesting a potential role for diet in CVD risk
management in type 2 diabetes. Randomised
controlled trials are anticipated to explore these
associations further.
Trial registration number: NCT01063374.

Strengths and limitations of this study

▪ A strength of the study methods includes the
use of carotid intima media thickness (CIMT) by
carotid ultrasound, which is the recommended
screening tool for assessing cardiovascular
disease (CVD) risk by some CVD prevention clin-
ical practice guidelines, considered a biomarker
of atherosclerosis and is associated with overall
CVD risk, particularly in those with type 2
diabetes.

▪ The CIMT scans were all performed by one of
two highly trained ultrasonographers using the
same scanner at the same site and using the
same reading protocol.

▪ The dietary data are obtained from 7-day dietary
food records in which participants were trained
on how to complete by study dietitians and
which at each visit were reviewed in detail by
study dietitians in the presence of the
participant.

▪ A limitation of the analyses includes that they are
conducted using CIMT results from only one
CIMT scan obtained at baseline; however,
studies have demonstrated mean max CIMT
measurements to have good reproducibility, par-
ticularly using the method we adopted where
measurements are made of 12 segments of the
carotid artery.

▪ Although at higher CVD risk, participants in this
study had relatively well-controlled diabetes,
blood pressure and low-density lipoprotein chol-
esterol, with the majority on blood pressure and
cholesterol-lowering medication at baseline,
therefore possibly limiting the ability to assess
associations between risk factors for CVD and
CIMT and dietary intake, as well as limiting appli-
cation to those with uncontrolled risk factors.

Chiavaroli L, et al. BMJ Open 2017;7:e015026. doi:10.1136/bmjopen-2016-015026 1

Open Access Research

http://dx.doi.org/10.1136/bmjopen-2016-015026
http://dx.doi.org/10.1136/bmjopen-2016-015026
http://dx.doi.org/10.1136/bmjopen-2016-015026
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2016-015026&domain=pdf&date_stamp=2017-03-21
http://bmjopen.bmj.com


INTRODUCTION
People with type 2 diabetes are at high risk of cardiovas-
cular disease (CVD), the leading cause of death in this
population.1 2 Risk assessment through atherosclerosis
imaging includes the use of carotid intima media thick-
ness (CIMT) by carotid ultrasound (CUS), the recom-
mended screening tool for assessing CVD risk by some
CVD prevention clinical practice guidelines.3 4 CIMT is
considered a biomarker of atherosclerosis and is asso-
ciated with overall CVD risk, particularly in those with
type 2 diabetes.5 6 Observational studies have recently
demonstrated that carotid atherosclerosis, assessed by
CIMT, is associated with glycaemic status7–9 and interven-
tion trials with antidiabetic agents have demonstrated
reductions in CIMT both in those with and without dia-
betes.10–12 Some of these antidiabetic agents exert their
effect postprandially, by reducing the postprandial blood
glucose peak. Trials of insulin secretagogues (nategli-
nide and repaglinide) and the α-glucosidase inhibitor,
acarbose, have demonstrated reductions in CIMT and
identified markers of glycaemia (HbA1c and glucose
peak) as determinants of changes in CIMT.10 13–15

In addition to antidiabetic drugs, dietary strategies
continue to be sought as means to assist in diabetes
management. However, few dietary intervention trials
have explored the effect on CIMT. These have demon-
strated regression of CIMT with a Mediterranean diet
pattern.16 Dietary strategies that may be useful for dia-
betes management, including low-GI (low-glycaemic
index) diets17 18 and those rich in dietary pulses,19 20

have demonstrated associations with improved CVD
risk,21 thus warrant exploration of their effects on CIMT
as a subclinical biomarker of CVD.
The objective of the present study was to determine

the associations between dietary intake variables, particu-
larly GI, and risk of CVD assessed by CIMT in partici-
pants with type 2 diabetes.

METHODS
Participants
Details of the study protocol have been previously pub-
lished.22 Participants recruited for a 3-year dietary inter-
vention study had a diagnosis of type 2 diabetes
>6 months prior to the start of the study, an HbA1c
between 6.5% and 8.0% at screening, were on oral
antidiabetic agents at a stable dose for ≥8 weeks, not on
insulin, without gastrointestinal disease, clinically sig-
nificant liver disease or history of cancer, except
non-melanoma skin cancer, and had not had a major
cardiovascular event or major surgery in the past
6 months. Participants also had a CUS scan at the
Medical Imaging Department at Sunnybrook Health
Sciences Centre to assess CIMT as part of screening
criteria, where only those participants with a maximum
CIMT ≥1.2 mm were eligible for the 3-year study. Those
who did not meet this CIMT cut-point had the option
to participate in one of two concurrent trials of

shorter duration, the details of which have been pub-
lished.23 24 This cross-sectional study was conducted on
325 study participants using baseline data from these
three trials, all of which had the same inclusion criteria
(with the exception of the additional criteria of a
maximum CIMT ≥1.2 mm for the 3-year trial) and
included 7-day food records, anthropometric measures,
fasting blood samples and CIMT measures which were
collected in the same way.
Written consent was obtained from all participants.

Design
In this cross-sectional analysis, data were obtained
from baseline measures of study participants including
CIMT data obtained from CUS scans completed at the
Medical Imaging Department at the Sunnybrook Health
Sciences Centre MRI research unit. One of two highly
trained and certified sonographers performed CIMT
measures using a Philips iU22 Ultrasound system
(Philips Healthcare, Andover, Massachusetts, USA) with
standardised CUS scanning and reading protocols.25 26

CIMT was measured with the subject recumbent, with
the neck extended and rotated away from the side of
interest. As previously described,22 imaging was per-
formed on the right and left carotid arteries, with identi-
fication of the near wall (closest to the skin surface) and
the far wall (farthest from the skin surface) of three arter-
ial segments: the proximal 8 mm of the internal carotid
artery, the carotid bifurcation beginning at the tip of the
flow divider (site of the division of flow between the
external carotid artery and internal carotid artery) and
extending 8 mm proximally, and the common carotid
artery 8–16 mm proximal to the flow divider, and mea-
surements included posterior wall plaque, if present. The
mean value of the 12 maximal CIMT measurements
(mean maximum CIMT) was used as the outcome
measure, which has demonstrated good reproducibility
(interclass correlation coefficient (ICC) >0.8).27

For participant baseline data on risk factors, all three
studies included two baseline clinic visits at the Risk
Factor Modification Centre, St. Michael’s Hospital and
occurred within 1 month of each other. At the first, base-
line anthropometric and fasting blood measures were
obtained. Participants were given detailed instruction on
how to complete a 7-day food record which was returned
at the next visit. At the second baseline clinic visit,
anthropometric and fasting blood measures were again
obtained and each participant was randomised.
Anthropometric data included body weight, seated blood
pressure measured as the mean of triplicate measures
made with an automatic sphygmomanometer (Omron
HEM 907 XL, OMRON Healthcare, Burlington,
Ontario, Canada), and waist (at the umbilicus, 2 inches
above and lying down) and hip circumference. Blood
measures included HbA1c, fasting glucose and fasting
lipids. Data were also obtained on demographics includ-
ing age, sex, estimated duration of diabetes, smoking
and medication use.
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For those who participated in more than one of the
three studies (n=14), their first CUS and corresponding
baseline study measurements were used in the present
analyses.

Biochemical and dietary analyses
The HbA1c value was analysed within 24 hours using
whole blood collected in EDTA Vacutainer tubes
(Vacutainer; Becton, Dickinson and Co) in the hospital
routine analytical laboratory by a turbidimetric inhibi-
tion latex immunoassay (TINIA Roche Diagnostics) with
a coefficient of variation between assays of 3–4%. Blood
glucose and serum lipid levels were also measured in the
hospital routine analytical laboratory using a Random
Access Analyzer and Beckman reagents (SYNCHRON
LX Systems; Beckman Coulter), with a coefficient of
variation of 1.6–2.3% for blood glucose level and 1.3–
3.0% for total cholesterol (total-C), triglycerides, and
high-density lipoprotein cholesterol (HDL-C) levels. The
low-density lipoprotein cholesterol (LDL-C) level was cal-
culated by the method of Friedewald et al28 (LDL-C
level=total-C−[(triglycerides/5)×(HDL-C level)]).
Dietary assessments using participant completed 7-day

food records were analysed using a computer program
(ESHA Food Processor SQL V.10.9; ESHA, Salem,
Oregon, USA) based on the USDA database,29 supple-
mented with data from the Canada Nutrient File,30 and
with GI values from international GI tables31 using the
bread scale (where bread=100; for the glucose scale,
multiply by 0.71). Glycaemic load (GL) was calculated as
GI*available carbohydrate÷100. Product data were
updated with manufacturers’ nutrient information and
relevant foods were analysed by Covance Laboratories
(3301 Kinsman Blvd, Madison Wiscosin, USA). Owing to
interest in GI, in addition to general dietary variables,
data on particularly low-GI foods, which we and others
had previously demonstrated to have benefit in diabetes
management,23 32 33 were extracted from the food
records, including dietary pulses, temperate climate fruit
and nut intake.

Statistical analyses
These are post hoc analyses performed on all baseline
study participants who had a CUS scan (n=325). The ori-
ginal power calculation was based on the main interven-
tion trial. However, we performed post hoc sample size
calculations to assess our ability to detect associations of
GI and CIMT. Given the slope of −0.210 for GI and
CIMT, the SD of our log transformed GI of 0.075, the
SD of our Box-Cox transformed CIMT of 0.229, and with
80% power and α=0.05, to detect an association, we
would need a sample size of 1640. This may be a reflec-
tion of our lack of range of exposure levels of GI at base-
line (range: 58–98 and IQR: 76–83, bread scale). We
have also calculated a post hoc sample size for dietary
pulses, as a particularly low-GI food which we previously
demonstrated to have benefit on CVD risk factors in dia-
betes,23 given a slope of −0.025 for dietary pulses and

CIMT, and an SD of our log transformed dietary pulses
of 1.592, 254 participants would have been sufficient
to detect an association at α=0.05, 1−β=0.80. Data are
expressed as means±SD unless otherwise indicated.
Multivariate mixed-effects regression models were con-
ducted using SAS software, V.9.4 (SAS Institute: SAS/
STAT Proprietary Software 9.4. Cary, NC: SAS Institute;
2002–2012.) to assess the association between dietary
intake and CIMT. Dietary variables were energy adjusted
by expressing intake as g/1000 kcal or as a percentage
of energy. To adjust for energy in GI and GL analyses,
total caloric intake was added to the models as a con-
tinuous variable. All dietary variables were analysed as
continuous variables. Sensitivity analyses were performed
where energy was alternatively adjusted for using the
residual method. Since there are multiple potential con-
founders with CIMT, including age, sex, smoking, prior
CVD event, cholesterol medication use, blood pressure
medication use, duration of diabetes, type of antidia-
betic medication and waist circumference, we included
only those that were significantly associated with CIMT
in our data set (at p<0.1). Therefore, the multivariate
model was adjusted for age, smoking, previous CVD
event, blood pressure medication and type of antidia-
betic medication. Smoking was defined using three cat-
egories: current (current smoker or quit within the past
year), former (quit between 1 and 15 years ago), and
non-smoker (never smoked, or quit over 15 years ago)
according to the WHO definitions of coronary heart
disease (CHD) risk.34 Previous CVD event was defined
as yes or no. Use of blood pressure-lowering medication
was defined as user or non-user based on the baseline
visits. Type of antidiabetic medication was defined as user
of a sulfonylurea or thiazolidinediones or non-user since
these have been demonstrated to have potential negative
associations with CVD risk.13 35 36 Of the 325 participants
with a CIMT measurement and who were randomised
into one of the three studies, one participant did not
attend their week 0 visit, thus did not have dietary data.
Overall 10-year CVD risk was calculated using the
Framingham risk score according to the 2008 Framingham
cardiovascular risk equation.37 Ultrasonographer, another
potential confounder, was treated as a random effect
throughout analyses. CIMT was non-normally distributed,
therefore was transformed using the Box-Cox transform-
ation.38 The λ for CIMT was −1, thus, (CIMT−1−1)/−1
was used for the transformation. Dietary variables were
transformed using the natural logarithm in models where
the model fit improved (adjusted R-squared increased) in
the adjusted model when being regressed against trans-
formed CIMT. The transformed dietary variables
include: GI, dietary pulses, temperate climate fruit,
dietary fibre, viscous fibre, cereal fibre, starch, monoun-
saturated fatty acids, omega 3 fatty acids, dietary choles-
terol and vegetable protein. Thus, these dietary
variables were transformed as ln[g/1000 kcal (or %
kcal) +1]. Probability values <0.05 were considered stat-
istically significant.
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RESULTS
Characteristics of the 325 study participants are pre-
sented in table 1. The average mean maximum CIMT
was 1.0±0.3 mm and maximum CIMT was 2.0±0.9 mm.
The mean age for all participants was 60.3±8.7 years,
56% were male, the mean body mass index (BMI) was
30.3±5.7 kg/m2, and the mean waist circumference was
105.5±15.0 cm in females and 104.1±12.3 cm in males.
Fifteen participants (4.6%) had a previous CVD event,
84.6% non-smokers, 10.2% former smokers and 5.2%
were current smokers. Of the participants, 72.3% were

taking cholesterol-lowering and 66.5% blood pressure-
lowering medications.

CIMT and baseline dietary intake
The associations between CIMT and dietary variables
using multivariate regression models are presented in
table 2. CIMT was significantly inversely associated with
GL (β=−0.001, p=0.007), dietary pulses (β=−0.019,
p=0.009), available carbohydrate (β=−0.004, p=0.008)
and starch (β=−0.126, p=0.010), and positively associated
with total fat (β=0.004, p=0.028) and saturated fat
(β=0.012, p=0.006), in multivariate models. Sensitivity
analyses using the residual model for energy adjustment,
revealed consistent results (data not shown).

CIMT and risk factors
CIMT was significantly positively associated with age
(β=0.011, p<0.001; unadjusted), waist-to-hip ratio
(β=0.529, p=0.019), systolic (β=0.004, p<0.001) and dia-
stolic blood pressure (β=0.003, p=0.035), mean arterial
pressure (β=0.005, p=0.002), pulse pressure (β=0.005,
p<0.001), total:HDL-C ratio (β=0.027, p=0.020) and FRS
(β=0.005, p<0.001), and inversely with pulse (as beats per
minute) (β=−0.002, p=0.047) (table 3) in multivariate
models. Non-smoking was associated with significantly
lower CIMT when compared to current smokers (β=
−0.160, p=0.003) and to former smokers (β=−0.094,
p=0.004) (table 3).

Post hoc explorations with CIMT
Further explorations were conducted using the multivari-
ate model to predict how CIMT in a person consuming
one serving of dietary pulses per day would compare to a
person not consuming any. Data points were obtained by
taking mean values for log dietary pulse intake in the
regression equation (at 0 and 0.5 increments up to 5)
and then back transforming the β estimates for the
response variable (transformed CIMT). The predicted
model of the association between CIMT and dietary
pulse intake revealed a logarithmic association (figure 1)
where approximately one ¾ cup Canadian serving/day
(∼132 g/day)39 was associated with a 7.5% lower CIMT
compared with no intake (0 g/day) (0.078 mm CIMT dif-
ference). The same was conducted for saturated fat which
demonstrated a linear association where for every 1% of
total calorie increase in saturated fat, CIMT was about
0.011 mm greater (see online supplementary figure S1).
To explore the association with starch further, each

major source of starch in the diet was assessed, including
potato, pasta, rice, bread and pulses. Grams of starch
from each carbohydrate source were calculated using
the following foods: boiled white potato, cooked maca-
roni for pasta, long grain rice, white and whole wheat
bread, and the average starch from three beans (chick-
pea, black bean and kidney bean) and lentils. Starch
from each source was expressed as a percentage of total
calories (%kcal) for each variable in the model. All
other sources were pooled (other starch). All starch

Table 1 Participants characteristics

Participant characteristics (n=325) Mean±SD

Mean max bilateral CIMT, mm 1.0±0.3

Max CIMT, mm 2.0±0.9

Age, y 60.3±8.7

Sex, female/male 142/183

Estimated diabetes duration, y 8.2±6.1

Body weight, kg 84.3±18.2

BMI, kg/m2 30.3±5.7

Waist circumference, cm* 104.7±13.5

Waist:hip ratio 1.0±0.1

Systolic blood pressure, mm Hg 122.2±11.2

Diastolic blood pressure, mm Hg 71.6±8.2

Mean arterial pressure, mm Hg 88.5±8.2

Pulse, bpm 71.9±9.6

Pulse pressure, mm Hg 50.8±10.0

Fasting glucose, mmol/L 7.5±1.5

HbA1c, % 7.1±0.5

Total-C mmol/L 4.0±1.0

HDL-C mmol/L 1.2±0.3

LDL-C mmol/L 2.2±0.8

Serum triglycerides, mmol/L 1.5±0.9

Total:HDL-C ratio 3.6±1.0

Non-HDL-C, mmol/L 2.9±0.9

CVD risk, FRS 19.5±11.3

Previous CVD event, % 4.6

Smoking

Non-smoker, % 84.6

Former, % 10.2

Current, % 5.2

Diabetes meds—sulfonylurea or TZD % 37.5

Cholesterol meds, % 72.3

Blood pressure meds, % 66.5

Ethnicity, %

African 6.8

European 32.3

Far Eastern 8.9

Hispanic 1.9

Indian/South Asian 22.8

Other Caucasian 19.7

Other 20.0

*Measured at the umbilicus.
BMI, body mass index; bmp, beats per minute; CIMT, carotid
intima media thickness; CVD, cardiovascular disease; FRS,
Framingham Risk Score; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; meds,
medication use; Total-C, total cholesterol; TZD, thiazolidinediones;
y, years.
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Table 2 Dietary intake and associations with carotid intima media thickness

Dietary intake* and association with CIMT (n=324)

Mean±SD Unadjusted† Age adjusted† Multivariate‡

β SE p Value β SE p Value β SE p Value

GI§¶** 79.0±5.9 −0.210 0.172 0.222 −0.084 0.159 0.597 −0.138 0.157 0.381

GL**†† 149.9±46.8 −0.001 0.000 0.010 −0.001 0.000 0.015 −0.001 0.000 0.007

Dietary pulses, g/1000 kcal§ 18.7±29.9 −0.025 0.008 0.002 −0.019 0.008 0.014 −0.019 0.007 0.009

Nuts, g/1000 kcal 7.0±9.0 −0.001 0.001 0.507 −0.001 0.001 0.334 −0.001 0.001 0.313

Temperate climate fruit, g/1000 kcal§ 45.9±42.0 0.015 0.009 0.101 0.004 0.009 0.643 0.004 0.008 0.638

Available carbohydrates, % 42.7±7.1 −0.004 0.002 0.041 −0.004 0.002 0.010 −0.004 0.002 0.008

Fibre, g/1000 kcal§ 15.0±5.2 −0.008 0.042 0.853 −0.060 0.039 0.124 −0.048 0.038 0.211

Viscous fibre, g/1000 kcal§ 0.4±0.8 0.021 0.038 0.587 −0.012 0.035 0.725 −0.015 0.034 0.668

Cereal fibre, g/1000 kcal§ 3.6±3.0 0.016 0.020 0.430 0.004 0.018 0.835 0.011 0.018 0.540

Starch, %§ 28.1±6.6 −0.154 0.054 0.004 −0.114 0.050 0.025 −0.126 0.049 0.010

Sugar, % 14.6±4.8 0.002 0.003 0.389 −0.002 0.003 0.386 −0.002 0.003 0.521

Total fat, % 32.8±6.3 0.003 0.002 0.165 0.004 0.002 0.046 0.004 0.002 0.028

SFA, % 10.0±2.7 0.012 0.005 0.013 0.012 0.004 0.007 0.012 0.004 0.006

MUFA, %§ 12.9±3.4 0.037 0.053 0.487 0.057 0.052 0.273 0.059 0.048 0.223

PUFA, % 6.8±2.0 0.002 0.006 0.761 0.005 0.006 0.427 0.006 0.006 0.297

n-3, %§ 0.9±0.5 0.039 0.058 0.500 0.007 0.053 0.901 0.022 0.053 0.679

n-6, % 5.7±1.7 0.004 0.007 0.631 0.007 0.007 0.292 0.008 0.007 0.210

Diet cholesterol, mg/1000 kcal§ 139.9±57.1 0.026 0.021 0.234 0.022 0.020 0.255 0.020 0.019 0.310

Protein, % 18.9±3.2 0.005 0.004 0.182 0.005 0.004 0.187 0.005 0.004 0.174

Vegetable protein, %§ 7.4±1.9 −0.071 0.059 0.230 −0.089 0.055 0.103 −0.096 0.053 0.072

Animal protein, % 2.4±2.2 0.005 0.003 0.104 0.005 0.003 0.071 0.006 0.003 0.058

Energy, kcal 1781.3±451.3 0.000 0.000 0.112 0.000 0.000 0.671 0.000 0.000 0.662

Sodium, mg/1000 kcal 1385.2±336.2 0.000 0.000 0.098 0.000 0.000 0.087 0.000 0.000 0.191

Alcohol, % 1.8±3.2 0.003 0.004 0.395 0.003 0.004 0.417 0.003 0.004 0.488

Bold values are <0.05 and thus statistically significant.
*Percentages represent the percentage of total calories.
†Regression models assessing the association with CIMT where all dietary variables are analysed as continuous variables.
‡Adjusted for age, smoking, previous CVD event, blood pressure medication, antidiabetic medication and ultrasonographer.
§Log transformed where the model fit improved when regressed against CIMT.
¶GI bread scale (to convert to glucose scale, multiply by 0.71); low GI ≤78, medium GI 78–99, high GI ≥100.
**Total caloric intake added to full model as a continuous variable to adjust for energy.
††GI multiplied by the mean total available carbohydrate intake per day divided by 100.
CIMT, carotid intima media thickness (mean max bilateral, average of the 12 segment measures); CVD, cardiovascular disease; GI, glycaemic index; GL, glycaemic load; MUFA, monounsaturated
fatty acids; n-3, omega 3 fatty acids; n-6, omega 6 fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids.
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sources were added to the adjusted model and then
removed as necessary using a backwards stepwise regres-
sion. Dietary pulse starch and rice starch were the only
significant contributors to the negative association of

starch with CIMT (p=0.048 and p=0.023, respectively)
(table 4). Dietary pulse and rice intake were also highly
positively correlated with each other (r=0.272, p<0.001).
Post hoc explorations were also conducted to assess as-

sociations between the metabolic profile of participants
and all dietary variables (see online supplementary table
S1). Of the dietary variables significantly associated with
CIMT, greater intake of dietary pulses, carbohydrates,
starch and GL and lower intake of fat and saturated
fat were generally associated with lower body weight
(r=−0.129, p=0.021; r=−0.210, p<0.001; r=−0.175,
p=0.002; r=−0.157, p=0.005; r=0.202, p<0.001; r=0.321,
p<0.001, respectively), systolic blood pressure (r=−0.145,
p=0.009; r=−0.141, p=0.012; r=−0.130, p=0.020; r=
−0.143, p=0.011; r=0.063, p=0.260; r=0.030, p=0.592,
respectively), diastolic blood pressure (r=−0.172,
p=0.002; r=−0.123, p=0.028; r=−0.135, p=0.016; r=
−0.109, p=0.053; r=0.094, p=0.095; r=0.114, p=0.042),
total-C (r=−0.118, p=0.036; r=−0.129, p=0.021; r=
−0.160, p=0.004; r=−0.132, p=0.019; r=0.119, p=0.034;
r=0.092, p=0.101) and LDL-C (r=−0.109, p=0.052; r=
−0.128, 0.022; r=−0.151, p=0.007; r=−0.116, p=0.039;

Table 3 Participant characteristics and associations with carotid intima media thickness

Participant characteristics (n=325)

Unadjusted* Age adjusted* Multivariate†

β SE p Value β SE p Value β SE p Value

Age, y 0.011 0.001 <0.001

Sex (male vs female) 0.029 0.026 0.254 0.035 0.024 0.146 0.029 0.023 0.207

Estimated diabetes duration, y 0.002 0.002 0.322 −0.003 0.002 0.137 −0.003 0.002 0.117

Body weight, kg 0.000 0.001 0.960 0.001 0.001 0.088 0.001 0.001 0.155

BMI, kg/m2 −0.002 0.002 0.369 0.002 0.002 0.440 0.001 0.002 0.630

Waist circumference, cm‡ 0.000 0.001 0.797 0.001 0.001 0.531 0.000 0.001 0.816

Waist:hip ratio 0.604 0.244 0.014 0.608 0.223 0.007 0.529 0.225 0.019

Systolic blood pressure, mm Hg 0.005 0.001 <0.001 0.004 0.001 <0.001 0.004 0.001 <0.001

Diastolic blood pressure, mm Hg −0.002 0.002 0.323 0.002 0.002 0.165 0.003 0.001 0.035

Mean arterial pressure, mm Hg 0.002 0.002 0.123 0.004 0.001 0.006 0.005 0.001 0.002

Pulse, bpm −0.004 0.001 0.003 −0.002 0.001 0.043 −0.002 0.001 0.047

Pulse pressure, mm Hg 0.009 0.001 <0.001 0.005 0.001 <0.001 0.005 0.001 <0.001

Fasting glucose, mmol/L 0.001 0.009 0.934 0.006 0.008 0.488 0.004 0.008 0.573

HbA1c, % −0.021 0.025 0.414 −0.001 0.023 0.954 −0.003 0.023 0.905

Total-C mmol/L 0.012 0.013 0.357 0.013 0.012 0.248 0.017 0.012 0.155

HDL-C mmol/L 0.018 0.045 0.687 −0.065 0.042 0.126 −0.057 0.041 0.165

LDL-C mmol/L 0.015 0.015 0.337 0.019 0.014 0.185 0.021 0.014 0.136

Serum triglycerides, mmol/L 0.001 0.015 0.956 0.017 0.014 0.205 0.020 0.013 0.140

Total:HDL-C ratio 0.004 0.012 0.760 0.026 0.012 0.024 0.027 0.011 0.020

Non-HDL-C, mmol/L 0.012 0.014 0.387 0.021 0.012 0.088 0.025 0.013 0.052

CVD risk, FRS 0.008 0.001 <0.001 0.005 0.001 <0.001 0.005 0.001 <0.001

Previous CVD event −0.161 0.060 0.008 −0.104 0.056 0.064

Non-smokers vs current smokers −0.089 0.057 0.118 −0.160 0.053 0.003

Non-smokers vs ever smokers −0.072 0.035 0.042 −0.094 0.032 0.004

Not vs on sulfonylurea or TZD −0.043 0.026 0.105 −0.025 0.024 0.302

Not vs on cholesterol meds −0.041 0.028 0.152 −0.022 0.026 0.407 −0.022 0.026 0.416

Not vs on blood pressure meds −0.050 0.027 0.065 −0.013 0.025 0.592

Bold values are <0.05 and thus statistically significant.
*Regression models assessing the association with CIMT, where p<0.05 is considered statistically significant.
†Adjusted for age, smoking, previous CVD event, blood pressure medication, antidiabetic medication and ultrasonographer.
‡Measured at the umbilicus.
BMI, body mass index; bmp, beats per minute; CIMT, carotid intima media thickness (mean max bilateral, average of the 12 segment
measures); CVD, cardiovascular disease; FRS, Framingham Risk Score; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density
lipoprotein cholesterol; meds, medication; Total-C, total cholesterol; TZD, thiazolidinediones; y, years.

Figure 1 Model of association between dietary pulse intake

and carotid intima media thickness (CIMT). The multivariate

regression model is adjusted for age, smoking, previous

cardiovascular disease (CVD) event, blood pressure

medication, antidiabetic medication and ultrasonographer.
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r=0.131, p=0.019; r=0.059, p=0.296) in adjusted Pearson
correlations.

DISCUSSION
Using CIMT as a predictive marker of CVD risk, we eval-
uated the associations with dietary intake in participants
with type 2 diabetes. The objective of the main study
from which these baseline data are taken is to assess the
effect of a low-GI diet on markers of macrovascular
disease, however, in the present cross-sectional analysis,
there was no significant association between GI and
CIMT. This may be because we were underpowered due
to the small variance of measured GI in our population,
no participant had a high-GI diet and the average GI
was at the low end of the medium GI range, thus limit-
ing our ability to assess any association. Although
we found no association, low-GI diets have been demon-
strated in systematic reviews and meta-analyses of
randomised controlled trials to significantly reduce both
total-C and LDL-C compared to high-GI diets,40 as well
as to reduce oxidative stress and inflammation.41

Interestingly, in a recent randomised controlled trial of
those with the metabolic syndrome randomised to
receive either metformin or a low-GI diet for 8 weeks,
both groups demonstrated significant improvements
in metabolic syndrome components including body
weight, blood pressure, cholesterol and glycaemia.42

Furthermore, the antidiabetic drug acarbose, which
effectively converts the diet into a low-GI diet by delay-
ing dietary carbohydrate absorption, has been associated
with a reduced incidence of hypertension and CHD
events in a small number of prediabetic participants in
the Study to Prevent Non-Insulin-Dependent Diabetes

Mellitus (STOP NIDDM) trial.43 Therefore, low-GI diets
may have the potential to reduce CVD risk, particularly
in those at high risk. Thus, further exploration into the
potential benefit of low-GI diets on CVD risk is needed,
particularly to assess change due to low-GI interventions.
GL was significantly associated negatively with CIMT

which differs from what was expected. Systematic reviews
and meta-analyses of previous studies have demonstrated
a positive association between GL and CVD risk.17 18

However, GL is the product of GI and available carbohy-
drate. We found a strong significant negative association
between available carbohydrates and CIMT, but no
effect of GI. We found a strong positive association
between total and saturated fat intake and CIMT, there-
fore the surprising negative association between GL and
CIMT may just mean that a higher carbohydrate and GL
diet is simply an indicator of a lower total and saturated
fat diet that predictably was associated with lower CIMT.
Of the specific low-GI foods of interest assessed,

dietary pulse intake was significantly inversely associated
with CIMT. In the predicted model (figure 1) approxi-
mately one ¾ cup serving/day39 was associated with a
7.5% lower CIMT compared to no intake (0 g/day).
Although associations with CIMT have not been assessed
previously, dietary pulse intake has been associated with
reduced risk of CHD and CVD,19 20 which supports the
association found in the current study between dietary
pulse intake and CIMT as a subclinical marker of
CVD risk. Additionally, dietary pulses are part of a
Mediterranean diet and this diet has been associated
with improved CIMT in a number of studies,16 44–46 as
was highlighted in a recent systematic review of dietary
factors and CIMT by Petersen et al.47 We also found
dietary pulse intake to be significantly associated with
lower body weight, systolic and diastolic blood pressure,
mean arterial pressure and cholesterol (see online
supplementary table S1). A series of systematic reviews
and meta-analyses have found dietary pulse intake to sig-
nificantly improve body weight, blood pressure and chol-
esterol,48–50 therefore supporting the associations
observed in this study. Each of these potential pathways
has been associated with lower CVD risk. Additionally,
dietary pulses are high in fibre, potassium and vegetable
protein, and low in saturated fat, each of which has been
demonstrated to lower blood pressure23 51 52 and
improve cholesterol.48 Furthermore, although not
explored in the current study, dietary pulses may also act
through reduced inflammation, as supported by another
recent systematic review and meta-analysis,53 which may
also affect carotid plaque burden, since inflammation
within atherosclerotic lesions increases the risk of plaque
rupture and subsequent thromboembolism.54 The
Mediterranean diets in the Prevención con Dieta
Mediterránea (PREDIMED) study, which have been
shown to be lower GI diets,55 were also found to downre-
gulate cellular and circulating adhesion molecules and
other inflammatory biomarkers.56 Since, dietary pulses
are particularly low-GI foods, consuming a lower GI diet

Table 4 Starch sources and association with carotid

intima media thickness

Effect on CIMT, n=324 β SE p Value*

Full Model

Potato starch† 0.026 0.019 0.168

Whole wheat bread starch 0.001 0.004 0.709

White bread starch −0.006 0.004 0.143

Rice starch −0.006 0.003 0.036

Pasta starch 0.006 0.005 0.253

Pulse starch† −0.039 0.022 0.077

Other starch† −0.045 0.035 0.194

Stepwise model‡

Rice starch −0.006 0.003 0.023

Pulse starch† −0.043 0.021 0.048

*Multivariate regression model adjusted for age, smoking, previous
CVD event, blood pressure medication, antidiabetic medication
and ultrasonographer; starch variables are expressed as
percentages of total calories.
†Log transformed.
‡Adjusted multivariate regression model where each starch
variable was removed from the model one at a time based on
least significance as per backward stepwise regression.
CIMT, carotid intima media thickness (mean max bilateral,
average of the 12 segment measures); CVD, cardiovascular
disease.
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may also be beneficial for CVD risk. Our recent rando-
mised controlled clinical trial in those with type 2 dia-
betes demonstrated that a low-GI diet with a particular
emphasis on dietary pulses significantly lowered systolic
blood pressure and heart rate, relative to a wheat fibre
diet, both of which are negatively associated with CVD
risk.23

Although the recent systematic review of dietary
factors and CIMT by Petersen et al47 did not reveal any
studies with results on dietary pulses, they did conclude
from the observational studies retrieved, that greater
intake of fruit, whole grains and fibre and a lower intake
of saturated fat was associated with lower CIMT. From
our analyses, we find support for the association
between lower saturated fat intake and lower CIMT. A
previous study demonstrated that for every 10 g/day
(about 5% of calories) increase in saturated fat, CIMT is
0.03 mm greater.57 This is comparable to our analysis in
which we found that for every 1% of total calorie
increase in saturated fat, CIMT is about 0.011 mm
greater (see online supplementary figure S1). The
greater difference in CIMT for every 1% increase in
saturated fat intake in our population compared to the
previous study may be because of the higher risk of our
population since they all had type 2 diabetes, were of
greater age (60 vs 48 years) and greater BMI (30 vs
25 kg/m2). In recent years, new evidence from prospect-
ive studies has suggested that not all types of saturated
fats play the same role in CVD development, including
evidence that saturated fats from dairy products may
play a protective role whereas those from other food
sources may increase risk.58 59 Unfortunately, we were
unable to explore different sources of saturated fat from
our data. We did have data on protein from dairy
sources which we explored post hoc and found had a
significant positive association with CIMT (β=0.075,
p=0.006; multivariate model). Further exploration into
effects of different sources of saturated fat is warranted.
Although we did not analyse whole grains, we did find

a significant negative association between dietary starch
intake and CIMT. Furthermore, in the starch post hoc
analyses exploring major sources of starch, dietary pulse
starch and rice starch were the only significant contribu-
tors to the negative association of starch with CIMT
(table 4) and since they were also highly positively corre-
lated with each other, this may mean they are consumed
together, for example, as lentils and rice, a common
dish. This result further strengthens the findings for
dietary pulses.
We did not find a significant association with CIMT

and dietary fibre in the present analysis (β=−0.048,
p=0.211). However, the recent systematic review high-
lighted that the PREDIMED study found a significantly
lower CIMT with low (<25 g/day) versus high (>35 g/
day) fibre intakes (−0.051 mm, 95% CI −0.094 to
−0.009).60 When we explored dietary fibre based on
intakes <25, 25–35 and >35 g/day, there was a trend for
lower CIMT with increasing fibre intake, but this trend

was not significant (p=0.119). Furthermore, when we
adjusted for energy using the residual method, similar
to the approach used in the PREDIMED study, there was
again an inverse trend, although the difference between
the highest and lowest fibre groups did not reach statis-
tical significance (p=0.088) (see online supplementary
table S2). Further exploration into any possible associ-
ation between dietary fibre and CIMT is warranted, par-
ticularly since many studies have demonstrated an
inverse association between dietary fibre intake and car-
diovascular risk.61

Taken together, the results demonstrate that a higher
carbohydrate diet may benefit CIMT, a marker of CVD
risk. This is especially true for a diet with high-quality
carbohydrate where the starch comes largely from
dietary pulses, a particularly low-GI food, and which is
also low in total fat, particularly saturated fat. The asso-
ciations between these specific dietary variables and the
metabolic profile of the participants reveal that they may
act through better control of body weight, blood pres-
sure and cholesterol.

Strengths and limitations of this study
A strength of the analyses is that the CIMT scans were all
performed using the same scanner at the same site and
using the same reading protocol. A further strength is
the method of collection of dietary data. Although the
majority of participants were overweight and may have
underreported their intake,62 we took three important
steps to minimise the impact of misreporting. First, we
used prospectively collected 7-day food records: widely
cited as the ‘gold standard’ of dietary measurement.63

Second, these records were reviewed by the study diet-
itian at the time of collection and in the presence of the
participant and details clarified (eg, nature of the mar-
garine). Third, for this analysis, a priori, we aimed to
exclude participants reporting intakes below 500 and
800 calories or above 3500 or 4000 calories, respectively
for women and men.63 No participant reported levels
outside these cut-points, therefore we included all
dietary records in our analyses. Finally, we have adjusted
for energy in the regression models to dampen the
effect of misestimation. We also found a correlation
between calories and body weight (r=0.31, p<0.001;
unadjusted). Therefore, we believe the dietary data are
of reasonable quality. Limitations of these analyses
include that they are conducted using CIMT results from
only one CIMT scan obtained at baseline. However,
studies have demonstrated mean max CIMT measure-
ments to have good reproducibility, particularly using
the method we adopted where measurements are made
of 12 segments of the carotid artery.27 Furthermore,
although CIMT has been associated with CVD5 6 a
major limitation is that carotid plaque is a stronger pre-
dictor of CVD,64–66 although we did include posterior
wall plaques in the CIMT measures, if present. Another
limitation is possible residual confounding due to
unmeasured or uncontrolled variables, although CIMT
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confounders were adjusted for in the analyses. The parti-
cipants were also at high cardiovascular risk, thus appli-
cation to a healthier cohort is limited. Furthermore,
although at higher CVD risk, participants had relatively
well-controlled diabetes (HbA1c, mean 7.1±0.5%), blood
pressure (mean 122±11/72±8 mm Hg) and LDL-C
(mean 2.2±0.8 mmol/L), with 67% on blood pressure
medication and 72% on cholesterol-lowering medication
at baseline, therefore possibly limiting the ability to
assess associations between risk factors for CVD and
CIMT and dietary intake, as well as limiting application
to those with uncontrolled risk factors. Also, due to the
good glycaemic control of the participants, this may
explain why there were no associations found with either
HbA1c or glucose and CIMT. Importantly, the cross-
sectional design of the study is a limitation to establish
causality due to the possibility of reverse causation bias.
Longitudinal studies and randomised controlled trials
are needed to confirm the observed associations.

CONCLUSION
Overall, greater consumption of dietary pulses, which
are particularly low-GI foods, and available carbohy-
drates and lower saturated fat were significantly asso-
ciated with lower baseline CIMT, as well as body weight,
blood pressure and cholesterol, suggesting a potential
role for diet in CVD risk reduction in type 2 diabetes.
Properly designed randomised controlled trials are
necessary to confirm if these dietary factors, including
increased intake of dietary pulses and a reduction in
saturated fat intake, are potential strategies to reduce
CVD risk in those with type 2 diabetes. Furthermore,
these types of trials will also be necessary to better assess
if there is any effect of GI, where a low-GI diet is the
result of healthy low-GI dietary advice. Thus the results
of the main trial underway, which will allow for the
assessment of changes resulting from a low-GI interven-
tion, are greatly anticipated.
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