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Abstract

A major obstacle to understanding neural coding and computation is the fact that experi-

mental recordings typically sample only a small fraction of the neurons in a circuit. Measured

neural properties are skewed by interactions between recorded neurons and the “hidden”

portion of the network. To properly interpret neural data and determine how biological struc-

ture gives rise to neural circuit function, we thus need a better understanding of the relation-

ships between measured effective neural properties and the true underlying physiological

properties. Here, we focus on how the effective spatiotemporal dynamics of the synaptic

interactions between neurons are reshaped by coupling to unobserved neurons. We find

that the effective interactions from a pre-synaptic neuron r0 to a post-synaptic neuron r can

be decomposed into a sum of the true interaction from r0 to r plus corrections from every

directed path from r0 to r through unobserved neurons. Importantly, the resulting formula

reveals when the hidden units have—or do not have—major effects on reshaping the inter-

actions among observed neurons. As a particular example of interest, we derive a formula

for the impact of hidden units in random networks with “strong” coupling—connection

weights that scale with 1=
ffiffiffiffi
N
p

, where N is the network size, precisely the scaling observed in

recent experiments. With this quantitative relationship between measured and true interac-

tions, we can study how network properties shape effective interactions, which properties

are relevant for neural computations, and how to manipulate effective interactions.

Author summary

No experiment in neuroscience can record from more than a tiny fraction of the total

number of neurons present in a circuit. This severely complicates measurement of a net-

work’s true properties, as unobserved neurons skew measurements away from what

would be measured if all neurons were observed. For example, the measured post-synaptic

response of a neuron to a spike from a particular pre-synaptic neuron incorporates direct
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connections between the two neurons as well as the effect of any number of indirect con-

nections, including through unobserved neurons. To understand how measured quanti-

ties are distorted by unobserved neurons, we calculate a general relationship between

measured “effective” synaptic interactions and the ground-truth interactions in the net-

work. This allows us to identify conditions under which hidden neurons substantially

alter measured interactions. Moreover, it provides a foundation for future work on

manipulating effective interactions between neurons to better understand and potentially

alter circuit function—or dysfunction.

Introduction

Establishing relationships between a network’s architecture and its function is a fundamental

problem in neuroscience and network science in general. Not only is the architecture of a neu-

ral circuit intimately related to its function, but pathologies in wiring between neurons are

believed to contribute significantly to circuit dysfunction [1–15].

A major obstacle to uncovering structure-function relationships is the fact that most experi-

ments can only directly observe small fractions of an active network. State-of-the-art methods

for determining connections between neurons in living networks infer them by fitting statisti-

cal models to neural spiking data [16–25]. However, the fact that we cannot observe all neu-

rons in a network means that the statistically inferred connections are “effective” connections,

representing some dynamical relationship between the activity of nodes but not necessarily a

true physical connection [24–33]. Intuitively, reverberations through the network must con-

tribute to these effective interactions; our goal in this work is to formalize this intuition and

establish a quantitative relationship between measured effective interactions and the true syn-

aptic interactions between neurons. With such a relationship in hand we can study the effec-

tive interactions generated by different choices of synaptic properties and circuit architectures,

allowing us to not only improve interpretation of experimental measurements but also probe

how circuit structure is tied to function.

The intuitive relationship between measured and effective interactions is demonstrated

schematically in Fig 1. Fig 1A demonstrates that in a fully-sampled network the directed inter-

actions between neurons—here, the change in membrane potential of the post-synaptic neu-

ron after it receives a spike from the pre-synaptic neuron—can be measured directly, as

observation of the complete population means different inputs to a neuron are not conflated.

However, as shown in Fig 1B, the vastly more realistic scenario is that the recorded neurons

are part of a larger network in which many neurons are unobserved or “hidden.” The response

of the post-synaptic neuron 2 to a spike from pre-synaptic neuron 1 is a combination of both

the direct response to neuron 1’s input as well as input from the hidden network driven by

neuron 1’s spiking. Thus, the measured membrane response of neuron 2 due to a spike fired

by neuron 1—which we term the “effective interaction” from neuron 1 to 2—may be quite dif-

ferent from the true interaction. It is well-known that circuit connections between recorded

neurons, as drawn in Fig 1C, are at best effective circuits that encapsulate the effects of unob-

served neurons, but are not necessarily indicative of the true circuit architecture. The formal-

ized relationship we will establish in the Results is given in Fig 2.

Even once we establish a relationship between the effective and true connections, we will

in general not be able to use measurements of effective interactions to extrapolate back to a

unique set of true connections; at best, we may be able to characterize some of the statistical

properties of the full network. The obstacle is that several different networks—different both
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in terms of architecture and intrinsic neural properties—may give rise to the same network

behaviors, a theme of much focus in the neuroscience literature [34–39]. That is, inferring the

connections and intrinsic neural properties in a full network from activity recordings from a

subset of neurons is in general an ill-posed problem, possessing several degenerate solutions.

Several statistical inference methods have been constructed to attempt to infer the presence

of, and connections to, hidden neurons [28, 40–42]; the subset of the degenerate solutions

that each of these methods finds will depend on the particular assumptions of the inference

method (e.g., the regularization penalties applied). As an example, we demonstrate two small

Fig 1. The hidden unit problem. A. In a hypothetical circuit consisting of just two recorded neurons (no hidden

neurons), we can measure the strength and time course of the directed interactions between neurons by measuring the

response of the post-synaptic neuron’s membrane potential to a spike from the pre-synaptic neuron. B. Realistically,

there are many more neurons in the network that are unrecorded and hence “hidden.” In this schematic, only two

neurons are observed. The hidden neurons are driven by input from the presynaptic neuron labeled 1, and provide

input to the recorded post-synaptic neuron labeled 2. Because the activity of the hidden neurons is not controlled, the

membrane response reflects a combination of neuron 1’s direct influence on neuron 2 and its indirect influence

through the hidden network. C. The “effective” 2 neuron network observed experimentally.

https://doi.org/10.1371/journal.pcbi.1006490.g001
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circuit motifs that give rise to nearly identical effective interactions, despite crucial differences

between the circuits (Figs 3 and 4).

Understanding the effect of hidden neurons on small circuit motifs is only a piece of the

hidden neuron puzzle, and a full understanding necessitates scaling up to large circuits con-

taining many different motifs. Having an analytic relationship between true and effective inter-

actions greatly facilitates such analyses by directly studying the structure of the relationship

itself, rather than trying to extract insight indirectly through simulations. In particular, in

going to large networks we focus on the degree to which hidden neurons skew measured

interactions (Fig 5), and how we can predict the features of effective interactions we expect to

measure when recording from only a subset of neurons in a network with hypothesized true

interactions (Fig 6).

Establishing a theoretical relationship between measured and “true” interactions will thus

enable us to study how one can alter the network properties to reshape the effective interac-

tions, and will be of immediate importance not only for interpreting experimental measure-

ments of synaptic interactions, but for elucidating their role in neural coding. Moreover,

understanding how to shape effective interactions between neurons may yield new avenues

for altering, in a principled way, the computations performed by a network, which could

have applications for treating neurological diseases caused in part by pathological synaptic

interactions.

Results

Overview

Our goal is to derive a relationship between the effective synaptic interactions between

recorded neurons and the true synaptic interactions that would be obtained if the network

were fully observed. This makes explicit how the synaptic interactions between neurons are

modified by unobserved neurons in the network, and under what conditions these modifica-

tions are—or are not—significant. We derive this result first, using a probabilistic model of

network activity in which all properties are known. We then build intuition by applying our

result to two simple networks: a 3-neuron feedforward-inhibition circuit in which we are able

to qualitatively reproduce measurements by Pouille and Scanziani [43], and a 4-neuron circuit

that demonstrates how degeneracies in hidden networks are handled within our framework.

To extend our intuition to larger networks, we then study the effective interactions that

would be observed in sparse random networks with N cells and strong synaptic weights that

scale as 1=
ffiffiffiffi
N
p

[44–47], as has been recently observed experimentally [48]. We show how

unobserved neurons significantly reshape the effective synaptic interactions away from the

ground-truth interactions. This is not the case with “classical” synaptic scaling, in which syn-

aptic strengths are inversely proportional to the number of inputs they receive (assumed

O Nð Þ), as we will also show. (The case of classical scaling has also been studied previously

using a different approach in [49–52]).

Model

We model the full network of N neurons as a nonlinear Hawkes process [53], often referred

to as a “Generalized linear (point process) model” in neuroscience, and broadly used to fit

neural activity data [16–23, 54]. Here we use it as a generative model for network activity, as it

approximates common spiking models such as leaky integrate and fire systems driven by noisy

inputs [55, 56], and is equivalent to current-based leaky integrate-and-fire models with soft-

threshold (stochastic) spiking dynamics (see Methods).
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To derive an approximate model for an observed subset of the network, we partition the

network into recorded neurons (labeled by indices r) and hidden neurons (labeled by indices

h). Each recorded neuron has an instantaneous firing rate λr(t) such that the probability that

the neuron fires within a small time window [t, t + dt] is λr(t)dt, when conditioned on the

inputs to the neuron. The instantaneous firing rate in our model is

lr tð Þ ¼ l0� mr þ
X

r0
Jr;r0 � _nr0 tð Þ þ

X

h

Jr;h � _nh tð Þ

 !

; ð1Þ

where λ0 is a characteristic firing rate, ϕ(x) is a non-negative, continuous function, μr is a tonic

drive that sets the baseline firing rate of the neuron, and Ji;j � _nj tð Þ �
R1
� 1

dt0 Ji;j t � t0ð Þ _nj t0ð Þ
is the convolution of the synaptic interaction (or “spike filter”) Ji,j(t) with spike train _nj tð Þ
from pre-synaptic neuron j to post-synaptic neuron i, for neural indices i and j that may

be either recorded or hidden. In this work we take the tonic drive to be constant in time,

and focus on the steady-state network activity in response to this drive. We consider interac-

tions of the form Ji;j tð Þ � J i;jgj tð Þ, where the temporal waveforms gj(t) are normalized such

that
R1

0
dt gj tð Þ ¼ 1 for all neurons j. Because of this normalization, the weight J i;j carries

units of time. We include self-couplings Ji,i(t) not to represent autapses, but to account for

intrinsic neural properties such as refractory periods (J i;i < 0) or burstiness (J i;i > 0).

The firing rates for the hidden neurons follow the same expression with indices h and r
interchanged.

We seek to describe the dynamics of the recorded neurons entirely in terms of their own

set of spiking histories, eliminating the dependence on the activity of the hidden neurons. This

demands calculating the effective membrane response of the recorded neurons by averaging

over the activity of the hidden neurons conditioned on the activity of the recorded neurons. In

practice this is intractable to perform exactly [57–60]. Here, we use a mean field approxima-

tion to calculate the mean input from the hidden neurons (again, conditioned on the activity

of the recorded neurons). The value of deriving such a relationship analytically, as opposed to

simply numerically determining the effective interactions, is that the resulting expression will

give us insight into how the effective interactions decompose into contributions of different

network features, how tuning particular features shapes the effective interactions, and condi-

tions under which we expect hidden units to skew our measurements of connectivity in large

partially observed networks.

As shown in detail in the Methods, the instantaneous firing rates of the recorded neurons

can then be approximated as

lr tð Þ � l0� meff
r þ

X

r0
Jeffr;r0 � _nr0 tð Þ þ xr tð Þ

 !

:

The effective baselines meff
r ¼ mr þ

P
hJ r;hnh, are simply modulated by the net tonic input to the

neuron, so we do not focus on them here. The ξr(t) are effective noise sources arising from fluc-

tuation input from the hidden network. At the level of our mean field approximation these fluc-

tuations vanish; corrections to the mean field approximation are straightforward and yield non-

zero noise correlations, but will not impact our calculation of the effective interactions (see the

Methods and SI), so as with the effective baselines we will not focus on the effective noise here.

The effective coupling filters are given in the frequency domain by

Ĵ effr;r0 oð Þ ¼ Ĵ r;r0 oð Þ þ
X

h;h0
Ĵ r;h oð ÞĜh;h0 oð ÞĴ h0;r0 oð Þ: ð2Þ
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These results hold for any pair of recorded neurons r0 and r, and any choice of network param-

eters for which the mean field steady state of the hidden network exists. Here, the νh are the

steady-state mean firing rates of the hidden neurons and Ĝh;h0 oð Þ is the linear response func-

tion of the hidden network to perturbations in the input. That is, Γh,h0(t − t0) is the linear

response of hidden neuron h at time t due to a perturbation to the input of neuron h0 at time t0,
and incorporates the effects of h0 propagating its signal to h through other hidden neurons, as

demonstrated graphically in Fig 2. Both νh and Ĝh;h0 oð Þ are calculated in the absence of the
recorded neurons. In deriving these results, we have neglected both fluctuations around the

mean input from the hidden neurons, as well as higher order filtering of the recorded neuron

spikes. For details on the derivations and justification of approximations, see the Methods and

Supporting Information (SI).

The effective coupling filters are what we would—in principle—measure experimentally

if we observe only a subset of a network, for example by pairwise recordings shown schemati-

cally in Fig 1. For larger sets of recorded neurons, interactions between neurons are typically

inferred using statistical methods, an extremely nontrivial task [16–23, 28, 40, 41], and details

of the fitting procedure could potentially further skew the inferred interactions away from

what would be measured by controlled pairwise recordings. We will put aside these complica-

tions here, and assume we have access to an inference procedure that allows us to measure

Jeffr;r0 tð Þ without error, so that we may focus on their properties and relationship to the ground-

truth coupling filters.

Structure of effective coupling filters

The ground-truth coupling filters Ĵ r;r0 oð Þ (as defined in Eq (1)) are modified by a correction

term
P

h;h0 Ĵ r;h oð ÞĜh;h0 oð ÞĴ h0;r0 oð Þ. The linear response function Ĝh;h0 oð Þ admits a series repre-

sentation in terms of paths through the network through which neuron r0 is able to send a sig-

nal to neuron r via hidden neurons only.

We may write down a set of “Feynmanesque” graphical rules for explicitly calculating

terms in this series [53]. First, we define the input-output gain of a hidden neuron h,

gh � l0�
0
mh þ

P
h0Jh;h0nh0

� �
, calculated in the absence of recorded neurons. The contribution

of each term can then be written down using the following rules, shown graphically in Fig 2: i)

Fig 2. Expansion of effective interactions into contributions from hidden paths. A. Graphical representation of Eq (2). The linear

response of the hidden network, Ĝh;h0 ðoÞ, has been expanded as a series (corresponding to the grey hidden nodes and links between

them), such that each term in the overall series can be interpreted as a contribution from a path through which the pre-synaptic

neuron r0 is able to send a signal to post-synaptic neuron r via 1, 2, etc. hidden neurons. This expression holds for any pair of

neurons in the recorded subset. B. Quantitative expressions for each diagram in the series can be read off by assigning the shown

factors for each hidden neuron node and each link between neurons, recorded or hidden, and multiplying them together. (No factor

is assigned to the recorded neuron nodes). γh is the gain of neuron h and Ĵ i;jðoÞ is the true interaction from j to i in the frequency

domain.

https://doi.org/10.1371/journal.pcbi.1006490.g002
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for the edge connecting recorded neuron r0 to a hidden neuron hi, assign a factor Ĵ hi ;r0 oð Þ; ii)

for each node corresponding to a hidden neuron hi, assign a factor ghi=ð1 � ghi Ĵ hi ;hi oð ÞÞ; iii)

for each edge connecting hidden neurons hi 6¼ hj, assign a factor Ĵ hj ;hi oð Þ; and iv) for the edge

connecting hidden neuron hj to recorded neuron r, assign a factor Ĵ r;hj oð Þ. All factors for each

path are multiplied together, and all paths are then summed over.

The graphical expansion is reminiscent of recent works expanding correlation functions of

linear models of network spiking in terms of network “motifs” [61–63]. Computationally, this

expression is practical for calculating the effective interactions in small networks involving

only a few hidden neurons (as in the next section), but is generally unwieldy for large net-

works. In practice, for moderately large networks the linear response matrix Ĝh;h0 oð Þ can be

calculated directly by numerical matrix inversion and an inverse Fourier transform back into

the time domain. The utility of the path-length series is the intuitive understanding of the ori-

gin of contributions to the effective coupling filters and our ability to analytically analyze the

strength of contributions from each path. For example, one immediate insight the path decom-

position offers is that neurons only develop effective interactions between one another if there

is a path by which one neuron can send a signal to the other.

Feedforward inhibition and degeneracy of hidden networks in small

circuits

Effective interactions & emergent timescales in a small circuit. To build intuition for

our result and compare to a well-known circuit phenomenon, we apply our Eq (2) to a 3-neu-

ron circuit implementing feedforward inhibition, like that studied by Pouille and Scanziani

[43]. Feedforward inhibition can sharpen the temporal precision of neural coding by narrow-

ing the “window of opportunity” in which a neuron is likely to fire. For example, in the circuit

shown in Fig 3A, excitatory neuron 1 projects to both neurons 2 and 3, and 3 projects to 2.

Neuron 1 drives both 2 and 3 to fire more, while neuron 3 is inhibitory and will counteract the

drive neuron 2 receives from 1. The window of opportunity can be understood by looking at

the effective interaction between neurons 1 and 2, treating neuron 3 as hidden. We use our

path expansion (Fig 2) to quickly write down the effective interaction we expect to measure in

the frequency domain,

Ĵ eff
2;1
oð Þ ¼ Ĵ 2;1 oð Þ þ

Ĵ 2;3 oð Þg3 Ĵ 3;1 oð Þ

1 � g3 Ĵ 3;3 oð Þ
: ð3Þ

The corresponding true synaptic interactions and resulting effective interaction are shown in

Fig 3B. The effective interaction matches qualitatively the observed changes measured by

Pouille and Scanziani [43], and shows a narrow window after neuron 2 receives a spike in

which the change in membrane potential is depolarized and neuron 2 is more likely to fire.

Following this brief window, the membrane potential is hyperpolarized and the cell is less

likely to fire until it receives more excitatory input.

The effective interaction from neuron 1 to 2 in this simple circuit also displays several fea-

tures that emerge in more complex circuits. Firstly, although the true interactions are either

excitatory (positive) or inhibitory (negative), the effective interaction has a mixed character,

being initially excitatory (due to excitatory inputs from neuron 1 arriving first through the

monosynaptic pathway), but then becoming inhibitory (due to inhibitory input arriving from

the disynaptic pathway).

Predicting how and when hidden neurons skew measured synaptic interactions
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Secondly, emergent timescales develop due to reverberations between hidden neurons

with bi-directional connections, represented as loops between neurons in our circuit sche-

matics (e.g., between neurons 3 and 4 in Fig 4). This includes self-history interactions such

as refractoriness, schematically represented by loops like the 3! 3 loop shown in Fig 3,

corresponding to the factor 1= 1 � g3Ĵ 3;3 oð Þ
� �

). In the particular example shown in Fig 3,

in which we use a self-history interaction J33 tð Þ ¼ J 33b33exp � b33tð Þ, a new timescale

b
� 1

33
1 � g3J 33ð Þ

� 1
develops. Other choices of interactions can generate more complicated

emergent timescales and temporal dynamics, including oscillations. For example, in the

4-neuron circuit discussed below (Fig 4), the choice J3;4 tð Þ ¼ J4;3 tð Þ ¼ � jJ ja2te� at yields

effective interactions with new decay and oscillatory timescales equal to a 1 � l0jJ jÞÞ
� 1

��

and al0jJ jÞ
� 1

�
. In the larger networks we consider in the next section, inter-neuron inter-

actions must scale with network size in order to maintain network stability. Because emer-

gent timescales depend on the synaptic strengths of hidden neurons, we typically expect

emergent timescales generated by loops between hidden neurons to be negligible in large

random networks. However, because the magnitudes of the self-history interaction

strengths need not scale with network size, they may generate emergent timescales large

enough to be detected.

It is worth noting explicitly that only the interaction from neuron 1 to 2 has been modified

by the presence of the hidden neuron 3, for the particular wiring diagram shown in Fig 3. The

self-history interactions of both neurons 1 and 2, as well as the interaction from neuron 2 to 1

(zero in this case) are unmodified. The reason the hidden neuron did not modify these interac-

tions is that the only link neuron 3 makes is from 1 to 2. There is no path by which neuron 1

can send a signal back to itself, hence its self-interaction is unmodified, nor is there a path that

neuron 2 can send signals to neuron 3 or on to neuron 1, and hence neuron 2’s self-history

interaction and its interaction to neuron 1 are unmodified.

Degeneracy of hidden networks giving rise to effective interactions. It is well known

that different networks may produce the same observed circuit phenomena [34–39]. To

Fig 3. 3 neuron feedforward inhibition circuit. A: A 3-neuron circuit displaying feedforward inhibition. Neuron 1

provides excitatory input to neurons 2 and 3, while neuron 3 provides inhibitory input to neuron 2. Neuron 3 also has

a self-history coupling, denoted by an autaptic loop, which implements a refractory period in this circuit model. B:

Leftmost, the effective interaction from neuron 1 to 2 when neuron 3 is unobserved. Subsequent plots decompose this

interaction into contributions from neuron 1’s direct input to neuron 2, and its indirect input through neuron 3. The

indirect input through neuron 3 also takes account of neuron 3’s self-history interaction. C. Leftmost, the effective

interaction (membrane response) from neuron 1 to 2, subsequently decomposed into contributions from the direct

interaction and the indirect interaction from 1 to 2.

https://doi.org/10.1371/journal.pcbi.1006490.g003
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illustrate that our approach may be used to identify degenerate solutions in which more than

one network underlies observed effective interactions, we construct a 4-neuron circuit that

produces a quantitatively similar effective interaction between the recorded neurons 1 and 2,

shown in Fig 4. Specifically, in this circuit we have removed neuron 3’s self-history interac-

tion and introduced a second inhibitory hidden network that receives excitatory input from

neuron 1 and provides inhibitory input to neuron 3. By tuning the interaction strengths we

are able to produce the desired effective interaction. This demonstrates that intrinsic neural

properties such as refractoriness can trade off against inputs from other hidden neurons,

making it difficult to distinguish the two cases from one another (or from a potential infinity

of other circuits that could have produced this interaction; for example, a qualitatively simi-

lar interaction is produced in the N = 1000 network in which only three neurons are

recorded, shown below in Fig 6). Statistical inference methods may favor one of the possible

underlying choices of complete network consistent with a measured set of effective interac-

tions, suggesting there may be some sense of a “best” solution. However, the particular “best”

network will depend on many factors, including the amount and fidelity of data recorded,

regularization choices, and how well the fitted model generalizes to new data (i.e., how

“close” the fitted model is to the generative model). Potentially, if these conditions were met,

with enough data the slight quantitative differences between the effective interactions pro-

duced by different hidden networks (including higher order effective interactions, which we

assume to be negligible here; see SI), could help distinguish different hidden networks. How-

ever, the amount of data required to perform this discrimination and validate the result may

be impractically large [36, 64–66]. It is thus worth studying the structure of the observed

effective interactions directly in search of possible signatures that elucidate the statistical

properties of the complete network.

Strongly coupled large networks

Constructing networks that produce particular effective interactions is tractable for small cir-

cuits, but much more difficult for larger circuits composed of many circuit motifs. Not only

can combinations of different circuit motifs interact in unexpected ways, one must also take

care to ensure the resulting network is both active and stable—i.e., that firing will neither die

out nor skyrocket to the maximum rate. Stability in networks is often implemented by either

Fig 4. Different complete circuits may underly similar effective circuits. A: A circuit very similar to that in Fig 3, except that neuron 1 also provides excitatory input

to neuron 4, which in turn provides inhibitory input to neuron 3. The self-history coupling of neuron 3 to itself has also been removed in this example. B: Leftmost, the

effective interaction from neuron 1 to 2, which is qualitatively and quantitatively similar to the effective interaction shown in Fig 3. Subsequent plots indicate each path

through the circuit that neuron 1 can send a signal to neuron 2 through the hidden neurons 3 and 4. C. Leftmost, the effective interaction from neuron 1 to 2.

Subsequent plots decompose this interaction into contributions from the paths shown above in B.

https://doi.org/10.1371/journal.pcbi.1006490.g004
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building networks with classical (or “weak”) synapses whose strength scales inversely with the

number of inputs they receive, assumed here to be proportional to network size, and hence

J i;j � 1=N, or by building balanced networks in which excitatory and inhibitory synaptic

strengths balance out, on average, and scale as J i;j � 1=
ffiffiffiffi
N
p

[44, 48] (but note the distinction

that we use a “soft threshold” firing model with nonlinearity that is fixed as N varies, whereas

previous work has typically used hard threshold models). In both cases the synapses tend to be

small in value in large networks, but are compensated for by large numbers of incoming con-

nections. In the case of 1/N scaling, neurons are driven primarily by the mean of their inputs,

while in “strong” balanced 1=
ffiffiffiffi
N
p

networks neurons are driven primarily by fluctuations in

their inputs.

Our goal is to understand how the interplay between the presence of hidden neurons and

different synaptic scaling or network architectures shapes effective interactions. Previous work

has studied the hidden-neuron problem in the weak coupling limit [49–52] using a different

approach to relate inferred synaptic parameters to true parameters; here we use our approach

to study the 1=
ffiffiffiffi
N
p

strong coupling limit, theoretically predicted to be an important feature

that supports computations in networks in a balanced regime [44–47]. Moreover, experiments

in cultured neural tissue have been found to be more consistent with the 1=
ffiffiffiffi
N
p

scaling than

1/N [48], indicating that it may have intrinsic physiological importance.

We analytically determine how significantly effective interaction strengths are skewed away

from the true interaction strengths as a function of both the number of observed neurons and

typical synaptic strength. We consider several simple networks ubiquitous in neural modeling:

first, an Erdős-Réyni (ER) network with “mixed synapses” (i.e., a neuron may have both posi-

tive and negative synaptic weights), a balanced ER network with Dale’s law imposed (a neu-

ron’s synapses are all the same sign), and a Watts-Strogatz (WS) small world network with

mixed synapses. Each network has N neurons and connection sparsity p (only 100p% of con-

nections are non-zero). Connections in ER networks are chosen randomly and independently,

while connections in the WS network are determined by randomly rewiring a fraction β of the

connections in a (pN)th-nearest-neighbor ring network. such that the overall network has a

backbone of local synaptic connections with a web of sparse long-range connections. In each

network Nrec neurons are recorded randomly.

For simplicity we take the baselines of all neurons to be equal, μi = μ0 (such that in the

absence of synaptic input the probability that a neuron fires in a short time window Δt is

λ0Δt exp(μ0)). We choose the rate nonlinearity to be exponential, ϕ(x) = ex; this is the

“canonical” choice of nonlinearity often used when fitting this model to data [16–18, 20, 67].

We will further assume exp(μ0)� 1, so that we may use this as a small control parameter.

For i 6¼ j, the non-zero synaptic weights between neurons J i;j are independently drawn from

a normal distribution with zero mean and standard deviation J0/(pN)a, where J0 controls the

overall strength of the weights and a = 1 or 1/2, corresponding to “weak” and “strong” cou-

pling. For simplicity, we do not consider intrinsic self-coupling effects in this part of the

analysis, i.e., we take J i;i ¼ 0 for all neurons i. For the Dale’s law network, the overall distri-

bution of synaptic weights follows the same normal distribution as the mixed synapse net-

works, but the signs of the weights correspond to whether the pre-synaptic neuron is

excitatory or inhibitory. Neurons are randomly chosen to be excitatory and inhibitory, the

average number of each type being equal so that the network is balanced. Numerical values

of all parameters are given in Table 1.

We seek to assess how the presence of hidden neurons can shape measured network inter-

actions. We first focus on the typical strength of the effective interactions as a function of both

the fraction of neurons recorded, f = Nrec/N, and the strength of the synaptic weights J0. We
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quantify the strength of the effective interactions by defining the effective synaptic weights

J eff
r;r0 �

R1
0

dt Jeffr;r0 tð Þ ¼ Ĵ effr;r0 o ¼ 0ð Þ; c.f. J r;r0 ¼
R1

0
dt Jr;r0 tð Þ for the true synaptic weights. We

then study the sample statistics of the difference, J eff
r;r0 � J r;r0 , averaged across both subsets of

recorded neurons and network instantiations, to estimate the typical contribution of hidden

neurons to the measured interactions. The mean of the synaptic weights is near zero (because

the weights are normally distributed with zero mean in the mixed synapse networks and due

to balance of excitatory and inhibitory neurons in the Dale’s law network), so we focus on

the root-mean-square of J eff
r;r0 � J r;r0 . This measure is a conservative estimate of changes in

strength, as Jeffr;r0 tð Þmay have both positive and negative components that partially cancel

when integrated over time, unlike Jr,r0(τ). An alternative measure we could have chosen

that avoids potential cancellations is
R1

0
dt jJeffr;r0 tð Þ � Jr;r0 tð Þj, i.e., the integrated absolute dif-

ference between effective and true interactions. However, this will depend on our specific

choices of waveform g(τ) in our definition Ji;j tð Þ ¼ J i;jg tð Þ, whereas J eff
r;r0 � J r;r0 does not

due to our normalization
R1

0
dt g tð Þ ¼ 1. As |

R
dτ f(τ)|�

R
dτ |f(τ)|, for any f(τ), we can con-

sider our choice of J eff
r;r0 � J r;r0 as a lower bound on the strength that would be quantified by

R1
0

dt jJeffr;r0 tð Þ � Jr;r0 tð Þj.
Numerical evaluations of the population statistics for all three network types are shown as

solid curves in Fig (5), for both strong coupling and weak coupling. All three networks yield

qualitatively similar results. The vertical axes measure the root-mean-square deviations

between the statistically expected true synaptic J r;r0 and the corresponding effective synaptic

weight J eff
r;r0 , normalized by the true root mean square of J r;r0 . Thus, a ratio of 0.5 corresponds

to a 50% root-mean-square difference in effective versus true synaptic strength. We measure

these ratios as a function of both the fraction of neurons recorded (horizontal axis) and the

parameter J0 (labeled curves).

Fig 5. Relative changes in interaction strength due to hidden neurons for three network types. We quantify relative changes in interaction strength between

effective (J eff
r;r0 ) and true (J r;r0 ) interactions by the (sample) root-square-mean deviation, s½J eff

r;r0 � J r;r0 �, normalized by the true synaptic weight (sample)

standard deviation s½J r;r0 �. We do so for three (sparse) network types: Left. An Erdős-Réyni (ER) network with “mixed synapses” (i.e., Dale’s law not imposed)

with normally distributed synaptic weights. Middle. An ER network with Dale’s law imposed, (i.e., each neuron’s outgoing synaptic weights all have the same

sign). Right. A Watts-Strogatz (WS) small world network with 30% rewired connections and mixed synapses. All network types yield qualitatively similar results.

In each plot solid lines are numerical estimates of the sample standard deviation of the difference between effective coupling weights J eff
r;r0 and true coupling

weights J r;r0 between neurons r 6¼ r0, normalized by the standard deviation of J r;r0 . These estimates account for all paths through hidden neurons. Purple lines

correspond to synaptic weights with standard deviation J0=
ffiffiffiffiffiffi
pN
p

(strong coupling), while grey lines correspond to synaptic weights with standard deviation J0/pN
(weak coupling). For weak 1/N coupling (grey), the ratio of standard deviations is O 1=

ffiffiffiffi
N
p� �

. For strong 1=
ffiffiffiffi
N
p

coupling (purple) the ratio is O 1ð Þ and grows in

strength as the fraction of recorded neurons Nrec/N decreases or the typical synaptic strength J0 increases. The dashed black lines in the left plot show theoretical

estimates accounting only for hidden paths of length-3 connecting recorded neurons (Eq (4). Deviations from the length-3 prediction at small f and large J0
indicate that contributions from circuit paths involving many hidden neurons are significant in these regimes.

https://doi.org/10.1371/journal.pcbi.1006490.g005
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There are two striking effects. First, deviations are nearly negligible (O 1=
ffiffiffiffiffiffi
pN
p

ð Þ) for 1/N
scaling of connections (gray traces in Fig 5). Thus, for large networks with synapses that scale

with the system size, vast numbers of hidden neurons combine to have negligible effect on

effective couplings. This is in marked contrast to the case when coupling is strong (1=
ffiffiffiffi
N
p

scal-

ing), when hidden neurons have a pronounced O 1ð Þ impact (purple traces in Fig 5). This is

particularly the case when f� 1—the typical experimental case in which the hidden neurons

outnumber observed ones by orders of magnitude—or when J0 ≲ 1.0, when typical deviations

become half the magnitude of the true couplings themselves (upper blue line). For J0 ≳ 1.0, the

network activity is unstable for an exponential nonlinearity.

To gain analytical insight into these numerical results, we calculate the standard deviation

s½J eff
r;r0 � J r;r0 �, normalized by s½J r;r0 �, for contributions from paths up to length-3, focusing on

the case of the ER network with mixed synapses (the Dale’s law and WS networks are more

complicated, as the moments of the synaptic weights depend on the identity of the neurons).

For strong 1=
ffiffiffiffi
N
p

coupling we find

s½J eff
r;r0 � J r;r0 �

s½J r;r0 �
� l0J0em0

ffiffiffiffiffiffiffiffiffiffiffi
1 � f

p

� 1þ
3

2
l0J0e

m0ð Þ
2

1 � fð Þ

� �

;

ð4Þ

corresponding to the black dashed curves in Fig 5 left. Eq (4) is a truncation of a series in pow-

ers of l0J0em0

ffiffiffiffiffiffiffiffiffiffiffi
1 � f

p
, where f = Nrec/N is the fraction of recorded neurons. The most important

feature of this series is the fact that it only depends on the fraction of recorded neurons f, not

the absolute number, N. Contributions from long paths remain finite, even as N!1. In con-

trast, the corresponding expression for s½J eff
r;r0 � J r;r0 �=s½J r;r0 � in the case of weak 1/N coupling

is a series in powers of l0J0em0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � fð Þ= pNð Þ

p
, so that contributions from long paths are negli-

gible in large networks N� 1. (See [67] for derivation and results for N = 100.) Deviations of

Eq (4) from the numerical solutions in Fig 5 indicate that contributions from truncated terms

are not negligible when f� 1. As these terms correspond to paths of length-4 or more, this

shows that long chains through the network contribute significantly to shaping effective

interactions.

The above analysis demonstrates that the strength of the effective interactions can deviate

from that of the true direct interactions by as much as 50%. However, changes in strength do

not give us the full picture—we must also investigate how the temporal dynamics of the

Table 1. Network connectivity parameter values for Figs 5–8 and S1–S3. See individual captions for other figures.

Number of neurons N 1000

Number of hidden neurons Nhid {1, 90, 190, 290, 390, 490, 590, 690, 790, 890, 990}

Number of recorded neurons Nrec N-Nhid

Baselines μi -1.0, 8i
Sparsity p 0.2

Coupling weights J ij i 6¼ jð Þ N 0; J2
0
= pNð Þ

2a� �

Self-coupling weights J ii 0

Coupling regime a 1 (weak coupling) or 1/2 (strong coupling)

Rewiring probability β (Watts-Strogatz only) 0.3

Characteristic synaptic weight J0 {0.25, 0.5, 0.75, 1.0}

Firing frequency λ0 1.0

https://doi.org/10.1371/journal.pcbi.1006490.t001
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effective interactions change. To illustrate how hidden units can skew temporal dynamics, in

Fig 6 we plot the effective vs. true interactions between Nrec = 3 neurons in an N = 1000 neuron

network. Because the three network types considered in Fig 5 yield qualitatively similar results,

we focus on the Erdős-Réyni network with mixed synapses.

Four of the true interactions between neurons shown in Fig 6 are non-zero (Jeff
1;2

tð Þ, Jeff
3;2

tð Þ,
Jeff
3;1

tð Þ, and Jeff
2;3

tð Þ). Of these, three exhibit only slight differences between the true and effective

interactions: Jeff
1;2

tð Þ and Jeff
3;1

tð Þ have slightly longer decay timescales than their true counter-

parts, while Jeff
2;3

tð Þ has a slightly shorter timescale, indicating the contribution of the hidden

network to these interactions was either small or cancelled out. However, the interaction Jeff
3;2

tð Þ
differs significantly from the true interaction, becoming initially excitatory but switching to

inhibitory after a short time, as in our earlier example case of feedforward inhibition. This

indicates that neuron 2 must drive a cascade of neurons that ultimately provide inhibitory

input to neuron 3.

Contrasting the true and effective interactions shown in Fig 6 highlights many of the ways

in which hidden neurons skew the temporal properties of measured interactions. An

Fig 6. Effective interactions between recorded neurons differ qualitatively from true interactions. Effective

interactions Jeffr;r0 tð Þ (solid purple) versus true coupling filters (dashed black) for Nrec = 3 recorded neurons in a network

of N = 1000 total neurons. Inset labels i j indicate the interaction is from neuron j to i, for i, j 2 {1, 2, 3}. The

simulated network has an Erdős-Réyni connectivity with sparsity p = 0.2 and normally distributed non-zero weights

with zero mean and standard deviation 1=
ffiffiffiffiffiffi
pN
p

. Although the network is sparse, the effective interactions are not: non-

zero effective interactions develop where no direct connection exists. The effective interactions can differ qualitatively
from the true interactions, as evidenced by the biphasic 3 2 effective interaction, whereas the true 3 2 is purely

excitatory.

https://doi.org/10.1371/journal.pcbi.1006490.g006
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immediately obvious difference is that although the true synaptic connections in the network

are sparse, the effective interactions are not. This is a generic feature of the effective interaction

matrix, as in order for an effective interaction from a neuron r0 to r to be identically zero there

cannot be any paths through the network by which r0 can send a signal to r.1 In a random net-

work the probability that there are no paths connecting two nodes tends to zero as the network

size N grows large. Note that this includes paths by which each neuron can send a signal back

to itself, hence the neurons developed effective self-interactions, even though the true self-

interactions are zero in these particular simulations.

Discussion

We have derived a quantitative relationship between “ground-truth” synaptic interactions and

the effective interactions (interpreted here as post-synaptic membrane responses) that unob-

served neurons generate between subsets of observed neurons. This relationship, Eq (2) and

Fig 2, provides a foundation for studying how different network architectures and neural prop-

erties shape the effective interactions between subsets of observed neurons. Our approach can

be also be used to study higher order effective interactions between 3 or more neurons, and

can be systematically extended to account for corrections to our mean-field approximations

and investigate effective noise generated by hidden neurons (using field theoretic techniques

from [53], see SI), as well as time-dependent external drives or steady-states.

Here, as first explorations, we focused on the effective interactions corresponding to linear

membrane responses. We first demonstrated that our approach applied to small feedforward

inhibitory circuits yields effective interactions that capture the role of inhibition in shortening

the time window for spiking, and are qualitatively similar to experimentally observed measure-

ments [43]. Moreover, we used this example to demonstrate explicitly that different hidden

networks can give rise to the same effective interactions between neurons. We then showed

that the influence of hidden neurons can remain significant even in large networks in which

the typical synaptic strengths scale with network size. In particular, when the synaptic weights

scale as 1=
ffiffiffiffi
N
p

, the relative influence of hidden neurons depends only on the fraction of neu-

rons recorded. Together with theoretical and experimental evidence for this scaling in cortical

slices [44–48], this suggests that neural interactions inferred from cortical activity data may

differ markedly from the true interactions and connectivity.

Dealing with degeneracy

The issue of degeneracy in complex biological systems and networks has been discussed at

length in the literature, in the context of both inherent degeneracies—multiple different net-

work architectures can produce the same qualitative behaviors [34, 37–39], as well as degener-

acies in our model descriptions—many models may reproduce experimental observations,

demanding sometimes arbitrary criteria for selecting one model over another. All have impli-

cations for how successfully one can infer unobserved network properties. One kind of model

degeneracy, “sloppiness” [35, 65], describes models in which the behavior of the model is sen-

sitive to changes in only a relatively small number of directions in parameter space. Many

models of biological systems have been shown to be sloppy [35]; this could account for experi-

mentally observed networks that are quite different in composition but produce remarkably

similar behaviors. Sloppiness suggests that rather than trying to infer all properties of a hidden

network, there may be certain parameter combinations that are much more important to the

overall network operation, and could potentially be inferred from subsampled observations.

Another perspective on model degeneracy comes from the concepts of “universality” that

occur in random matrix theory [68, 69] and Renormalization Group methods of statistical
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physics [64]. Many bulk properties of matrices (e.g., the distribution of eigenvalues) whose

entrees are combinations random variables, such as our J eff
r;r0 , are universal in that they depend

on only a few key details of the distribution that individual elements are drawn from [70]. Sim-

ilarly, one of the central results of the Renormalization Group shows that models with drasti-

cally disparate features may yield the same coarse-grained model structure when many degrees

of freedom are averaged out, as in our case of approximately averaging out hidden neurons.

Different distributions (in the case of random matrix theory) or different models (in the case

of the Renormalization group) that yield the same bulk properties or coarse-grained models

are said to be in the same “universality class.” Measuring particular quantities under a range of

experimental conditions (e.g., different stimuli) may be able to reveal which universality class

an experimental system belongs to and eliminate models belonging to other universality clas-

ses as candidate generating models of the data, but these measurements cannot distinguish

between models within a universality class.

Purely feedforward networks and recurrent networks are simple examples of broad univer-

sality classes in this context. In any randomly sampled feedforward network, only the feedfor-

ward interactions are modified or generated; no lateral or feedback connections develop

because there is no path through hidden neurons that a recorded neuron can send signals to

recorded neurons in the same or previous layers. Thus, the feedforward structure—a topologi-

cal property of the network—is preserved. However, adding even a single feedback connection

can destroy this topological structure if it joins two neurons connected by a feedforward path

—i.e., such a link creates a cycle within the network, and it is no longer feedforward. If this net-

work is heavily subsampled (f� 1) the resulting effective interactions Jeffr;r0 tð Þ can even be fully

recurrent. The majority of the effective interactions may be very weak, but nonetheless from a

topological perspective the network has been fundamentally altered. Accordingly, any interac-

tions Jeffr;r0 tð Þ that represent a purely feedforward network could not have come from a network

with recurrent interactions. In practice, we expect few, if any, cortical networks to be purely

feedforward, so most networks will be recurrent if we consider only the network connections

and not the connection strengths. Thus, a more interesting question is how the statistics and

dynamics of synaptic weights further partition topologically-defined universality classes; for

example, whether the distribution of synaptic weights can split the sets of Jeffr;r0 tð Þ that arise from

recurrent networks and predominantly feedforward networks with sparse feedback and lateral

interactions into different universality classes. A thorough investigation of such phenomena

will be the focus of future work.

Inference of hidden network features

Despite the many possible confounds network degeneracy produces, much of the work on

inference of hidden network properties has focused on inferring the individual interactions

between neurons, with varying degrees of success. Both Dunn and Roudi [40] as well as Tyrcha

and Hertz [41] studied inference of hidden activity in kinetic Ising models, sometimes used as

simple minimal models of neuronal network activity. They found that the synaptic weights

between pairs of observed neurons and observed-hidden pairs could be recovered to within

reasonably small mean-squared-error when the number of hidden neurons was less than the

number of observed neurons. However, both methods also found it difficult to infer connec-

tions between pairs of hidden neurons, resorting to setting such connections to zero in order

to stabilize their algorithms. Tyrcha and Hertz also note their method recovers only an equiva-

lence class of connections due to degeneracy in the possible assignment of signs of the synaptic

weights and hidden neuron labels. This suggests inferring hidden network structure will be

nearly impossible in the realistic limit Nrec� Nhid.
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A series of papers by Bravi and Sollich perform theoretical analyses of hidden dynamics

inference in chemical reaction networks, modeled by a system of Langevin equations [57–

60]. Although the applications the authors have in mind are signaling pathways such as epi-

dermal growth factor reaction networks, one could imagine re-interpreting or adapting

these equations to describe rate models. The authors develop a variety of approaches, includ-

ing Plefka expansions [57–59] and variational Gaussian approximations [60], to study how

observations constrain the inferred hidden dynamics, assuming particlar properties of the

network structure. Ref. [60] in particular takes an approach most similar to ours, deriving

an effective system of Langevin equations for the subsampled dynamics of the chemical reac-

tion network. The effective system of equations contains a memory kernel that plays a role

analogous to the correction to the interactions between neurons in our work (second term in

our Eq (2). However, the structure of the memory kernel in [60] has a rather different form,

being exponentially dependent on the integral of the hidden-hidden interactions, in contrast

to our Γh,h0(t − t0), which depends on the inverse of δh,h0δ(t − t0) − γhJh,h0(t − t0) (see Methods).

Though Bravi and Sollich do not expand their memory kernel in a series as we do, it would

admit a similar series and interpretation in terms of paths through the hidden network, as in

our Fig 2A. However, due to the exponential dependence on the hidden-hidden interactions,

long paths of length ℓ through hidden networks are suppressed by factors ℓ!, suggesting the

hidden network may have less influence in such networks compared to the network dynam-

ics we study here.

Closest to our choice of model, Pillow and Latham [28] and Soudry et al[25] both use modi-

fications of nonlinear Hawkes models to fit neural data with unobserved neurons. Pillow and

Latham outline a statistical approach for inferring not just interactions with and between hid-

den neurons, but also the spike trains of hidden neurons, testing the method on a network of

two neurons (one hidden). To properly infer the spike train of the hidden neurons, the model

must allow for acausal synaptic interactions. This is acceptable if the goal is inferring hidden

spike trains: for example, if the hidden neuron were to make a strong excitatory synapse onto

the observed neuron, then a spike from the observed neuron increases the probability that the

hidden neuron fired a spike in the recent past. An acausal synaptic interaction captures this

effect, but is of course an unphysical feature in a mechanistic model, precluding physiological

interpretation of such an interaction.

Soudry et al are concerned with the fact that common input from hidden neurons will skew

estimates of network connectivity. To get around this issue, they present a different take on the

hidden unit problem: rather than attempt to infer connectivity in a fixed subsample of a net-

work, they propose a shotgun sampling method, in which a sequence of overlapping random

subsets of the network are sampled over a long experiment. Under this procedure, a large frac-

tion of the network can be sampled, just not contiguously in time, and reconstruction of the

entire network could in principle be accomplished. Soudry et al show this strategy works in

their simulated networks (even when the generative model is a hard-threshold leaky-integrate-

and-fire rather than the nonlinear Hawkes model, which can be interpreted as a soft-threshold

leaky-integrate-and-fire model; see SI). However, sampling the entire network may only be

feasible in vitro; sampling of neurons in vivo, such as in wide-field calcium imaging studies,

will still necessarily miss neurons not in the field of view or too deep in the tissue; in such cases

our work provides the means to properly interpret the inferred effective interactions obtained

with such a method.

Although a thorough treatment of statistical inference of hidden network properties is

beyond the scope of our present work, we may make some general remarks on future work

in these directions. The nonlinear Hawkes model we use here is commonly used to fit neural

population activity data, and one could infer the effective baselines meff
r , interactions Jeffr;r0 tð Þ, and
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noise ξr(t) using existing techniques. In particular, Vidne et al. [22] explicitly fit the noise,

which is likely important for proper inference, as otherwise effects of the noise could be artifi-

cially inherited by the effective interactions. Once such estimates are obtained, one could then

in principle infer certain hidden network properties by combining a statistical model for these

properties with the relationships between effective and true interactions derived in this work,

such as Eq (2). (Detailed physiological measurements of ground-truth synaptic interactions in

small volumes of neural tissue can be used to refine estimates). As we have stressed throughout

this paper, inferring the exact connections between hidden neurons may be impossible due to

a large number of degenerate solutions consistent with observations. However, one may be

able to infer bulk properties of the network, such as the parameters governing the distribution

of hidden-network connections, or even more exotic properties such as the eigenvalue distri-

bution of the hidden network connection weight matrix. We leave these ideas as interesting

directions for future work.

Hidden neurons and dimensionality reduction

Given the challenges that hidden network inference poses, one might wonder if there are net-

work properties that can be reliably measured even with subsampled neural activity. Collective,

low-dimensional dynamics have emerged as a possible candidate: recent work has investigated

the effect that subsampled measurements have on estimating collective low-dimensional

dynamics of trial-averaged network activity (using, e.g., principal components analysis). Dur-

ing a task, the effective dimensionality of a network’s dynamics is constrained [71, 72], opening

the possibility that the subsampled population may be sufficient to accurately represent these

task-constrained low-dimensional dynamics. Indeed, under certain assumptions—in particu-

lar that the collective dynamical modes are approximately random superpositions of neural

activity and that sampled neurons are statistically representative of the hidden population—

Gao et al. [72] calculate a conservative upper bound on the number of sampled neurons neces-

sary to reconstruct the collective dynamics, finding it is often less than the effective dimension-

ality of the network.

The assumption that the collective dynamics are random superpositions of neural activity is

crucial, because it means that each neuron’s trial-averaged dynamics are in turn a superposi-

tion of the collective modes. Hence, every neuron’s activity contains some information about

the collective modes, and if only a few of these modes are important, then they can be extracted

from any sufficiently large subset of neurons.

While modes of collective activity alone may be sufficient for answering certain questions,

such as decoding task parameters or elucidating circuit function, explaining the structure of

these modes—and in particular how the dynamical patterns that emerge under different task

conditions or sensory environments are related—will ultimately require an understanding of

the distribution of possible underlying network properties, which remain difficult to estimate

from subsampled populations. We may be able to establish such structure-function relation-

ships using our theory of effective interactions presented in this work: if we can relate the collec-

tive dynamics extracted from subsampled neurons to the properties of the effective interactions

Jeffrr0 tð Þ, then we can link them to the true interactions through our Eq (2). With an understand-

ing of how network properties shape such collective dynamics, we can begin to understand

what network manipulations achieve desired patterns of activity, and therefore circuit function.

Implications beyond experimental limitations

The fact that many different hidden networks may yield the same set of effective interactions

or low-dimensional dynamics suggests that the effective interactions themselves may yield
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direct insight into a circuit’s functions. For instance, many circuits consist of principal neurons

that transmit the results of circuit computation to downstream circuitry, but often do not

make direct connections with one another, instead interacting through (predominantly inhibi-

tory) intermediaries called interneurons. From the point of view of a downstream circuit, the

principal neurons are “recorded” and the interneurons are “hidden.” A potential reason for

this general arrangement is that direct synaptic interactions alone are insufficient to produce

the membrane responses required to perform the circuit’s computations, and the network of

interneurons reshapes the membrane responses of projection neurons into effective interac-

tions that can perform the desired computations—it may thus be that the effective interactions

should be of primary interest, not necessarily the (possibly degenerate choices of) physiological

synaptic interactions. For example, in the feedforward inhibitory circuits of Figs 3 and 4, the

roles of the hidden inhibitory neurons may simply be to act as interneurons that reshape the

interaction between the excitatory projection neurons 1 and 2, and the choice of which partic-

ular circuit motif is implemented in a real network is determined by other physiological con-

straints, not only computational requirements.

One of the greatest achievements in systems neuroscience would be the ability to perform

targeted modifications to a large neural circuit and selectively alter its suite of computations.

This would have powerful applications for both studying a circuit’s native computations, but

also repurposing circuits or repairing damaged circuitry (due to, e.g., disease). If the computa-

tional roles of circuits are indeed most sensitive to the effective interactions between principal

neurons, this suggests we can exploit potential degeneracies in the interneuron architecture

and intrinsic properties to find some circuit that achieves a desired computation, even if it is

not a physiologically natural circuit. Our main result relating effective and true interactions,

Eq (2), provides a foundation for future work investigating how to identify sets of circuits that

perform a desired set of computations. We have shown in this work that it can be done for

small circuits (Figs 3 and 4), and that the effective interactions in large random networks can

be significantly skewed away from the true interactions when synaptic weights scale as 1=
ffiffiffiffi
N
p

,

as observed in experiments [48]. This holds promise for identifying principled approaches to

tuning or controlling neural interactions, such as by using neuromodulators to adjust inter-

neuron properties or inserting artificial or synthetic circuit implants into neural tissue to act as

“hidden” neurons. If successful, this could contribute to the long term goal of using such inter-

ventions to aid in reshaping the effective synaptic interactions between diseased neurons, and

thereby restore healthy circuit behaviors.

Methods

Model definition and details

The firing rate of a neuron i in the full network is given by

li tð Þ ¼ l0� mi þ m
ext
i tð Þ þ

X

j

Z 1

� 1

dt0Jij t � t0ð Þ _nj t
0ð Þ

 !

; ð5Þ

where λ0 is a characteristic rate, ϕ(x)� 0 is a nonlinear function, μi (potentially a function of

some external stimulus θ) is a time-independent tonic drive that sets the baseline firing rate of

the neuron in the absence of input from other neurons, mext
i tð Þ is an external input current, and

Jij(t − t0) is a coupling filter that filters spikes _nj t0ð Þ fired by presynaptic neuron j at time t0, inci-

dent on post-synaptic neuron i. We will take mext
i tð Þ ¼ 0 for simplicity in this work, focusing

on the activity of the network due to the tonic drives μi (which could be still be interpreted as
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external tonic inputs, so the activity of the network need not be interpreted as spontaneous

activity).

While we need not attach a mechanistic interpretation to these filters, a convenient inter-

pretation is that the nonlinear Hawkes model approximates the stochastic dynamics of a leaky

integrate-and-fire network model driven by noisy inputs [55, 56]. In fact, the nonlinear

Hawkes model is equivalent to a current-based integrate-and-fire model in which the deter-

ministic spiking rule (a spike fires when a neuron’s membrane potential reaches a threshold

value Vth) is replaced by a stochastic spiking rule (the higher a neuron’s membrane potential,

the higher the probability a neuron will fire a spike). (It can also be mapped directly to a con-

ductance-based in special cases [73]). For completeness, we present the mapping from a leaky

integrate-and-fire model with stochastic spiking to Eq (5) in the Supporting Information (SI).

Derivation of effective baselines and coupling filters

To study how hidden neurons affect the inferred properties of recorded neurons, we partition

the network into “recorded” neurons, labeled by indices r (with sub- or superscripts to differ-

entiate different recorded neurons, e.g., r and r0 or r1 and r2) and “hidden” neurons labeled by

indices h (with sub- or superscripts). The rates of these two groups are thus

lr tð Þ ¼ l0� mr þ
X

r0
Jr;r0 � _nr0 þ

X

h

Jr;h � _nh

 !

;

lh tð Þ ¼ l0� mh þ
X

r

Jh;r � _nr þ
X

h0
Jh;h0 � _nh0

 !

:

To simplify notation, we write Ji;j � _nj ¼
R1
� 1

dt0 Ji;j t � t0ð Þ _nj t0ð Þ. If we seek to describe the fir-

ing of the recorded neurons only in terms of their own spiking history, input from hidden neu-

rons effectively acts like noise with some mean amount of input. We thus begin by splitting the

hidden input to the recorded neurons up into two terms, the mean plus fluctuations around

the mean:
X

h

Jr;h � _nh tð Þ ¼
X

h

Jr;h � E½ _nh tð Þjf _nrg� þ xr tð Þ;

where E½ _nh tð Þjf _nrg� denotes the mean activity of the hidden neurons conditioned on the activ-

ity of the recorded units, and ξr(t) are the fluctuations, i.e.,

xr tð Þ �
P

hJr;h � _nh � E½ _nh tð Þjf _nrg�ð Þ. Note that ξr(t) is also conditional on the activity of the

recorded units.

By construction, the mean of the fluctuations is identically zero, while the cross-correlations

can be expressed as

E½xr tð Þxr0 t
0ð Þ� ¼

Z 1

� 1

dt1dt2
X

h1 ;h2

Jr;h1
t � t1ð ÞJr0 ;h2

t0 � t2ð ÞCh1 ;h2
t1; t2ð Þ;

where Ch1 ;h2
t1; t2ð Þ is the cross-covariance between hidden neurons h1 and h2 (conditioned on

the spiking of recorded neurons). If the autocorrelation of the fluctuations (r = r0) is small

compared to the mean input to the recorded neurons (
P

h Jr;h � E½ _nh tð Þjf _nrg�), or if Jr,h is

small, then we may neglect these fluctuations and focus only on the effects that the mean input

has on the recorded subnetwork. At the level of the mean field theory approximation we make

in this work, the spike-train correlations are zero. One can calculate corrections to mean field
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theory (see SI) to estimate the size of this noise. Even when this noise is not strictly negligible,

it can simply be treated as a separate input to the recorded neurons, as shown in the main text,

and hence will not alter the form of the effective couplings between neurons. Averaging out

the effective noise, however, would generate new interactions between neurons; we leave

investigation of this issue for future work.

In order to calculate how hidden input shapes the activity of recorded neurons, we need to

calculate the mean E½ _nhjf _nrg�. This mean input is difficult to calculate in general, especially

when conditioned on the activity of the recorded neurons. In principle, the mean can be calcu-

lated as

E½ _nhjf _nrg� ¼ E l0� mh þ
X

r

Jh;r � _nr þ
X

h0
Jh;h0 � _nh0

 !�
�
�
�
�
f _nrg

" #

:

This is not a tractable calculation. Taylor series expanding the nonlinearity ϕ(x) reveals that

the mean will depend on all higher cumulants of the hidden unit spike trains, which cannot in

general be calculated explicitly. Instead, we again appeal to the fact that in a large, sufficiently

connected network, we expect fluctuations to be small, as long as the network is not near a crit-

ical point. In this case, we may make a mean field approximation, which amounts to solving

the self-consistent equation

E½ _nhjf _nrg� ¼ l0� mh þ
X

r

Jh;r � _nr þ
X

h0
Jh;h0 � E½ _nh0 jf _nrg�

 !

: ð6Þ

In general, this equation must be solved numerically. Unfortunately, the conditional depen-

dence on the activity of the recorded neurons presents a problem, as in principle we must solve

this equation for all possible patterns of recorded unit activity. Instead, we note that the mean

hidden neuron firing rate is a functional of the filtered recorded input Ih tð Þ �
P

r Jh;r � _nr,

so we can expand it as a functional Taylor series around some reference filtered activity

I0
h tð Þ ¼

P
r Jh;r � _n0

r ,

E½ _nh tð ÞjfIh tð Þg� ¼ E½ _nh tð ÞjfI0
h tð Þg�

þ

Z

dt1
X

h1

dE½ _nh tð ÞjfI0
h tð Þg�

dIh1
t1ð Þ

ðIh1
t1ð Þ � I0

h1
t1ð ÞÞ

þ
1

2

Z

dt1dt2
X

h1 ;h2

d
2E½ _nh tð ÞjfI0

h tð Þg�
dIh2

t2ð ÞdIh1
t1ð Þ
ðIh2

t2ð Þ � I0

h2
t2ð ÞÞðIh1

t1ð Þ � I0

h1
t1ð ÞÞ

þ . . .

Within our mean field approximation, the Taylor coefficients are simply the response func-

tions of the network—i.e., the zeroth order coefficient is the mean firing rate of the neurons

in the reference state I0
h tð Þ, the first order coefficient is the linear response function of the net-

work, the second order coefficient is a nonlinear response function, and so on.

There are two natural choices for the reference state I0
h tð Þ. The first is simply the state of

zero recorded unit activity, while the second is the mean activity of the recorded neurons. The

zero-activity case conforms to the choice of nonlinear Hawkes models used in practice. Choos-

ing the mean activity as the reference state may be more appropriate if the recorded neurons

have high firing rates, but requires adjusting the form of the nonlinear Hawkes model so that

firing rates are modulated by filtering the deviations of spikes from the mean firing rate, rather

than filtering the spikes themselves. Here, we focus on the zero-activity reference state. We

present the formulation for the mean field reference state in the SI.

Predicting how and when hidden neurons skew measured synaptic interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006490 October 22, 2018 20 / 40

https://doi.org/10.1371/journal.pcbi.1006490


For the zero-activity reference state I0
h tð Þ ¼ 0, the conditional mean is

E½ _nh tð ÞjfIh tð Þg� ¼ E _nhj0½ � þ

Z

dt1
X

h1

dE½ _nh tð Þj0�
dIh1

t1ð Þ
Ih1

t1ð Þ

þ
1

2

Z

dt1dt2
X

h1 ;h2

d
2E½ _nh tð Þj0�

dIh2
t2ð ÞdIh1

t1ð Þ
Ih2

t2ð ÞIh1
t1ð Þ þ . . . :

The mean inputs E½ _nhj0� are the mean field approximations to the firing rates of the hidden

neurons in the absence of the recorded neurons. Defining nh � E½ _nhj0�, these firing rates are

given by

nh ¼ l0� mh þ
X

h0
Jh;h0nh0

 !

;

in writing this equation we have assumed that the steady-state mean field firing rates will be

time-independent, and hence the convolution Jh;h0 � nh0 ¼ Jh;h0nh0 , where Jh;h0 ¼
R1

0
dt Jh;h0 tð Þ.

This assumption will generally be valid for at least some parameter regime of the network, but

there can be cases where it breaks down, such as if the nonlinearity ϕ(x) is bounded, in which

case a transition to chaotic firing rates νh(t) may exist (c.f. [74]). The mean field equations for

the νh are a system of transcendental equations that in general cannot be solved exactly. In

practice we will solve the equations numerically, but we can develop a series expansion for the

solutions (see below).

The next term in the series expansion is the linear response function of the hidden unit net-

work, Gh;h0 t � t0ð Þ �
dE½ _nh tð Þj0�
dIh0 t

0ð Þ
; given by the solution to the integral equation

Gh;h0 t � t0ð Þ ¼ gh dh;h0d t � t0ð Þ þ
X

h00

Z 1

0

dt00Jh;h00 t � t00ð ÞGh00 ;h0 t
00 � t0ð Þ

 !

:

The “gain” γh is defined by

gh � l0�
0
mh þ

X

h0
Jh;h0nh0

 !

;

where ϕ0(x) is the derivative of the nonlinearity with respect to its argument.

For time-independent drives μr and steady states νh (and hence γh), we may solve for

Γh,h0(t − t0) by first converting to the frequency domain and then performing a matrix

inverse:

Ĝh;h0 oð Þ ¼
h
I � V̂ oð Þ

i� 1

h;h0
gh0 ;

where V̂ h;h0 oð Þ ¼ ghJh;h0 oð Þ.
If the zero and first order Taylor series coefficients in our expansion of E½ _nh tð Þjf _nrg� are

the dominant terms—i.e., if we may neglect higher order terms in this expansion—then we

may approximate the instantaneous firing rates of the recorded neurons by

lr tð Þ � l0� meff
r þ

X

r0
Jeffr;r0 � _nr0 tð Þ

 !

;
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where

meff
r ¼ mr þ

X

h

J r;hnh

are the effective baselines of the recorded neurons and

Ĵ effr;r0 oð Þ ¼ Ĵ r;r0 oð Þ þ
X

h;h0
Ĵ r;h oð ÞĜh;h0 oð ÞĴ h0 ;r0 oð Þ

are the effective coupling filters in the frequency domain, as given in the main text. In addition

to neglecting the higher order spike filtering terms here, we have also neglected fluctuations

around the mean input from the hidden network. These fluctuations are zero within our mean

field approximation, but we could in principle calculate corrections to the mean field predic-

tions using the techniques of [53]; we do so to estimate the size of the effective noise correla-

tions in the SI.

In the main text, we decompose our expression for Ĵ effr;r0 oð Þ into contributions from all paths

that a signal can travel from neuron r0 to r. To arrive at this interpretation, we note that we can

expand Ĝh;h0 oð Þ in a series over paths through the hidden network. To start, we note that if

jjV̂ oð Þjj < 1 for some matrix norm ||�||, then the matrix ½I � V oð Þ�
� 1

admits a convergent

series expansion [75]

h
I � V̂ oð Þ

i� 1

¼
X1

‘¼0

V̂ oð Þ
‘
;

where V̂ oð Þ
‘

is a matrix product and V̂ oð Þ
0
� I. We can write an element of the matrix prod-

uct out as

h
V̂ oð Þ

‘
i

h;h0
¼
X

h1 ;...;h‘

V̂ h;h1
oð ÞV̂ h1 ;h2

oð Þ . . . V̂ h‘� 1 ;h‘
oð ÞV̂ h‘;h0

oð Þ;

inserting V̂ hi ;hj
oð Þ ¼ ghi Ĵ hi ;hj oð Þ yields

h
V̂ oð Þ

‘
i

h;h0
¼
X

h1;...;h‘

ghĴ h;h1
oð Þgh1

Ĵ h1;h2
oð Þ . . . gh‘� 1

Ĵ h‘� 1 ;h‘
oð Þgh‘ Ĵ h‘;h0 oð Þ:

This expression can be interpreted in terms of summing over paths through network of hidden

neurons that join two observed neurons: the Ĵ hi ;hj oð Þ are represented by edges from neuron hj to

hi, and the ghi are represented by the nodes. In this expansion, we allow edges from one neuron

back to itself, meaning we include paths in which signals loop back around to the same neuron

arbitrarily many times before the signal is propagated further. However, such loops can be easily

factored, contributing a factor
P1

m¼0
ghĴ h;h oð Þ
� �m

¼ 1= 1 � ghĴ h;h oð Þ
� �

. We thus remove the

need to consider self-loops in our rules for calculating effective coupling filters by assigning a fac-

tor γh/(1 − γh Jh, h(ω)) to each node, as discussed in the main text and depicted in Fig 2. (The con-

tribution of the self-feedback loops can be derived rigorously; see the SI for the full derivation).

Although we have worked here in the frequency domain, our formalism does adapt

straightforwardly to handle time-dependent inputs; however, among the consequences of this

explicit time-dependence are that the mean field rates νh(t) are not only time-dependent, but

solutions of a system of nonlinear integral equations, and hence more challenging to solve.

Furthermore, quantities like the linear response of the hidden network, Γh,h0(t, t0), will depend

on both absolute times t and t0, rather than just their difference, t − t0, and hence we must also
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(numerically) solve for Γh,h0(t, t0) directly in the time domain. We leave these challenges for

future work.

Model network architectures

Our main result, Eq (2), is valid for general network architectures with arbitrary weighted syn-

aptic connections, so long as the hidden subset of the network has stable dynamics when the

recorded neurons are removed. An example for which our method must be modified would be

a network in which all or the majority of the hidden neurons are excitatory, as the hidden net-

work is unlikely to be stable when the inhibitory recorded neurons are disconnected. Similarly,

we find that synaptic weight distributions with undefined moments will generally cause the

network activity to be unstable. For example, J i;j drawn from a Cauchy distribution generally

yield unstable network dynamics unless the weights are scaled inversely with a large power of

the network size N.

Specific networks—Common features. The specific network architectures we study in the

main text share several features in common: all are sparse networks with sparsity p (i.e., only a

fraction p of connections are non-zero) and non-zero synaptic weight strengths drawn indepen-

dently from a random distribution with zero population mean and population standard devia-

tion J0/(pN)a; the overall standard deviation of weights, accounting for the expected 1 − p
fraction of zero weights is

ffiffiffipp J0= pNð Þ
a
. The parameter a determines whether the synaptic

strengths are “strong” (a = 1/2) or “weak” (a = 1). In most of our analytical results we only need

the mean and variances of the weights, so we do not need to specify the exact distribution. In

simulations, we use a normal distribution. The reason for scaling the weights as 1/(pN)a, as

opposed to just 1/Na, is that the mean incoming degree of connections is p(N − 1)� pN for large

networks; this scaling thus controls for the typical magnitude of incoming synaptic currents.

For strongly coupled networks, the combined effect of sparsity and synaptic weight distri-

bution yields an overall standard deviation of
ffiffiffipp J0=

ffiffiffiffiffiffi
pN
p

¼ J0=
ffiffiffiffi
N
p

. Because the sparsity

parameter p cancels out, it does not matter if we consider p to be fixed or k0 = pN to be fixed—

both cases are equivalent. However, this is not the case if we scale J i;j by 1/k0, as the overall

standard deviation would then be
ffiffiffipp J0=k0, which only corresponds to the weak-coupling limit

if p is fixed. If k0 is fixed, the standard deviation would scale as 1=
ffiffiffiffi
N
p

.

It is worth noting that the determination of “weak” versus “strong” coupling depends not

only on the power of N with which synaptic weights scale, but also on the network architecture

and correlation structure of the weights J i;j. For example, for an all-to-all connected matrix

with symmetric rank-1 synaptic weights of the form J i;j ¼ zizj, where the zi are independently

distributed normal random variates, the standard deviation of each zmust scale as 1=
ffiffiffiffi
N
p

in

order for hidden paths to generate O 1ð Þ contributions to effective interactions, such that J i;j

scales as 1/N but the coupling is still strong.

Specific networks—Differences in architecture and synaptic constraints. Beyond the

common features outlined above, we perform our analysis of the distribution of effective syn-

aptic interaction strengths for three network architectures commonly studied in network mod-

els. These architectures are not intended to be realistic representations of neuronal network

structures, but to capture basic features of network architecture and therefore give insight into

the basic features of the effective interaction networks.

Erdős-Réyni + mixed synapses—The first network we consider (and the one we perform

most of our later analyses on as well) is an Erdős-Réyni random network architecture with

“mixed synapses.” That is, each connection between neurons is chosen randomly with proba-

bly p. By “mixed synapses” we mean that each neuron’s outgoing synaptic weights are chosen
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completely independently. i.e., in this network there are no excitatory or inhibitory neurons;

each neuron make make both excitatory and inhibitory connections. The corresponding anal-

ysis is shown in Fig 5A.

Erdős-Réyni + Dale’s law imposed—Real neurons appear to split into separate excitatory

and inhibitory classes, a dichotomy know as “Dale’s law” (or alternatively, “Dale’s principle” to

highlight that it is not really a law of nature). Neurons in a network that obeys this law will

have coupling filters Ji,j(t) that are strictly positive for excitatory neurons and strictly negative

for inhibitory neurons. This constraint complicates analytic calculations slightly, as the

moments of the synaptic weights now depend on the identity of the neuron, and more care

must be taken in calculating expected values or population averages. We instead impose this

numerically to generate the results shown in Fig 5B. The trends are the same as in the network

with mixed synapses, with the resulting ratios being slightly reduced.

As a technical point, because our analysis requires calculation of the mean field firing

rates of the hidden network in absence of the recorded neurons, random sampling of the net-

work may, by chance, yield hidden networks with an imbalance of excitatory neurons, for

which the mean field firing rates of the hidden network may diverge for our choice of expo-

nential nonlinearity. This is the origin of the relatively larger error bars in Fig 5B: less ran-

dom samplings for which the hidden network was stable were available to perform the

computation. One way this artifact can be prevented is by choosing a nonlinearity that satu-

rates, such as ϕ(x) = c/(1 + exp(−x)), which prevents the mean-field firing rates from diverg-

ing and yields stable network activity (see Fig 8). Another is to choose a different reference

state of network activity around which we perform our expansion of E½ _nhjf _nrg�, such as the

mean field state discussed in the SI.

Watts-Strogatz network + mixed synapses—Finally, although Erdős-Réyni networks are rel-

atively easy to analyze analytically, and are ubiquitous in many influential computational and

theoretical studies, real world networks typically have more structure. Therefore, we also con-

sider a network architecture with more structure, a Watts-Strogatz (small world) network. A

Watts-Strogatz network is generated by starting with a K-nearest neighbor network (such that

fraction of non-zero connections each neuron makes is p = K/(N − 1)) and rewiring a fraction

β of those connections. The limit β = 0 remains a K-nearest neighbor network, while β! 1

yields an Erdős-Réyni network. We generated the adjacency matrices of the Watts-Strogatz

networks using code available in [76]. Here we consider only a Watts-Strogatz network with

mixed synapses; a network with spatial structure and Dale’s law would become sensitive to

both the spatial distribution of excitatory and inhibitory neurons in the network as well as the

way in which the neurons are sampled, an investigation we leave for future work. The results

for the Watts-Strogatz network with mixed synapses are shown in Fig 5C, and are qualitatively

similar to the Erdős-Réyni network with mixed synapses.

Because all three network types we considered yield qualitatively similar results, for the

remainder of our analyses, we focus on the Erdős-Réyni + mixed synapses network for sim-

plicity in both simulations and analytical calculations.

Parameter values used to generate our networks are given in Table 1.

Choice of nonlinearity ϕ(x)

The nonlinear function ϕ(x) sets the instantaneous firing rate for the neurons in our model.

Our main analytical results (e.g., Eq (2) hold for arbitrary choice of ϕ(x). Where specific

choices are required in order to perform simulations, we used ϕ(x) = max(x, 0) for the results

presented in Figs 3 and 4 and ϕ(x) = exp(x) otherwise. The rectified linear choice is convenient

for small networks, as high-order derivatives are zero, which eliminates corresponding high-
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order “loop corrections” to mean field theory [53]. The exponential function is the “canonical”

choice of nonlinearity for the nonlinear Hawkes process [16–18, 20]. The exponential has par-

ticularly nice theoretical properties, but is also convenient for fitting the nonlinear Hawkes

model to data, as the log-likelihood function of the model simplifies considerably and is con-

vex (though some similar families of nonlinearities also yield convex log-likelihood functions).

An important property that both choices of nonlinearity possess is that they are unbounded.

This property is necessary to guarantee that a neuron spikes given enough input. A bounded

nonlinearity imposes a maximum firing rate, and neurons cannot be forced to spike reliably by

providing a large bolus of input. The downside of an unbounded nonlinearity is that it is possi-

ble for the average firing rates to diverge, and the network never reaches a steady state. For

example, in a purely excitatory network (all J i;j � 0) with an exponential nonlinearity, neural

firing will run away without a sufficiently strong self-refractory coupling to suppress the firing

rate. This will not occur with a bounded nonlinearity, as excitation can only drive neurons to

fire at some maximum but finite rate.

This can be a problem in simulations of networks obeying Dale’s law. For unbounded

nonlinearities, the mean field theory for the hidden network occasionally does not exist

due to an imbalance of excitatory and inhibitory neurons caused by our random selection

of recorded of neurons. However, the Dale’s law network is stable if the nonlinearity is

bounded. We demonstrate this below in Figs 7 and 8, comparing simulations of the effective

Fig 7. Same as Fig 5A in main text, but for a sigmoidal nonlinearity ϕ(x) = 2/(1 + e−x).

https://doi.org/10.1371/journal.pcbi.1006490.g007
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interaction statistics in Erdős-Réyni networks with and without Dale’s law for a sigmoidal

nonlinearity ϕ(x) = 2/(1 + e−x).

Another consequence of unbounded nonlinearities is that the mean firing rates are either

finite or they diverge. Bounded nonlinearities, on the other hand, may allow for the possibility

of a transition to chaotic dynamics in the mean-field firing rate dynamics (cf. the results of the

[74]).

Specific choices of network properties used to generate figures

Feedforward-inhibitiory circuit model details. 3 neuron circuit (Fig 3).

Using our graphical rules (Fig 2), we calculated the effective interaction from neuron 1 to 2

for the circuit shown in Fig 3A, giving Eq 3. In principle, our mean field approximation would

not be expected to hold for such a small circuit; in particular, loop corrections [53] to our

calculation of the rate ν3 and associated gain γ3 might be significant. However, as loop correc-

tions depend on derivatives of the nonlinearity ϕ(x), we can minimize these errors by choosing

ϕ(x) = max(x, 0), for which ϕ0(x) = Θ(x), the Heaviside step function. Accordingly, we can

solve for n3 ¼ l0m3= 1 � l0J 33ð Þ and γ3 = λ0 for this particular network.

Fig 8. Same as Fig 5B in the main text, but for a sigmoidal nonlinearity ϕ(x) = 2/(1 + e−x). Because the sigmoid is

bounded the mean field solution cannot diverge, yielding better results.

https://doi.org/10.1371/journal.pcbi.1006490.g008
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To generate the plots shown in Fig 3C, we take the inter-neuron couplings to have the form

Ji;j tð Þ ¼ J i;ja
2
i;jte

� ai;jt and the self-history couplings to have the form Ji;i tð Þ ¼ J i;ibi;ie� bi;it.
Using Mathematica to perform the inverse Fourier transform, we obtain an explicit expres-

sion for the effective interaction,

Jeff
2;1
tð Þ ¼ J 21a

2
21
te� a21t

þ J 23J 31a
2
23
a2

31
�

b33J 33

a23 � b33 1 � l0J 33ð Þð Þ
2
a31 � b33 1 � l0J 33ð Þð Þ

2
e� b33 1� l0J 33ð Þt

"

þ
� 2a2

31
þ b33a31 4 � l0J 33ð Þ � 2b

2

33
1 � l0J 33ð Þ � b33J 33a23

� �

a23 � a31ð Þ
2
a31 � b33 1 � l0J 33ð Þð Þ

2
e� a31t

þ
� 2a2

23
þ b33a23 4 � l0J 33ð Þ � 2b

2

33
1 � l0J 33ð Þ � b33J 33a31

� �

a31 � a23ð Þ
2
a23 � b33 1 � l0J 33ð Þð Þ

2
e� a23t

þ
a23 � b33

a23 � a31ð Þ
2
a23 � b33 1 � l0J 33ð Þð Þ

2
te� a23t

þ
a31 � b33

a31 � a23ð Þ
2
a31 � b33 1 � l0J 33ð Þð Þ

2
te� a31t

#

:

In order for the inverse Fourier transform to converge and result in a causal function, we

require that 1 � l0J 33 > 0.

Parameter values used to generate the plots in Fig 3C are given in Table 2.

4 neuron circuit (Fig 4).

Like for the 3-neuron circuit, we can use our graphical rules (Fig 2) to calculate the effective

interaction for our 4-neuron circuit (Fig 4A) in the frequency domain:

Ĵ eff
21
ðoÞ � Ĵ 21ðoÞ ¼ Ĵ 23ðoÞ

"
X1

m¼0

ðg3 Ĵ 34ðoÞg4 Ĵ 43ðoÞÞ
m

#

Ĵ 31ðoÞ

þ Ĵ 23ðoÞ

"
X1

m¼0

ðg3 Ĵ 34ðoÞg4 Ĵ 43ðoÞÞ
m

#

g3 Ĵ 34ðoÞg4 Ĵ 41ðoÞ

¼ Ĵ 23ðoÞ
1

1 � g3 Ĵ 34ðoÞg4Ĵ 43ðoÞ
Ĵ 31ðoÞ

þ Ĵ 23ðoÞ
1

1 � g3Ĵ 34ðoÞg4 Ĵ 43ðoÞ
g3 Ĵ 34ðoÞg4 Ĵ 41ðoÞ

¼ Ĵ 23ðoÞĴ 31ðoÞ þ Ĵ 23ðoÞg3 Ĵ 34ðoÞg4 Ĵ 41ðoÞ

þ
Ĵ 23ðoÞg3 Ĵ 34ðoÞg4 Ĵ 43ðoÞĴ 31ðoÞ

1 � g3 Ĵ 34ðoÞg4 Ĵ 43ðoÞ
þ

Ĵ 23ðoÞg3 Ĵ 34ðoÞg4 Ĵ 43ðoÞg3 Ĵ 34ðoÞg4 Ĵ 41ðoÞ

1 � g3 Ĵ 34ðoÞg4 Ĵ 43ðoÞ
;

in going to the last equality we have separated the terms out into contributions from each of

the paths, in order, shown in Fig 4B.

To generate the plots in Fig 4C, we choose ϕ(x) = max(x, 0), which gives γi = λ0, as in Fig 3C,

and interaction filters J2;1ðtÞ ¼ J 21a
2
21
te� at for the direct interaction and Ji;jðtÞ ¼ J ija

2te� at

for all other interactions shown—i.e., all other interactions have the same decay time α−1 for

simplicity.
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Inverting the Fourier transform using Mathematica yields

Jeff
2;1
ðtÞ ¼ J 21a

2te� at �
J 23J 31ae� at

2jJ 34j
3=4
jJ 43j

3=4
sinðaðjJ 34jjJ 43jÞ

1=4
tÞ � sinhðaðjJ 34jjJ 43jÞ

1=4
tÞ

� �

þ
J 23J 41ae� at

2jJ 34j
1=4
jJ 43j

5=4
2aðjJ 34jjJ 43jÞ

1=4
t � sinðaðjJ 34jjJ 43jÞ

1=4
tÞ � sinhðaðjJ 34jjJ 43jÞ

1=4
tÞ

� �

In order for this result to converge, we require jJ 34jjJ 43j < 1. Splitting this result up into

the contributions to each plot in Fig 4C, using the specific parameter choices λ0 = 1 and

J 34 ¼ J 43 � J , gives

2 3 1 :
1

6
a4J 23J 31t

3e� at;

2 3 4 1 : �
1

120
a6jJ jJ 23J 41t

5e� at;

2 3$ 4 3 1 :
aJ 23J 31ðcoshðatÞ � sinhðatÞÞð� 2a3jJ j3=2

t3 � 6 sinða
ffiffiffiffiffiffiffi
jJ j

p
tÞ þ 6 sinhða

ffiffiffiffiffiffiffi
jJ j

p
tÞ

12jJ j3=2
;

2 3$ 4 1 :
ae� atJ 23J 41ða

ffiffiffiffiffiffiffi
jJ j

p
tð120þ a4J 2t4Þ � 60 sinða

ffiffiffiffiffi
J
p

tÞ � 60 sinhða
ffiffiffiffiffiffiffi
jJ j

p
tÞÞ

120jJ j3=2
:

Parameter values used to generate the plots in Fig 4C are given in Table 3.

Large networks. To generate the results in Fig 6 in the main text, we choose the coupling

filters to be Ji;jðtÞ ¼ J i;ja
2te� at, for i 6¼ j, which has Fourier transform

Ĵ i;jðoÞ ¼
J i;ja

2

ðaþ ioÞ2
;

Table 2. Parameter values for Fig 3C. Setting λ0 = 1.0 simply sets the units of frequency and time to be measured rela-

tive to λ0 (e.g., the value α31 = 1.8 really means α31 = 1.8λ0 and J 31 ¼ 2:0 really means J 31 ¼ 2:0=l0).

Parameter value

λ0 1.0

J 21 1.0

J 23 −2.0

J 31 2.0

J 33 −0.9

α21 = α23 = β33 1.0

α31 1.8

https://doi.org/10.1371/journal.pcbi.1006490.t002

Table 3. Parameter values for Fig 4C. Setting λ0 = 1.0 simply sets the units of frequency and time to be measured rela-

tive to λ0 (e.g., the value α = 1.294 really means α = 1.294λ0 and J 23 ¼ � 3:0 really means J 23 ¼ � 3:0=l0).

Parameter value

λ0 1.0

J 21 ¼ J 31 ¼ J 41 1.0

J 23 −3.0

J 34 ¼ J 43 ¼ J −0.9

α21 1.0

α 1.294

https://doi.org/10.1371/journal.pcbi.1006490.t003
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using the Fourier convention

f̂ ðoÞ ¼
Z 1

� 1

dt e� iotf ðtÞ:

The weight matrix J is generated as described in “Model network architectures,” choosing

J0 = 1.0. We partition this network up into recorded and hidden subsets. For a network of N
neurons, we choose neurons 1 to Nrec to be recorded, and the remainder to be hidden, hence

we define (using an index notation starting at 1; indices should be subtracted by 1 for 0-based

index counting)

J RR
¼ J ½1 : Nrec; 1 : Nrec�;

J RH
¼ J ½1 : Nrec; ðNrec þ 1Þ : N�;

J HR
¼ J ½ðNrec þ 1Þ : N; 1 : Nrec�;

and

J HH
¼ J ½ðNrec þ 1Þ : N; ðNrec þ 1Þ : N�:

We numerically calculate the linear response matrix Γ̂ðoÞ by evaluating

Γ̂ðoÞ ¼
h
I � V̂HHðoÞ

i� 1

diagð~gÞ;

where V̂HH
h;h0 ðoÞ ¼ ghJh;h0 ðoÞ and diag(~gÞ is an Nhid × Nhid diagonal matrix with elements γh.

The effective coupling filter in the frequency domain can then be evaluated pointwise at a

desired set of frequencies ω by matrix multiplication,

ĴeffðoÞ ¼
a2

ðaþ ioÞ2
J RR
þ

a2

ðaþ ioÞ2

 !2

J RH
ĜðoÞJ HR

:

We then return to the time domain by inverse Fourier transforming the result, achieved by

treating ĴeffðoÞ as an Nrec × Nrec × Nfreq array (where Nfreq is the number of frequencies at

which we evaluate the effective coupling) and multiplying along the frequency dimension by

an Nfreq × Ntime matrix E with elements Eω,t = exp(iωt)Δt/(2π), for Ntime sufficiently small time

bins of size δt = 0.1/α, for α = 10, as listed in S1 Table.

To generate Fig 5, we focus on the zero-frequency component of Ĵ effðoÞ, which is also equal

to the time integral of Jeff(t). As in the main text, we label the elements of this component

J eff
r;r0 ¼ Ĵ effr;r0 ðo ¼ 0Þ, which is equal to

J eff
r;r0 ¼ J r;r0 þ

X

h;h0
J r;hĜh;h0 ð0ÞJh0;r0 :

We do not need to simulate the full network to study the statistics of J eff
r;r0 . We only need to

generate samples of the matrix J and evaluate Γ̂ð0Þ. This is where the choice of an Erdős-

Réyni network that is not restricted to obey Dale’s law becomes convenient. Because the

weights J i;j are i.i.d. and the sign of the weight is random, population averages will be
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equivalent to expected values. i.e., the sample mean

~J mean ¼
1

NrecðNrec � 1Þ

X

r 6¼r0
J eff

r;r0

and sample variance

~J var ¼
1

NrecðNrec � 1Þ � 1

X

r 6¼r0
ðJ eff

r;r0 �
~J meanÞ

2

will tend to the expected values E½J eff
r;r0 � and var½J eff

r;r0 � for large networks. We have explicitly

removed the diagonal elements from these averages because these elements will have slightly

different statistics from the off-diagonal elements due to the fact that all ground-truth self-cou-

plings are set to zero, J r;r ¼ 0. This allows us to compare the population variance, plotted in

Fig 5 (after normalization by the population variance of the true off-diagonal weights), to the

expected variance calculated analytically below.

The error bars in Fig 5 are generated by first drawing a single sample of true weights J , and

then taking 100 random subsets of Nrec = {10, 110, 210, 310, 410, 510, 610, 710, 810, 910, 999}

recorded neurons. For this analysis, random subsets were generated by permuting the indices

of the full weight matrix J and taking the last Nrec neurons to be recorded. For each random

subset of the network we calculate the population statistics. The standard error of, for example,

the population variance ~J var across subsets gives an estimate of the error. However, if we only

use a single sample of the network architecture and weights J i;j, this estimate may depend on

the particular instantiation of the network. To average over the effects of global network archi-

tecture, we draw a total of 10 network architecture samples, and average a second time over

these samples to obtain our final estimates of the population variance of J eff
r;r0 . We note that for

an Erdős-Réyni network with mixed synapses, this second stage of averaging is probabilisti-

cally unnecessary: for a large enough network random subsets of a single large network are sta-

tistically identical to random subsets drawn from several samples of full Erdős-Réyni networks

(i.e., the network is self-averaging). However, this will not be true for networks with more

structure, such as the Watts-Strogatz or Dale’s law networks we also considered, for which the

second stage of averaging over the global network architecture is necessary to average over net-

work configurations.

Series approximation for the mean field firing rates for the case of

exponential nonlinearity ϕ(x) = ex

The mean field firing rates for the hidden neurons are given by

nh ¼ l0 exp mh þ
X

h0
Jh;h0nh0

 !

;

where we focus specifically on the case of exponential nonlinearity ϕ(x) = exp(x). For this

choice of nonlinearity, γh = νh, so we do not need to calculate a separate series for the gains.

This system of transcendental equations generally cannot be solved analytically. However,

for small exp(μh)� 1 we can derive, recursively, a series expansion for the firing rates. We

first consider the case of μh = μ0 for all hidden neurons h. Let � = exp(μ0). We may then write

nh ¼ l0�
X1

‘¼0

að‘Þh ðl0�Þ
‘
:
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Plugging this into the mean field equation,

X1

‘¼0

að‘Þh ðl0�Þ
‘
¼ exp

 
X

h0
Jh;h0

X1

‘¼0

að‘Þh0 ðl0�Þ
‘þ1

!

¼ 1þ
X1

m¼1

1

m!

 
X

h0
Jh;h0

X1

‘¼0

að‘Þh0 ðl0�Þ
‘þ1

!m

¼ 1þ
X1

m¼1

1

m!

X

‘1 ;...;‘m ;h01;...;h
0
m

Jh;h0
1
að‘1Þh0

1

. . . Jh;h0m
að‘mÞh0m
ðl0�Þ

‘1þ���þ‘mþm

¼ 1þ
X1

‘¼1

X1

m¼1

1

m!

X

‘1 ;...;‘m ;h01 ;...;h
0
m

Jh;h0
1
að‘1Þh0

1

. . . Jh;h0m
að‘mÞh0m

d‘;‘1þ���þ‘mþm

8
<

:

9
=

;
ðl0�Þ

‘
:

Thus, matching powers of λ0� on the left and right hand sides, we find að0Þh ¼ 1 and

að‘Þh ¼
X1

m¼1

1

m!

X

‘1 ;...;‘m ;h01 ;...;h
0
m

Jh;h0
1
að‘1Þh0

1

. . . Jh;h0m
að‘mÞh0m

d‘;‘1þ���þ‘mþm

for ℓ> 0.

For ℓ = 1, the sum in m truncates at m = 1 (as d‘;‘1þ���þ‘mþm is zero for m> ℓ, as all indices are

positive). Thus,

að1Þh ¼
X

h0
1

Jh;h0
1
;

að2Þh ¼
X

h0
1
;h0

2

(

Jh;h0
1
Jh0

1
;h0

2
þ

1

2
Jh;h0

1
Jh;h0

2

)

;

að3Þh ¼
X

h0
1
;h0

2
;h0

3

(

Jh;h0
1
Jh0

1
;h0

2
Jh0

2
;h0

3
þ

1

2
Jh;h0

1
Jh0

1
;h0

2
Jh0

1
;h0

3
þ Jh;h0

1
Jh;h0

2
Jh0

2
;h0

3

þ
1

3!
Jh;h0

1
Jh;h0

2
Jh;h0

3

)

:

With this we have calculated the firing rates to Oð�4Þ.

The analysis can be straightforwardly extended to the case of heterogeneous μh, though

it becomes more tedious to compute terms in the (now multivariate) series. Assuming

�h� exp(μh)� 1 for all h, to Oð�3Þ we find

nh ¼ l0�h 1þ
X

h0
Jh;h0l0�h0 þ

X

h0
1
;h0

2

Jh;h0
1
Jh0

1
;h0

2
þ

1

2
Jh;h0

1
Jh;h0

2

� �

l0�h0
1
l0�h0

2
þ . . .

0

@

1

A:

Variance of the effective coupling to second order in Nrec/N & fourth order

in λ0J0eμ0 (exponential nonlinearity)

To estimate the strength of the hidden paths, we would like to calculate the variance of the

effective coupling J eff
r;r0 and compare its strength to the variance of the direct couplings J r;r0 ,

where J eff
r;r0 �

R1
0

dt Jeffr;r0 ðtÞ and J r;r0 �
R1

0
dt Jr;r0 ðtÞ, as in the main text.
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We assume that the synaptic weights J i;j are independently and identically distributed with

zero mean and variance varðJ Þ ¼ p J2
0

ðpNÞ2a
for i 6¼ j, where a = 1 corresponds to weak coupling

and a = 1/2 corresponds to strong coupling. We assume no self-couplings, J i;i ¼ 0 for all neu-

rons i. The overall factor of p in var½J � comes from the sparsity of the network. For example,

for normally distributed non-zero weights with variance J2
0
=N2a, the total probability for every

connection in the network is

rER�JðJ Þ ¼ ð1 � pÞdðJ Þ þ p
exp � N2a

2

J 2

J2
0

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pJ2

0
=N2a

p :

Because the J i;j are i.i.d., the mean of J eff
r;r0 :

J eff
r;r0 ¼ J r;r0 þ

X

h;h0
J r;hĜh;h0Jh0 ;r0

¼ 0þ
X

h;h0
J r;h Ĝh;h0 Jh0;r0

¼ 0;

where we used the fact that Ĝh;h0 � Ĝh;h0 ð0Þ depends only on the hidden neuron couplings

Jh;h0 , which are independent of the couplings to the recorded neurons, J r;h and Jh0 ;r0 . This

holds for any pair of neurons (r, r0), including r = r0 because of the assumption of no self-

coupling.

The variance of J eff
r;r0 is thus equal to the mean of its square, for r 6¼ r0,

var½J eff
r;r0 � ¼ ðJ

eff
r;r0 Þ

2

¼ ðJ r;r0 Þ
2
þ

 
X

h;h0
J r;hĜh;h0Jh0 ;r0

!2

¼ var½J � þ
X

h1 ;h01 ;h2 ;h02

J r;h1
Ĝh1 ;h01

Jh0
1
;r0J r;h2

Gh2 ;h02
Jh0

2
;r0

¼ var½J � þ
X

h;h0
J 2

r;h Ĝ
2
h;h0 J 2

h0 ;r0

¼ var½J � þ var½J �2
X

h;h0
Ĝ2

h;h0

In this derivation, we used the fact that J r;h1
J r;h2

¼ J 2

r;h1
dh1 ;h2

due to the fact that the synaptic

weights are uncorrelated. We now need to compute Ĝ2
h;h0 . This is intractable in general, so

we will resort to calculating this in a series expansion in powers of �� exp(μ0) for the exponen-

tial nonlinearity model. Our result will also turn out to be an expansion in powers of J0 and

1 − f� Nhid/N.
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The lowest order approximation is obtained by the approximation νh� λ0� and Γh,h0 � νhδh,h0,

yielding

var½J eff
r;r0 �

var½J �
¼ 1þ ðl0�Þ

2Nhidvar½J �

¼ 1þ ðl0J0�Þ
2
ð1 � f Þ

1

ðpNÞ2a� 1
:

ð7Þ

This result varies linearly with f, while numerical evaluation of the variance shows obvious curva-

ture for f� 1 and J0 ≲ 1, so we need to go to higher order. This becomes tedious very quickly, so

we will only work to Oð�4Þ (it turns out Oð�3Þ corrections vanish).

We calculate Ĝ2
h;h0 using a recursive strategy, though we could also use the path-length series

expression for Ĝh;h0 ðoÞ, keeping terms up to fourth order in �. We begin with the expression

Ĝh;h0 ¼ nhdh;h0 þ
X

h00
nhJh;h00Ĝh00 ;h0

and plug it into itself until we obtain an expression to a desired order in �. In doing so, we note

that nh � Oð�Þ, so we will first work to fourth order in νh, and then plug in the series for νh in

powers of �.

We begin with

Ĝ2
h;h0 ¼ n

2
hdh;h0 þ 2dh;h0

X

h00
n2

hJh;h00Ĝh00;h0 þ

 
X

h00
nhJh;h00Ĝh00;h0

!2

¼ n2
hdh;h0 þ 2dh;h0

X

h00
n2

hJh;h00Ĝh00;h0 þ
X

h1 ;h2

n2

hJh;h1
Jh;h2

Ĝh1 ;h0
Ĝh2 ;h0

� n2
hdh;h0 þ 2dh;h0

X

h00
n2

hJh;h00

(

nh00dh00;h0 þ
X

h2

nh00Jh00;h2
nh2
dh2 ;h0

)

þ
X

h1 ;h2

n2

hn
2

h0Jh;h1
Jh;h2

dh1 ;h0
dh2 ;h0

¼ n2
hdh;h0 þ 2dh;h0

(

n2
hnh0Jh;h0 þ

X

h00
n2

hnh00Jh;h00Jh00 ;h0nh0

)

þ n2
hn

2
h0J

2

h;h0

¼

(

n2
h þ 2n2

hnh0Jh;h0 þ 2
X

h00
n2

hnh00Jh;h00Jh00 ;h0nh0

)

dh;h0 þ n
2
hn

2
h0J

2

h;h0

¼

(

n2
h þ 2

X

h00
n3

hnh00Jh;h00Jh00;h

)

dh;h0 þ n
2
hn

2
h0J

2

h;h0

The third order term n3
hJh;h0dh;h0 vanished because we assume no self-couplings. We have

obtained Ĝ2
h;h0 to fourth order in νh; now we need to plug in the series expression for νh to

obtain the series in powers of λ0�. We will do this order by order in νh. The easiest terms are

the fourth order terms, as

n2

hn
2

h0 � ðl0�Þ
4 and n3

hnh00 � ðl0�Þ
4
:
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The second order term is

n2
h � ðl0�Þ

2

 

1þ
X

h1

Jh;h1
l0�þ

X

h1 ;h2

að2Þh;h1 ;h2
ðl0�Þ

2

!

�

 

1þ
X

h0
1

Jh;h0
1
l0�þ

X

h0
1
;h0

2

að2Þh;h0
1
;h0

2

ðl0�Þ
2

!

� ðl0�Þ
2

 

1þ 2

 
X

h1

Jh;h1
l0�þ

X

h1 ;h2

að2Þh;h1 ;h2
ðl0�Þ

2

!

þ

 
X

h1

Jh;h1
l0�

!2!

¼ ðl0�Þ
2

 

1þ 2
X

h1

Jh;h1
l0�þ

X

h1 ;h2

n
2að2Þh;h1 ;h2

þ Jh;h1
Jh;h2

o
ðl0�Þ

2

!

;

where að2Þh;h1;h2
¼ Jh;h1

Jh1 ;h2
þ 1

2
Jh;h1

Jh;h2
. We need the average n2

h . The third-order term will

vanish upon averaging, and

2að2Þh;h1 ;h2
þ Jh;h1

Jh;h2
¼ 2Jh;h1

Jh1 ;h2
þ 2Jh;h1

Jh;h2
¼ 2var½J �dh1 ;h2

ð1 � dh;h1
Þ;

using the fact that synaptic weights are independent (giving the dh1 ;h2
factor) and self-couplings

are zero (giving the 1 � dh;h1
factor). We thus obtain

n2
h ¼ ðl0�Þ

2
þ 2ðl0�Þ

4
ðNhid � 1Þvar½J �:

The first fourth order term in Ĝ2
h;h0 , 2

P
h@n

3
hnh@Jh;h@Jh@ ;hdh;h0 , will vanish upon averaging

because matching indices requires h@ = h = h0 and we assume no self-couplings. The second

fourth order term is J 2

h;h0 , which averages to var½J �ð1 � dh;h0 Þ, where the factor of (1 − δh,h0)

again accounts for the fact that this term does not contribute when h = h0 due to no self-cou-

plings. We thus arrive at

Ĝ2
h;h0 ¼ ððl0�Þ

2
þ 2ðl0�Þ

4
ðNhid � 1Þvar½J �Þdh;h0 þ ðl0�Þ

4var½J �ð1 � dh;h0 Þ

¼ ððl0�Þ
2
þ ðl0�Þ

4
ð2Nhid � 3Þvar½J �Þdh;h0 þ ðl0�Þ

4var½J �;

Putting everything together,

var½J eff
r;r0 �

var½J �
¼ 1þ var½J �

X

h;h0
Ĝ2

h;h0

¼ 1þ var½J �

"
X

h

fðl0�Þ
2
þ ðl0�Þ

4
ð2Nhid � 3Þvar½J �g þ

X

h;h0
ðl0�Þ

4var½J �

#

¼ 1þ var½J �½Nhidfðl0�Þ
2
þ ðl0�Þ

4
ð2Nhid � 3Þvar½J �g þ N2

hidðl0�Þ
4var½J ��

¼ 1þ Nhidvar½J �½ðl0�Þ
2
þ ðl0�Þ

4
ð2Nhid � 3Þvar½J � þ Nhidðl0�Þ

4var½J ��

¼ 1þ Nhidvar½J � ðl0�Þ
2
þ ðl0�Þ

4
3 �

3

Nhid

� �

Nhidvar½J �
� �

For weak coupling, this tends to 1 in the N� 1 limit, as Nhidvar½J � ¼ ð1 � f ÞJ2
0
=N ! 0, for

fixed fraction of observed neurons f = Nrec/N. For strong coupling, Nhidvar½J � ¼ ð1 � f ÞJ2
0
,
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which is constant as N!1, and hence

var½J eff
r;r0 �

var½J �
¼ 1þ ðl0J0�Þ

2
ð1 � f Þ þ 3ðl0J0�Þ

4
ð1 � f Þ2 þ o ðl0J0�Þ

4
ð1 � f Þ2

� �
; ð8Þ

where we have used little-o notation to denote that there are higher order terms dominated by

(λ0 J0�)4(1 − f)2. With this expression, we have improved on our approximation of the relative

variance of the effective coupling to the true coupling; however, the neglected higher order

terms still become significant as f ! 0 and J0 ! 1, indicating that hidden paths have a signifi-

cant impact when synaptic strengths are moderately strong and only a small fraction of the

neurons have been observed.

Because the synaptic weights J i;j are independent, we may rewrite Eq (8) as

var½J eff
r;r0 � J r;r0 �

var½J �
� ðl0J0�Þ

2
ð1 � f Þ þ 3ðl0J0�Þ

4
ð1 � f Þ2;

Fig 9. Same as Fig 5, but for N = 100 neurons and Nrec = {1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 99} recorded neurons.

Because we plot the relative deviations of the coupling strength against the fraction of observed neurons, the curves for

the strongly coupled case are the same as for N = 1000, as expected, while the weakly coupled case yields stronger

deviations.

https://doi.org/10.1371/journal.pcbi.1006490.g009
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or, in terms of the ratio of standard deviations,

s½J eff
r;r0 � J r;r0 �

s½J �
� ðl0J0�Þ

ffiffiffiffiffiffiffiffiffiffiffi
1 � f

p
1þ

3

2
ðl0J0�Þ

2
ð1 � f Þ

� �

;

where we used the approximation
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

� 1þ x=2 for x small.

In the main text, we plotted results for N = 1000 total neurons (Fig 5A). For strongly cou-

pled networks, the results should only depend on the fraction of observed neurons, f = Nrec/N,

while for weak coupling the results do depend on the absolute number N. To demonstrate this,

in Fig 9 we remake Fig 5 for N = 100 neurons. We see that the strongly coupled results have

not been significantly altered, whereas the weakly coupled results yield stronger deviations (as

the deviations are Oð1=
ffiffiffiffi
N
p
Þ).

Supporting information

S1 Fig. Empirical estimates of average neuron firing rates from simulations plotted against

mean firing rates predicted by mean field theory. The fact that the data lies along the identity

line demonstrates validity of the mean field theory approximation up to J0 = 1.0.

(EPS)

S2 Fig. Top row: scatter plot comparing νh, the mean field firing rates of the hidden neu-

rons in the absence of recorded neurons, to empirically estimated firing rates in simula-

tions of the full network, for four different values of typical synaptic strength, J0 = 0.25, 0.5,

0.75, and 1.0. The data lie along the identity line, demonstrating a strong correlation between

νh and the empirical data. However, the spread of data around the identity line indicates that

deviations of the mean firing rates away from νh, caused by coupling to the recorded neurons,

is significant. Bottom row: Comparison of the first order approximation of the firing rates of

hidden neurons, which accounts for the effects of recorded neurons, to the empirical rates.

The data lie tightly along the identity with very little dispersion, demonstrating that higher

order spike filtering is unnecessary even up to J0 = 1.0, for Nrec = 100.

(EPS)

S3 Fig. Same as S2 Fig but for Nrec = 500 recorded neurons out of a total of N = 1000. Dem-

onstrates validity of linear approximation (neglecting higher order spike filtering) up to J0 =

1.0, for Nrec = 500. The zeroth order approximation (top row) is quite poor, indicating the

necessity of accounting for feedback from the recorded neurons. This first order approxima-

tion (bottom row) lies tightly along the identity line, indicating that even when the recorded

and hidden populations are of comparable size, higher order spike filtering may not be signifi-

cant. However, there appears to be some deviation for J0 = 1.0, indicating that accounting for

higher order spike filtering may be beneficial in this parameter regime.

(EPS)

S1 Table. Network activity simulation parameter values.

(PDF)

S1 Text. Supporting information.

(PDF)

1 Perfect cancellation, though in principle possible, is almost surely impossible in the untuned random net-

works that we study here.
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