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Abstract Analysis of shotgun proteomics datasets requires
techniques to distinguish correct peptide identifications
from incorrect identifications, such as linear discriminant
functions and target/decoy protein databases. We report an
efficient, flexible proteomic analysis workflow pipeline that
implements these techniques to control both peptide and
protein false discovery rates. We demonstrate its performance
by analyzing two-dimensional liquid chromatography separa-
tions of lens proteins from human, mouse, bovine, and
chicken lenses. We compared the use of International Protein
Index databases to UniProt databases and no-enzyme
SEQUEST searches to tryptic searches. Sequences present in
the International Protein Index databases allowed detection of
several novel crystallins. An alternate start codon isoform of
3A4 was found in human lens. The minor crystallin YN was
detected for the first time in bovine and chicken lenses.
Chicken yS was identified and is the first member of the y-
crystallin family observed in avian lenses.
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Introduction

Characterizing the identity and relative abundances of proteins
in tissues is a logical first step in understanding normal
biological and disease processes. Technological advances now
allow many proteins to be studied at once rather than isolation,
purification, and study of one protein at a time. These
proteomic techniques have evolved from electrophoresis-
based methods to large-scale mass spectrometry studies
capable of cataloging thousands of proteins [1, 2].

The human lens fiber mass is an isolated, relatively simple
biological sample that undergoes many age-related changes
[3] and is ideally suited for proteomic studies [4]. Human
lenses have been extensively studied using electrophoresis
and a variety of mass spectrometry approaches [5—8]
predominantly to characterize post-translational modifica-
tions [9-11] and their likely role in age-related nuclear
cataract [12]. Two-dimensional gel electrophoresis (2-DE)
maps of young normal human lens have been reported [13]
and the major crystallins (highly abundant lens-specific
proteins) characterized [14]. Many animal models of lens
development and diseases are also used to understand human
lens biology, and 2-DE maps have been reported for many
species [13, 15-18].

There are several deficiencies in 2-DE studies and
alternative proteomic strategies have been developed. Complex
peptide mixture analysis is one of the most promising
proteomic tools due to advances in instrumentation and
bioinformatics. In these “bottom-up” (shotgun) experiments,
proteins are enzymatically digested, usually with trypsin, into
peptides that are sequenced using mass spectrometry. Multiple
dimensions of chromatographic separations (2-DLC) are
required to reduce peptide sample complexity and allow
sequencing of large numbers of peptides. The separation and
mass spectrometry steps can be automated, and the high
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sensitivity of this technique often results in the identification of
several hundred to thousands of proteins per sample.

The advent of extensive genomic and proteomic
sequence databases is a key factor in the analyses of the
large datasets that shotgun studies produce. Peptide
sequences are commonly determined by comparing theo-
retical fragmentation spectra of peptides present in a protein
sequence database to the measured experimental spectra.
There are several software packages that perform this
database searching such as SEQUEST [19], Mascot [20],
and others [21]. Many additional computational steps are
necessary to correctly determine peptide sequences from
tandem mass spectrometry data and to infer the proteins
that gave rise to those peptides [22]. The majority of
peptide sequencing events (MS/MS spectra) from most
instruments do not produce correct peptide sequences due
to many factors such as poor signal to noise, incomplete
fragmentations, and non-peptide ions (chemical noise).

Controlling the number of incorrect peptide identifications
becomes a major challenge in proteomics, particularly for
large datasets. Search program scores can be combined with
factors such as peptide mass accuracy and consistency with
expected enzymatic cleavage into discriminant functions
better able to separate incorrect from correct peptide identi-
fications [23, 24]. Decoy databases, containing protein
sequences that are known not to be present in the sample
(reversed sequences, randomized sequences, or unrelated
species), are now routinely used to estimate global false
discovery rates (the fractions of accepted identifications that
are incorrect) [25] and adjust thresholds to remove most
incorrect identifications. The theoretical peptides generated
from the protein database that are compared to measured
spectra can be restricted to the subset consistent with
enzymatic cleavage (usually trypsin) at both termini, known
as a tryptic search. Alternatively, all possible peptide
candidates can be considered (a no-enzyme search). Using
no-enzyme searches of tryptic digests is another method to
improve the accuracy of identifying tryptic peptides and
control false discovery rates [26]. This method works
because most of the incorrect peptides in no-enzyme
searches match to peptides that are not consistent with
trypsin cleavage at either terminus, making any peptides that
are consistent with tryptic cleavage more likely to be correct.
The only drawback of these approaches is that the searches
require greater computational time due to the larger number
of potential peptide sequences that must be searched.

Proteomic results are also strongly influenced by the
completeness and quality of the protein databases used. The
International Protein Index (IPI) species-specific databases
[27] attempt to be very complete (containing most known
and predicted gene products), whereas databases like
UniProt Sprot [28] may be less complete but have little
redundancy and more extensive protein annotations. More
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complete databases, like IPI, tend to be larger and
require longer search times, which can become an issue
with larger datasets. However, important proteins may be
missing in UniProt databases and not be detected by
search programs.

In this work, we present a straightforward proteomic
analysis workflow (PAW) pipeline that used sequence-
reversed decoy databases and a discriminant function
transformation [24] of SEQUEST scores to maximize
peptide identifications while controlling both peptide and
protein false discovery rates (FDRs). The PAW pipeline
was used to produce accurate whole lens proteomes of
young human, mouse, bovine, and chicken lenses. Results
obtained by searching larger IPI species-specific databases
were compared to searches of databases constructed from
the UniProt protein databases to see if more lens proteins
could be identified. The more complete IPI databases
resulted in the identification of novel crystallins yS in
chicken, YN in bovine, and an alternate start codon isoform
of BA4 in human.

Materials and methods
Samples and processing

All lens samples used in this study adhered to the ethical
standards laid down in the 1964 Declaration of Helsinki
for treatment of human subjects and the ARVO Statement
for the use of animal subjects. Compliance with NIH
guidelines was provided through an institutional review
board. The isolation of the water-soluble fraction of whole
lenses, protein assay, trypsin digestion, two-dimensional
liquid chromatographic separation of peptides, and mass
spectrometry were previously described in Wilmarth et al.
[11] Single lenses from a 3-day-old human donor and fetal
calf (0.65-g wet weight), a dozen 10-week-old chickens,
and 234 C57/BL6 mice from 18-28 days of age, collected
in the course of other studies were used. In brief, after
removal from eye globes, the lens tissues were decapsulated
and homogenized in aqueous buffer where soluble proteins
were collected following centrifugation. Protein content
was then assayed; 2.5 mg protein aliquots were dissolved in
8 M urea, reduced with DTT, alkylated with iodoacetamide,
and digested with trypsin overnight. Peptides were separated
by strong cation exchange (SCX) chromatography, fractions
collected, and 10% of each fraction analyzed by LC/MS. The
numbers of SCX fractions for each lens sample are given in
Table 1. Reconstituted portions of each SCX fraction were
analyzed using shallow 90-min gradient reverse-phase
chromatography and peptide sequencing performed by an
LCQ Classic ion trap mass spectrometer (ThermoFinnigan,
San Jose, CA, USA).
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Table 1 Individual lens dataset details listing the number of offline
SCX fractions collected and the total number of MS/MS spectra
acquired

Lens SCX fractions Number of DTAs
Human 32 54,385
Mouse 44 60,387
Bovine, run 1 37 34,953
Bovine, run 2 37 67,905
Chicken 38 58,595

Mass spectrometry and search details

The mass spectrometer was configured to acquire three
centroided MS/MS spectra following each survey scan
using dynamic exclusion. DTA files were created as
previously described [11] and charge state analysis (ZSA,
ThermoFinnigan) performed prior to SEQUEST searching
(version 28, revision 12, ThermoFinnigan). The numbers of
DTA files for each of the lens samples are given in Table 1.
SEQUEST parameters were: parent ion tolerance of 2.5 Da,
fragment ion tolerance of 1.0 Da, average parent ion
masses, monoisotopic fragment ion masses, differential
peptide N-terminal modification of +42 Da, static cysteine
modification of +57 Da, maximum of two missed cleavages,
and either trypsin or no enzyme cleavage specificity as
described below.

Protein databases were either IPI species-specific databases
[27] or were constructed from UniProt [28] entries. For
human and mouse searches, canonical (single, representative
sequence) Sprot protein databases were used. Chicken and
bovine have less complete Sprot entries, so a combination of
(canonical) Sprot and Trembl sequences were used. For all
databases used in the searches, 179 common contaminant
entries were added and sequence-reversed entries of original
database plus contaminants were concatenated to produce
databases having equal numbers of target (forward) and
decoy (reversed) sequences. Database versions and numbers
of protein entries are given in Table 2.

SEQUEST results processing

Python programs were written to convert SEQUEST OUT and
DTA file formats to SQT and MS2 formats, respectively [29],
to reduce file system overhead. Each SQT file was parsed to
compute a discriminant function using the transformations
and coefficients from Keller et al. [24]. A slightly modified
definition of DeltaCN was used where the top score was
compared to the average score of matches 4 to 10 rather than
the second best match. The original concept behind DeltaCN
is that the top scoring peptide might be correct and all lower
scoring peptides are incorrect. However, there are situations

where there can be more than one potential correct match
(highly homologous peptides, post-translational modifica-
tions, permuted amino acids, etc.). This alternative definition
was adopted so that the discriminant functions would not
overly penalize these situations. The discriminant function
coefficient for the DeltaCN term was optimized to maximize
correct identifications from standard control mixes [30]. The
increase in number of identifications compared to using the
original DeltaCN was on the order of 1-2%. Discriminant
scores were written to tab-delimited text files for each LC
run.

Frequency histograms of the discriminant scores were
tabulated and separated by charge states (1, 2, or 3) and
by number of tryptic termini [NTT of 0 (non-tryptic), 1
(semi-tryptic), or 2 (fully-tryptic)]. Histograms were also
separated into matches to the forward protein sequence
entries or to the sequence-reversed entries for a total of
nine paired histograms. The current implementation does
not support charge states greater than 3+, but extension
to higher charge states is possible. Any discriminant
scores from peptides present in both forward and
reversed sequences were randomly assigned to either
database with equal likelihood so discriminant score
distributions would be correctly normalized. Histograms
were visualized using an Excel workbook template. A
minimum peptide length cutoff of six amino acids was
used to reduce short, ambiguous peptide identifications.

Peptide FDRs for each of the nine peptide classes were
estimated from frequencies in the paired histograms of
reversed and forward matches and tabulated as a function of
discriminant score. Since we are not estimating peptide
identification probabilities, complicated fitting of score
distributions was not necessary. Discriminant score thresholds
corresponding to desired peptide FDRs were obtained by
inspecting tables in the Excel template. Smoothing of score
distribution histograms was also used to estimate local error

Table 2 FASTA protein database details

Species Database Version Forward sequences
Human IP1 3.60 80412
Human Sprot 57.4 20330
Mouse IPI 3.60 56701
Mouse Sprot 57.4 16140
Bovine IP1 3.46 31501
Bovine Sprot 57.4 5672
Bovine Trembl 40.4 9749
Chicken IPI 3.54 25697
Chicken Sprot 57.4 2125
Chicken Trembl 40.4 5849

Species names, database source, database version, and number of
proteins sequences in the database are listed
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rates (to aid threshold selection) based on the relative height of
the forward distribution to the sum of forward and reversed
distribution heights, similar to how peptide probabilities are
estimated in PeptideProphet [24]. After discriminant score
thresholds were selected, new SQT, MS2, and discriminant
text files were created containing only the top hits that
passed the thresholds. To guard against uncertainties in the
FDR estimates, any peptide class (typically fully non-tryptic
peptides) that contributed less than 1% of total correct
identifications for that charge state was excluded from
further analysis. The reduction in dataset size after filtering
out peptides that did not pass thresholds was typically 85%
to 95%. Dataset size reduction is beneficial when processing
data from faster scanning instruments or in multi-sample
experiments.

Peptide to protein mapping

DTASelect v1.9 [31] was used to compile parsimonious
protein lists from the filtered SQT files (cmd>DTASelect -1
0-20-30-d0-o0-t0-XML) for each 2-DLC sample. A
separate Python program was written to parse the
DTASelect-filter.xml file (or filtered discriminant text files),
apply flexible protein identification criteria, and create
tab-delimited text files of protein and peptide results.
Minimum distinct (non-identical sequences) peptides per
protein counts, minimum unique (peptide present in only
one identified protein) peptide per protein counts, minimum
number of NTT per distinct peptide, inclusion or exclusion
of modified peptides, and inclusion or exclusion of multiple
charge states per distinct peptide could be independently
applied. Overall dataset normalization of spectral counts
[32], and splitting of shared peptide counts on the basis of
the unique peptide evidence of the proteins containing the
shared peptides, was also incorporated. For example, if two
proteins shared five MS/MS spectra with the first protein
having nine unique MS/MS spectra and the latter having
one unique MS/MS spectrum, the first protein would get
90% of the five shared counts and the second would get
10% of the shared counts. This is an overly simple
approximation and there are many situations where it might
fail; however, explicit reporting of total counts, unique
counts, and these corrected counts along with lists of other
proteins having shared peptides helps to identify such
situations. A flowchart showing the analysis steps and
software components is shown in Fig. 1.

Functional annotations
The Protein Information and Property Explorer (PIPE) [33]
was used to add functional annotations to the protein results

from the human and mouse lenses. Annotations were not
available for bovine or chicken proteins via PIPE. Any
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missing Entrez gene numbers (necessary for GO term
lookup) after a first pass with PIPE were manually entered
before functional annotations were added in a second pass.
Instead of multiple GO annotations per protein, the PIPE
option to use only the most specific GO term was used.
This reduced redundancy in the categorizations, but
annotations for several crystallins were either missing or
inconsistent between species. Therefore, a limited number
of manual functional categories were chosen and proteins
assigned to categories based on GO annotation information
and UniProt database information. Functional summaries
were compiled using protein spectral-count-weighted
functional category frequencies.

Results
PAW pipeline performance

To benchmark the PAW pipeline performance, an analysis of
the yeast dataset used in a recent report by Kall et al. [23] of a
semi-supervised classifier program called Percolator was
performed. Results from PeptideProphet and DTASelect
analyses of the same dataset were also reported in the
Percolator paper and could be compared to the PAW
analysis. The dataset (35,236 MS/MS scans) and yeast
database were downloaded from the article’s supporting
information and a concatenated forward/reverse database
constructed. A no-enzyme SEQUEST search was performed
with the parameters used in this work, and the results were
processed with the PAW pipeline.

In the Percolator paper, the authors reported identification
of 8,197 unique peptides from 12,691 MS/MS identifications
ata peptide false discovery rate of 1%. Their classifier function
contained 20 terms including three terms related to protein-
level information. They reported 10,863 identifications (7,120
unique peptides) from PeptideProphet [24] analysis and 7,583
identifications from DTASelect [31] using default criteria.
PAW pipeline numbers at a similar 1% peptide FDR were
7,958 unique peptides from 11,807 identifications. Percolator
identified 7% more spectra than the PAW analysis and 3%
more unique peptides. Without the three protein-level terms,
the number of peptides identified by Percolator was reduced
to 11,820, essentially the same as the PAW analysis. The
PAW analysis outperformed PeptideProphet and DTASelect
by 9% and 56%, respectively.

Inclusion of protein-level terms in the Percolator classifier
could allow additional low-quality spectral matches to
proteins identified by higher quality spectra and increase the
number of spectrum matches (12,691 versus 11,820) with
little increase in the number of identified proteins. Therefore, a
comparison of PAW pipeline to Percolator results at the
protein level was also done. All identifications having a
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Fig. 1 Schematic of the major
analysis steps and required user
actions in the PAW pipeline.

In each analysis box, python
program names are in bold type
and individual steps are

listed. Simple user actions

such as running programs,
selecting folders, or

opening files are not

shown

q value less than 0.01 were filtered from the Percolator results,
converted to SQT files, and identified proteins compiled using
the PAW software. To accurately assess how differences at the
peptide level affected the protein identifications, it was
important to use the same peptide-to-protein mapping
algorithms. Percolator produced 1,059 protein identifications,
a modest gain of 2% over the 1,040 identifications from the
PAW analysis. This suggests that most of the 884 additional
peptide identifications from Percolator (compared to the
PAW pipeline) were, in fact, associated with proteins
identified by PAW analysis.

These results support the conclusion in a recent paper by
Ding et al. [34] that training a classifier on the data being
classified, rather than on separate training data, offers little
improvement in many cases. The main drawback to
supervised classifiers is that appropriate training data must
be available for a given mass spectrometer platform. Semi-
supervised classifiers are more flexible because they do not
require fully classified training data, but they do require a
sufficient number of correct identifications for statistical
analysis and classification of a portion of the data (usually
decoy matches). It is not uncommon in proteomics datasets
for numbers of correct identifications to be too low for
semi-supervised classifier algorithms to perform correctly.
It is also computationally simpler to use a trained
discriminant function rather than invoking a separate
discriminant function training step. The improvement in
results from PAW analysis compared to PeptideProphet
were likely due to separation of score histograms by both

PAW_convert.py

- DTA to MS2 conversion
- OUT to SQT conversion
- Calculate discriminants
- Generate histograms

L

Excel template
- Histogram plots
- Peptide FDR tables

—

PAW filter.py
- Create new MS2 files
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histogram
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input
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£

PAW_results_reporter.py
- Parsimony filtering
- Create results tables

set protein
ID criteria

User Actions

Analysis Steps

charge state and NTT, a technique that has been recently
incorporated into other analysis software [35].

Comparison between tryptic and no-enzyme searches

Trypsin is the most common enzyme used in proteomic
studies because it cuts efficiently with good specificity. Thus,
most peptides should be fully tryptic, and nearly all proteins
present in samples can be identified on the basis of fully
tryptic peptides. Tryptic searches are commonly used in
proteomics and are roughly ten times faster than no-enzyme
searches, but may miss important peptide identifications such
as protein N-terminal peptides when the initial methionine has
been removed. There can also be protein processing that
produces active proteins from longer sequences, and N- or
C-terminal peptides from the processed proteins may no
longer match those predicted from the database entries.
No-enzyme searches could, in principle, identify such peptides
and provide a more complete proteomic picture. In addition,
the overwhelming majority of incorrect peptide identifications
in no-enzyme searches will be fully non-tryptic, and their
exclusion could potentially increase the significance of fully
tryptic peptide identifications. Do the longer execution times
of no enzyme searches improve the results enough to justify
their use?

To address this question, tryptic and no-enzyme searches
were performed on the four lens samples using the smaller
UniProt databases. Figure 2 shows the differences between
the two searches in discriminant score distribution histograms
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for 2+ peptides from human lens data. Essentially all of the
fully non-tryptic matches in a no-enzyme search are incorrect,
and the matches to the reversed sequences in a concatenated
target/decoy database (Fig. 2d, red curve) accurately repro-
duced the score distribution for the incorrect matches to fully
non-tryptic peptides in the forward sequences (Fig. 2d, blue
curve). The total numbers of peptides identified in each
search are shown in Table 3. In all cases, there were large
numbers of semi-tryptic peptides identified with (usually)
small decreases in the numbers of fully tryptic peptides. The
majority (96-98%) of the semi-tryptic peptides originated
from proteins identified on the basis of fully tryptic peptide
evidence, and crystallins accounted for 80% to 90% of the
semi-tryptic peptides. Thus, the vast majority of semi-tryptic
peptides originated from abundant proteins present in the

Discriminant Score

mixture. Due to dynamic exclusion and the relatively low
peptide sample complexity in lens, the instrument may have
frequently selected very low-intensity ions for fragmentation.
Thus, the spectral count numbers of semi-tryptic peptides
may have been inflated and not representative of their true
abundance levels in the samples. There were no proteins that
could be identified at the two-peptide-per-protein level solely
on the basis of semi-tryptic peptides.

The numbers of putative correct fully non-tryptic
peptides were negligible in these datasets. SEQUEST is
capable of performing semi-tryptic searches, which would
have been significantly faster than no-enzyme searches. We
did not evaluate semi-tryptic searches, but it is very likely
that the results would have been similar to the no-enzyme
searches. The faster search times of semi-tryptic searches

Table 3 Comparison of identi-

fied peptide numbers between Lens Tryptic search No-enzyme search Increase in IDs (%)
tryptic and no-enzyme searches
Fully tryptic Semi-tryptic
Reversed peptide matohes are Fuman 7,439 (171) 6,879 (89) 2,538 (85) 27
shown in parentheses. The
increase in total peptide identifi- Mouse 8,770 (177) 8,320 (108) 2,787 (86) 27
cations of the no-enzyme search Bovine 11,299 (198) 10,832 (135) 4,798 (156) 38
relative to the tryptic search is Chicken 4,500 (78) 4,510 (95) 2,903 (90) 65

given in the last column
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could be an important consideration with large datasets or
when using large databases.

It is interesting to note that differences in the fully tryptic
peptides identified in the two searches (number of identi-
fications in Table 3 and dramatically different score
distributions in Fig. 2a, b) resulted in differences at the
protein level. At the individual DTA filename level (MS/
MS spectra), the overlap of fully tryptic identifications
between the two searches was 90%, with roughly twice as
many DTA filenames unique to the tryptic searches as for
the no-enzyme searches. The redundant number of MS/MS
spectra identified as a distinct peptide sequence in a given
charge state can be quite high in shotgun studies, so the
overlap at the less redundant peptide level was also checked
for fully tryptic identifications. The overlap was a similar
90%, but the numbers of peptides that were unique in each
search were more similar to each other. The overlap at the
protein level ranged from 84% to 94% when using two
fully tryptic peptides per protein as a criterion in both
searches. The results of the comparisons for the bovine lens
data are shown in Fig. 3, and the other lenses had similar
results. Several proteins were uniquely identified in each
search and it is likely that all identifications were correct.

(A) DTAs
tryptic no enzyme

(B) Peptides
tryptic no enzyme

(C) Proteins
tryptic no enzyme

Fig. 3 Overlap between tryptic and no-enzyme SEQUEST search
results for bovine lens proteins. a Comparison of fully tryptic peptide
identifications at the MS/MS level. b Comparison of fully tryptic
peptide sequences. ¢ Comparison of protein identifications

The tendency of correct peptides to cluster to valid proteins
(two peptides per protein) is a powerful classifier of correct
protein identifications. This suggested that more complete
proteome coverage would have been obtained by combining
results from both tryptic and no-enzyme searches.

Comparison of IPI and UniProt databases

At first glance, the more complete IPI databases might be
expected to result in increased numbers of peptide
identifications, but the opposite effect was observed. There
were 4.4% more total MS/MS identifications from the
UniProt searches than from the IPI searches. Larger
databases reduce DeltaCN, on average, resulting in less
separation between incorrect and correct distributions and a
decrease in sensitivity. The IPI searches did result in
increased protein identifications for all four species. The
results are summarized in Table 4 where reversed matches
are shown in parentheses. Peptide filtering thresholds were
based on an estimated local error rate of 0.80 in each
peptide class for all searches. Peptide FDRs varied slightly
by search but were around 2%. The small number of
incorrect peptides in each search resulted in very accurate
protein identifications.

Reconciliations of protein identifications between the IPI
and the UniProt results were tried. Cross-referencing
information in database entries was used to match protein
identifications between the two sets of results. This process
is challenging because sets of peptides often match to more
than one protein, especially in larger databases like IPI. If
any member of a redundant protein family in one search
matched any member of a redundant protein family
member in the other search, the two families were
considered as matching. In general, nearly all UniProt
proteins matched to entries in IPI databases. This is not
surprising since the more complete IPI databases include
known sequence information from UniProt. There were
identifications that were unique to the larger IPI databases,
and some of those are mentioned in the next sections where
results from the four species are presented.

Table 4 Comparison between results from no-enzyme SEQUEST
searches of IPI or UniProt protein databases at the peptide (MS/MS)
level and at the protein level

Species IPI MS/MS UniProt 1P1 UniProt

MS/MS Protein protein
Human 9,347 (185) 9,414 (174) 115 (1) 113 (1)
Mouse 11,043 (187) 11,107 (194) 164 (0) 156 (0)
Bovine 14,517 (238) 15,630 (291) 123 (0) 116 (0)
Chicken 6,739 (166) 7,413 (185) 69 (0) 62 (0)

Reversed matches are shown in parentheses

Mo,
< Humana Press



230

j ocul biol dis inform (2009) 2:223-234

Human lens results

The proteins and peptides identified in the IPI searches are
listed in Electronic supplementary material (ESM), Supple-
mental Table 1, and the results from the Sprot search are
listed in ESM Supplemental Table 2. The number of proteins
identified, about 115, is less than another recent report [36],
but depth of proteome coverage is very dependent on the
degree of peptide separation and sensitivity of the mass
spectrometer. Preliminary analysis of additional young human
lenses using a linear ion trap and the PAW pipeline has
identified more than 800 proteins (manuscript in preparation).
A 2-DE study of the 3-day-old human lens has recently been
reported where nearly all visible proteins were identified as
crystallins [13], with only one non-crystallin protein
detected. This 2-DE picture is in contrast to results from
2-DLC analysis where a much more complex proteome
emerges. Functional annotations were added to the identified
proteins using PIPE [33], proteins assigned to manual
categories based on annotation information, and spectral
count weighted functional frequencies computed. The
annotated protein list is detailed in ESM, Supplemental
Table 3, and a frequency analysis is shown in Fig. 4 where
crystallins accounted for 83% of the detected peptides.

The human Sprot database is considered a complete
proteome, and we chose only the canonical sequences for
this analysis. An additional 14,000 protein isoform sequences
are available but were not used. The reconciliation of
identified proteins from the two databases indicated that
107 of 109 proteins (after removal of contaminants)
identified in the Sprot search were present in the IPI results.
Conversely, 107 of 110 IPI proteins could be mapped to

Fig. 4 Spectral-count-weighted
functional categories for the
3-day-old human lens

3-day old
Human

83.4%

Sprot identifications. A new result from one of the unique
IPI matches was strong evidence that 3A4 has an alternate
start codon, resulting in a protein having an additional 12
N-terminal amino acids. Peptide spectral counts suggest
that this longer isoform is translated at lower levels than the
shorter form of BA4.

Mouse lens results

ESM, Supplemental Tables 4 and 5 list the proteins and
peptides identified in the searches against the mouse IPI and
Sprot databases, respectively. There were 153 non-redundant
proteins (excluding contaminants) identified in the Sprot
search, and 150 of those proteins had matching IPI
identifications. For the 161 proteins found in the IPI
searches, 150 could be mapped to corresponding Sprot
entries, with 11 proteins unique to the IPI results. One of
those identifications was well-known 3A3, the alternate start
codon form of A1, which was not present in the Sprot
database. It was not annotated as an isoform of 3A1 nor was
BA3 present in Trembl. There were no problems with A1/
A3 UniProt sequences for the other three species. Functional
annotation analysis was also possible for the mouse lens and
is given in ESM, Supplemental Table 6. A frequency
analysis similar to that described for human lens above is
shown in Fig. 5. As in the human lens, crystallins accounted
for 80% of the observed peptides with a relatively even
distribution of counts across other categories. Previous
2-DE studies of mouse lens [17] found essentially only
crystallins in soluble lens proteins, suggesting that the
abundance of most non-crystallins is too low to detect
with 2-DE.
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Fig. 5 Spectral-count-weighted
functional categories for the
soluble mouse lens

proteins

Soluble
Mouse

80.3%

Bovine lens results

The results of the IPI and UniProt searches are detailed in
ESM, Supplemental Tables 7 and 8, respectively. There were
two 2-DLC experiments using bovine lenses. The first
experiment had fewer peptide identifications than expected,
and chromatogram peak intensities were also lower than
anticipated. Therefore, a second experiment was performed.
Results from both experiments were easily combined with the
flexible workflows possible in the PAW pipeline. Excluding
contaminants, 110 of 111 UniProt identifications could be
mapped to IPI identifications. There were nine identifications
that were unique among the 119 (non-redundant groups
without contaminants) IPI protein identifications. Two of the
unique IPI identifications were notable. One was a putative
identification of yA crystallin in bovine. The YA sequence
present in UniProt (P02527) appears to be incorrect and had
the highest similarity to yB crystallins in other species. The
other important identification was yN crystallin, a minor
crystallin recently identified in other species such as mouse
and guinea pig [37, 38], but not previously known in the
COW.

Chicken lens results

ESM, Supplemental Table 9 contains the chicken lens IPI
results and ESM, Supplemental Table 10 has the UniProt
results. Young chicken lenses have very high expression of
the taxon-specific delta crystallins. Delta crystallin had
spectral count numbers roughly twice those of other
crystallins. The overabundance of delta crystallin effectively
lowers the concentration of all other proteins, and fewer
proteins were identified in chicken (60—70) compared to
the other species (110—160) under similar experimental
conditions. The results from the two databases also showed
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more differences than the other species, suggesting that
protein sequences and annotations may be more variable for
chicken. Of the 60 proteins identified in the UniProt
analysis, 52 mapped to IPI identifications and eight did
not. There were 67 IPI identifications, with 52 mapping to
UniProt results and 15 that did not. One of the protein
identifications unique to the IPI database had sequence
coverage of 77% and total spectral count of 121 and is the
first observation of chicken yS crystallin. The total spectral
counts of the other major crystallins were about five times
larger than yS. There was also evidence for the presence of
YN crystallin at low abundance levels. Monomeric
y-crystallins have not been previously reported in avian
lenses. A published 2-DE study [18] again detected only
major crystallin proteins in chicken lenses. The identification
of many proteins besides crystallins and the first observation
of chicken yS highlight the increased sensitivity of 2-DLC
compared to 2-DE.

Discussion
Controlling peptide and protein error rates

Controlling peptide false discovery rates has received
considerable attention in proteomics resulting in many of
the techniques used in this work, such as discriminant
function transformations [24], target/decoy databases [25],
and separation of peptides by NTT [35]. The related problem
of protein false discovery rate in large-scale experiments [39]
has received less attention. Typically, the numbers of
proteins detectible in a sample are small compared to the
number of possibilities in the protein database being
searched. A reasonable assumption is that random, incorrect
peptide matches will be uniformly distributed across the
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protein database entries, in contrast to the tendency of
correct peptide matches to cluster to a small number of
proteins actually present in the sample. This tendency had
been long recognized and the criterion of two peptides per
protein is routinely used to increase accuracy of protein
identifications.

A recent report [39] has shown that the number of
incorrect protein identifications is a function of the number of
incorrect peptide matches and the size of the protein database.
Accurate protein identification requires that the absolute
number of incorrect peptide matches be small compared to
database size and that the number of possible proteins be large
compared to the number of proteins in the sample. When these
two requirements are met, the two-peptides-per-protein
criterion can effectively control protein false discovery rates.
Some of the information necessary to meet these requirements
is not known until analysis has been completed, creating a
Catch-22, but general strategies can be used so that analyses
do not have to be routinely repeated. Construction or selection
of a fairly complete protein database is often possible, and
addition of sequence-reversed entries ensures that the number
of protein candidates is usually large compared to the number
of proteins detectible in the sample. Discriminant function
transformations, target/decoy databases, and separation of
peptides by NTT in conjunction with no-enzyme specificity
searches are effective at controlling the number of incorrect
peptide matches. Heuristics used in this work, such as
including only unmodified peptides or fully tryptic peptides
for protein identification, effectively reduces the number of
incorrect peptides even further.

The peptide false discovery rate that will produce the
desired final protein false discovery rate is a function of two
main factors: the size of the dataset(s) and the number of
datasets included in the analysis. When datasets are very
large (from fast-scanning instruments or extensive peptide
fractionation), the peptide false discovery rate must be
greatly reduced to keep the numbers, not rates, of incorrect
peptide matches small. Protein identifications in multi-sample
experiments increase asymptotically with increasing sample
number [32]. However, incorrect protein matches are unlikely
to be the same from sample to sample, so the incorrect
matches tend to increase linearly with increasing sample
number. If an analysis contains many samples, the protein
false discovery rate per sample must be correspondingly
reduced so that the final protein false discovery rate is
controlled.

Comparison of protein databases
The larger, more complete IPI databases resulted in the
discovery of interesting new crystallins in human, bovine,

and chicken lenses. They also had many more redundant
proteins on average than the UniProt databases, had

\\V)
%« Humana Press

annotations and web-based database query results that
were less informative than UniProt results, and took
considerably more time for searches to complete. The
more redundant nature of the IPI databases requires very
careful control of incorrect peptide identifications or
additional assumptions when mapping peptides to proteins
[35]. Otherwise, some protein redundancies may be lost
due to incorrect “unique” peptides and the protein results
artificially inflated.

We chose to present separate lens proteomes for IPI
databases and for UniProt databases rather than some
form of a combined proteome. Reconciling identifications
between the two databases was not trivial and was not
deemed accurate enough to produce a combined proteome.
The best analysis strategy might be to search IPI databases
to gain a more complete picture of the more abundant
proteins and then use those results to augment sequences in
UniProt databases for final searches. This would ensure that
UniProt databases are “complete” for the sample under
study, and the higher quality annotations would be easier
for follow-up research.

Comparison between tryptic and no-enzyme searches

For these modest-sized datasets, there was less difference
between the two search strategies than expected. There was
considerable overlap in the fully tryptic peptides that passed
thresholds in both searches, but there were also unique fully
tryptic peptides that were identified by each search strategy.
The small difference at the peptide level also translated into
small differences at the protein level, making it hard to
conclude which search strategy was better. It is clear from
Fig. 2 that score threshold must be set higher for fully
tryptic peptides in tryptic searches (Fig. 2a) than for fully
tryptic peptides in no-enzyme searches (Fig. 2b). There was
a potential gain in no-enzyme searches by reducing the
number of incorrect fully tryptic peptides, which allowed
lower relative thresholds and retention of a larger fraction
of the correct fully tryptic peptides. It has been shown that
some fully tryptic peptide identifications get displaced from
their top-scoring position in tryptic searches by semi- or
non-tryptic results in no-enzyme searches [34], and this will
reduce the gain from lowering the thresholds. For these
datasets, the two factors seemed to offset each other, and
no-enzyme searches did not outperform tryptic searches. If
the incorrect distribution is much larger than the correct
distribution for fully tryptic peptides from a tryptic search,
then there may be more gain from performing a no-enzyme
search. In this case, the right-hand tail of the large incorrect
distribution may reduce tryptic search sensitivity to a
greater extent, and shifting the majority of the incorrect
peptides to other peptide classes in no-enzyme searches
may be more beneficial.
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Lens proteomes

Nearly all 2-DE studies of lens proteins have identified only
crystallins, in contrast to these 2-DLC experiments where
far more complex proteomes were obtained. Functional
annotations could be added for the proteins detected in the
human and mouse lenses, and spectral-count-weighted
functional frequency analyses were performed. The major-
ity (about 80%) of the observed peptides were associated
with crystallins, with other peptides roughly equally
scattered across several categories. It is not clear from this
study if any of these proteins are actually functional in
mature lens fiber cells. It seems more likely that many of
these proteins are remnants of the organelle degradation
that occurs following fiber cell differentiation. It may be
interesting to see if the non-crystallin lens proteome
changes with age to assess possible contributions to loss
of lens function.

The novel crystallin results added to our understanding
of the changes in lens crystallins across species. Alternative
start codons are known for many {-crystallins, and
the longer isoform of 3A4 in human is another example.
The relative abundance of the longer form is less than the
shorter form, suggesting that the alternate start codon may
be very close to the 5’ end similar to the 3A1/A3 isoforms.
Monomeric y-crystallins in chicken were predicted from
genomic sequences, but this is the first evidence that these
genes are expressed. Confirmation of the presence of yS
and YN cDNA in chicken lens is planned. Relative
abundance levels of yS based on spectral counts indicate
lower levels (about 20%) relative to the (3-crystallins. The
minor crystallin YN has only recently been detected in a
few species, and we were able to observe this crystallin in
both bovine and chicken lenses for the first time. It had
been previously reported in mouse [37] and we were able to
confirm that finding. We were not able to detect the
presence of YN in human lens.

We have applied powerful new proteomic techniques in
combination with rigorous bioinformatics analyses to study the
lens from a systems biology point of view. The accurate, more
complete lens proteomes presented here resulted in the
identification of new crystallins in three species and can serve
as starting points for future lens proteomic studies. Additional
species can be studied, deeper proteome coverage obtained
with newer, more-sensitive instruments, and quantitative
proteomic studies performed to address specific lens biological
questions.

Supporting information

Full protein and peptide identifications for the human lens
are presented in ESM, Supplemental Tables 1, 2, and 3. The

mouse results are in ESM, Supplemental Tables 4, 5, and 6.
Bovine and chicken proteomes are given in ESM, Supple-
mental Tables 7, 8, 9 and 10, respectively. The PAW
software, for processing SEQUEST search results, is freely
available for non-commercial use via written request to the
corresponding author.
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