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Purpose. The finite element analysis method was used to explore the biomechanical stability of a novel locking plate for
thoracolumbar burst fracture fusion fixation. Methods. The thoracolumbar CT imaging data from a normal volunteer was
imported into finite software to build a normal model and three different simulated surgical models (the traditional double-
segment fixation model A, the novel double-segment fixation model B, and the novel single-segment fixation model C). An
axial pressure (500N) and a torque (10 Nm) were exerted on the end plate of T12 to simulate activity of the spine. We
recorded the range of motion (ROM) and the maximum stress value of the simulated cages and internal fixations. Results.
Model A has a larger ROM in all directions than model B (flexion 5.63%, extension 38.21%, left rotation 46.51%, right rotation
39.76%, left bending 9.45%, and right bending 11.45%). Model C also has a larger ROM in all directions than model B (flexion
555.63%, extension 51.42%, left rotation 56.98%, right rotation 55.42%, left bending 65.67%, and right bending 59.47%). The
maximum stress of the cage in model A is smaller than that in model B except for the extension direction (flexion 96.81%, left
rotation 175.96%, right rotation 265.73%, left bending 73.73%, and right bending 171.28%). The maximum stress value of the
internal fixation in model A is greater than that in model B when models move in flexion (20.23%), extension (117.43%), and
left rotation (21.34%). Conclusion. The novel locking plate has a smaller structure and better performance in biomechanical
stability, which may be more compatible with minimally invasive spinal tubular technology.

1. Introduction

Traditional anterior surgery is recommended for patients
with nerve compression from the front, the intact posterior
ligamentous complex (PLC), and incomplete spinal cord
injury [1-3]. This procedure can perform the decompression
and fusion operation of the anterior middle column under
direct vision to provide a better nerve decompression effect
and fusion stability [4]. However, it is full of controversy
due to the complicated surgical approach and many postop-
erative complications [5-8]. With the development of spine
devices, anterior minimally invasive spinal tubular technol-
ogy, such as anterior lumbar interbody fusion (ALIF), obli-

que lateral interbody fusion (OLIF), and direct lateral
interbody fusion (DLIF), which requires smaller incisions
and avoids excessive approach-related injury while allowing
rapid recovery [9, 10], has become more popular in recent
years. This technique is mostly used in the treatment of
intervertebral discs, but is rarely used in the treatment of
vertebral body fusion for spinal fractures [11-13].

In the course of clinical treatment, we try to use mini-
mally invasive tubular technology to treat the thoracolumbar
burst fractures that require anterior decompression and
tusion. However, the traditional anterior fixation instrument
cannot well cooperate with the channel technology to per-
form the operation. Based on this feature, we designed and
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FIGURE 1: Preliminary design of the novel plate appearance. (a) The position of the plate on the spine mold. (b) Screws position under

transverse section. (c) The shape of the novel plate and screws.
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FIGURE 2: The normal T12-14 thoracolumbar model designed in UG NX software. (a) Normal model anteroposterior view. (b) Normal

model lateral view.

F1GURE 3: The normal T12-L4 thoracolumbar model (MO) in finite element software Abaqus. Imported the meshed 3D model into the finite
element software, build ligaments model, and assigned material properties.

invented an internal fixation device (Figure 1) (Patent No.,
ZL 201810805552.8) that can meet the requirements of a
smaller size, a more concise connection method, and provide
better stability.

In order to evaluate the biomechanical properties of the
novel plate, this experiment uses finite element analysis to
compare the novel fixation instrument with the traditional
double-segment fixation instrument (TDFI). By analyzing
statistics of the range of motion (ROM) and the maximum

stress value of the simulated cages and internal fixations,
we try to appraise the biomechanical stability of the novel
instrument in single-segment fixation instrument (NSFI)
and double-segment fixation instrument (NDFI).

2. Materials and Methods

2.1. Novel Plate Design. The appearance of the new plate we
designed is shown in Figure 1. The material of the new
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TaBLE 1: Material properties of the finite element models.

Structures Elastic modulus (MPa) Poisson ratio Sectional area (mm?)
Cortical bone 12000 0.3

Cancellous bone 100 0.3

Annular fiber 450 0.45

Nucleus pulposus 1 0.49

Anterior longitudinal ligament 7.8 0.3 49
Posterior longitudinal ligament 10 0.3 30
Ligamentum flavum 15 0.3 40
Interspinous ligament 10 0.3 70
Supraspinous ligament 10 0.3 70
Intertransverse ligament 10 0.3 2
Internal fixation devices 110000 0.3

FIGURE 4: The models of different surgical protocols designed in UG NX software. (a) Anteroposterior and lateral view of the traditional
double-segment screws fixation system. (b) Anteroposterior and lateral view of the novel double-segment plate fixation system. (c)
Anteroposterior and lateral view of the novel single-segment plate fixation system.

internal fixation is titanium alloy, the shape of the plate is
“I,” and its arc is the same as that of the side-wall of the ver-
tebral. There are 3 holes on both sides of the plate for locking
screws. When inserting the locking screw, the screw should
be close to the endplate and perpendicular to the sagittal axis
of the vertebral body. At this time, the plate and screws can
support the endplate. The screw is designed as a cortical
locking screw with a diameter of 3.5 mm—while the value
of traditional screw diameter is about 5.5mm-—and the
length span is 5 mm. The novel plate is designed in different
sizes, and the width is about 26 mm and the length 70 mm,
for various patients to choose. Compared with the larger

screw diameter in the traditional anterior system, the newly
designed internal fixation apparatus reduces the screw diam-
eter, which can complete the screw installing with only a
small amount of bone remaining in the injured vertebra
and achieve the goal of single-segment or double-segment
fusion fixation.

2.2. Building a Normal Finite Element Model. We selected a
25-year-old male volunteer who was in good health and had
never got spinal disease or pain and screened by X-ray. After
explaining the risks and benefits of CT scan in detail, the
volunteer signed the informed consent. On March 13,
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F1GURE 5: The models of different surgical protocols in finite element software Abaqus. Imported the meshed 3D model into the finite
element software, built ligaments model, and assigned material properties. (a) Anteroposterior view of the traditional double-segment
screws fixation system (model A). (b) Anteroposterior view of the novel double-segment plate fixation system (model B). (c)
Anteroposterior of the novel single-segment plate fixation system (model C).

TaBLE 2: Comparison between the normal spine model and models from previous studies.

ROM (°)
Results Yamamoto et al. [16] Pflugmacher et al. [17] Basaran et al. [19]
Flexion 5.46 58+0.6 53+1.0 4.5+0.9
Extension 4.71 43+0.5 57+1.0 45+09
Left bending 4.67 52+04 43+0.6 42+0.8
Right bending 4.55 4.7+0.4 43+0.6 42+0.8
Left rotation 1.53 2.6+0.5 2.1+0.5 23+0.6
Right rotation 1.88 2.0£0.6 2.1£05 23+0.6

2019, the volunteer’s T12-L5 vertebral was scanned by 64-
slice spiral CT (Siemens, Erlangen, Germany) in the CT
room of the Third Hospital of Hebei Medical University.
The tube current of the machine used is 200 mA, the tube
voltage is 120kV, the slice thickness is 1 mm, the interlayer
spacing is 1 mm, and the image data output is in DICOM
(Digital Imaging and Communications in Medicine) format.

The DICOM format image data was imported into the
interactive medical imaging control system Mimics17.0.
The threshold segmentation was used to remove the other
structures except the T12-L4 vertebral body; then, a 3D
spine model of the T12 to L4 was created. These models
were imported into the reverse engineering software Geoma-
gic Studio 12.0, and the obvious defects of the vertebral body
were removed using smoothing and denoising. The interver-
tebral disc structures of T12-L1, L1-L2, L2-L3, and L3-L4
were designed and established by using UG NX9.0 software
in which the nucleus pulposus occupied 44% of the area of
the intervertebral disc (Figure 2). The 3D spine model was
imported into the Hypermesh program to divide the 3D
structure into a mesh model including 441135 nodes and
975423 elements. Finally, the divided model was imported
into the Abaqus finite element analysis software to establish
ligament structures around the model and named MO
(Figure 3), including the anterior longitudinal ligament, pos-
terior longitudinal ligament, ligamentum flavum, interspi-
nous ligament, supraspinous ligament, and intertransverse

ligament. Each structure was assigned material properties
(Table 1) [14, 15], including elastic modulus and Poisson’s
ratio.

2.3. Building Anterior Depression Model of the L2. According
to the characteristic of the anterior approach, the completed
3D thoracolumbar model was imported into the UG NX9.0
software to build three simulated depression models. They
were divided into two forms: (1) the upper 1/2 bone of the
L2 vertebrae and the adjacent intervertebral disc were
removed to meet the single-segment decompression and
fusion surgery, and this model only created one; (2) both
L2 vertebrae and all the adjacent intervertebral discs were
removed to meet the double-segment decompression and
fusion surgery, and two models of this type were established.

2.4. Building Model of the Cage and Internal Fixation
Devices. The cage and internal fixation devices were built
by the UG NX9.0 software (Figure 4). The material of all
apparatuses was titanium alloy, and each part connected
with a locked form. All the internal fixation devices were
placed on the left side of the spine models. (1) The data of
the traditional anterior two-segment fixation system was
provided by Double-Medical Technology Co., Ltd. The
diameter of the vertebral screw was 5.5 mm, and the length
was 50mm; the diameter of the connecting rod was
5.5mm, and the length was 70 mm and 85 mm; the width
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FIGURE 6: Movement of three models under different working conditions. Apply 500 N axial load and 10 Nm torque to the endplate on T12
and observe the range of motion of the models in all directions. I.-III. represent model A, model B, and model C; i.-vi. represent different
directions of motion, including flexion, extension, left axial rotation, right axial rotation, left lateral bending, and right lateral bending.

of the double hole gasket was 4mm, and the height was
8.5mm. (2) The data of the novel two-segment plate was
designed by ourselves, the length of the plate was 78 mm,
and the width of the plate was 26 mm. The screw diameter
was 3.5mm, and the length was 45mm. (3) The length of
the novel single-segment plate was only 20 mm shorter than
that of the double-segment plate, while the other parameters
remained unchanged. (4) Titanium cage data was provided
by Double-Medical Technology Co., Ltd. In order to apply
to different fusion segments, we created three cage models
in two types that only had differences in length: two cages
with 40mm and one cage with 18 mm. Their diameters
were 24mm, and thicknesses were 1.5mm. Finally, the
Hypermesh program was used to mesh all apparatuses: the

traditional fixation system had 28491 nodes and 127158 ele-
ments; the novel two-segment plate had 8095 nodes and
27046 elements; the novel single-segment plate had 7773
nodes and 26400 elements; the bigger cage had 3585 nodes
and 8778 elements but smaller 2230 nodes and 5957 elements.

2.5. Establishing Different Surgical Models in Finite Element
Software. The meshed models in Hypermesh were imported
into the finite element software Abaqus to give material
properties (Table 1), including elastic modulus and Poisson’s
ratio. The two-segment fixation with the traditional instru-
ment was named model A, the two-segment fixation with
the novel plate was named model B, and the single-segment
fixation with the novel plate was named model C (Figure 5).
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FIGURE 8: The maximum von Mises stress of cages.

2.6. Setting Up Loads and Boundaries. The boundaries and
loads were set to simulate spinal movement using the finite
element software Abaqus. The boundaries were defined as
the lower part and back of the L4 vertebrae that were set
to be fixed. The rotation of the spine around the X, Y, and
Z axes was defined as the flexion-extension, lateral bending,
and rotation of the spine. According to normal human body
weight bearing and previously published literature [16-18],
an axial load of 500 N and a torque of 10 Nm are uniformly
applied to the T12 endplate.

2.7. Evaluation Index. It analyzed the spinal motion range of
the thoracolumbar spine in 6 different directions and the
maximum von Mises stress of cages and internal fixations
in the three models. No statistical analysis was performed
in this study as only one subject was modeled.

3. Results

3.1. Results of Model Validity. In order to verify the validity
of the model, we applied 150N axial pressure and 10 Nm
torque on the upper surface of the T12 vertebrae to measure
the ROM of the model in all directions. The measured range
of motion of the normal model under various working con-
ditions is similar to the results of previous biomechanical
studies (Table 2) [16, 17, 19], which proves the validity of
the finite element model established in this study.

3.2. The Results of Range of Motion. The upper surface of
T12 was uniformly applied 500N axial load and 10 Nm tor-
que to simulate spinal motion (Figure 6), and the ROM of
the simulated models was recorded (Figure 7). The ROM
of the three simulated models in all directions is smaller than
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that of the normal model. Among the three simulated models,
model C has the largest range of motion in six directions, and
model B has the smallest range of motion in six directions.
Compared with model B, model A has an increase of 5.63%
in flexion, 38.21% in extension, 46.51% in left axial rotation,
39.76% in right axial rotation, 9.45% in left bending, and
11.45% in right bending. Compared with model B, model C
has an increase of 555.63% in flexion, 51.42% in extension,
56.98% in left axial rotation, 55.42% in right axial rotation,
65.67% in left bending, and 59.47% in right bending.

3.3. The Maximum von Mises Stress of Each Internal
Fixation and Cage. The maximum von Mises stress of the
cages in each model in different directions of motion is shown
in Figure 8. When bending on the left side, each simulated sur-
gery model shows that the stress of the cage is the smallest. We
chose model A and model B to appraise the maximum von
Mises stress because they only have differences in the internal
fixation device. Except in the extension direction, the stress in
the other motion directions of model A is much greater than
the stress of the cage in model B. The maximum von Mises
stress of the cage in model A decreases by 29.11% in the exten-
sion but increases by 96.81% in the flexion, 175.96% in the left
axial rotation, 265.73% in the right axial rotation, 73.73% in
the left bending, and 171.28% in the right bending.

The maximum von Mises stress of the internal fixation
devices in each model in different directions of motion is
shown in Figure 9. In the flexion, extension, and left axial
rotation, the maximum von Mises stress of model A is larger
than that of the model B by 20.23%, 117.43%, and 21.34%. In
the right axial rotation, left bending, and right bending, the
maximum von Mises stress of model A is reduced by
27.38%, 20.77%, and 7.54% compared with the model B.

4. Discussion

We designed a finite element experiment to compare the
effects of novel plate and traditional internal fixation device

on spinal stability and range of motion after surgical fixa-
tion. The results show that the novel plate provides better
postfusion stability, and the reduction of fusion segments
has a smaller effect on spinal mobility. Meanwhile, the new
internal fixation device can better disperse the stress to avoid
internal fixation stress concentration.

Anterior channel technology is mostly used in thoraco-
lumbar degenerative diseases to treat intervertebral disc
lesions and complete intervertebral fusion [20, 21], but it is
rarely used in thoracolumbar burst fractures. Based on the
concept of minimally invasive, we use channel technology
to perform anterior decompression and fusion treatment
for burst fracture patients with complete PLC and neurolog-
ical impairment. In the course of treatment, we found that
nerve decompression can be completed with only a portion
of the injured vertebrae bone removed. However, due to the
cumbersome connection of the anterior screw rod internal fix-
ation device and the relatively large screw diameter, it cannot
be well matched with the channel technology to complete
the fixation with little bone remaining in the injured vertebra.
In view of these considerations, we newly designed a more
compact and convenient device to match the working channel
to achieve the purpose of obtaining maximum stability while
fixing fewer segments. The “raft support” [22] concept used
in the treatment of the long tubular bone metaphysis is inte-
grated into the newly designed plate. The diameter of the
screw is reduced while the number of screws is increased, so
that the screws are arranged in a plane at both sides of the
plate, which can support the endplates.

In this experiment, the range of motion of the three sim-
ulated models is less than that of the normal model. Previous
literature has shown that no matter what kind of surgical fix-
ation method, it will have different degrees of influence on
the mobility of the spine [23, 24], and the results in this
experiment also reflect similar problems. A comparison
between model A and model B shows that only the internal
fixation method is different, so the larger the movement
range, the worse the stability of the internal fixation. The



results that the novel locking plate method has a smaller ROM
explain the locking manner of the novel plate, which makes
the screw and the plate integrated, is simpler and more reliable
than the traditional nail-rod press-fit fixing method. Spinal
fusion surgery will cause changes in the pressure in the inter-
vertebral discs of adjacent segments. Over time, the interverte-
bral discs of adjacent segments may undergo metamorphosis,
and there is a risk of developing adjacent segment disease
(ASD) [25]. Biomechanical studies of simulated lumbar fusion
surgery have shown that the pressure in the adjacent interver-
tebral discs of the fusion segment will increase, and the
increase in pressure is positively correlated with the number
of fusion segments [26, 27]. The longer the fusion segment,
the more likely it is to develop ASD. The newly designed plate
reduces the diameter of the screw which requires less residual
bone in the injured vertebra so it might reduce the fusion seg-
ment to decrease the incidence of ASD.

We also measured the maximum von Mises stress of
each internal fixation and cage to judge the support effect
of different internal fixation devices on the spine. The cage
is located between the two vertebral bodies, and its force
can reflect the amount of stress shared by the internal fixa-
tion. Our results of the maximum stress of the cage indicate
that the new plate bears more stress than the traditional
device, because the screws are arranged in a plane to provide
planar support to the endplate, which provides stronger sta-
bility than the traditional linear support structure with two
nails. Maintaining a stable state can also provide a better
mechanical environment for the growth and fusion of bone
tissue. Although the new plate bears more stress, the maxi-
mum stress value on the internal fixation is smaller than that
of the nail-rod system in the movement direction of flexion,
extension, and left axial rotation. In the new plate system,
the screw and the plate form a whole through a locking
structure, which disperses the stress on the screw-plate
structure and is not prone to stress concentration, thereby
reducing fatigue break of the internal fixation.

There are also some shortcomings in the research.
Although the finite element software can simulate movement
of spine and measure the stress on the internal fixation, it only
loads the force in six directions and still cannot fully simulate
all the characteristics of the human body in which the move-
ment of the spine is produced by the contraction of different
muscles. Various material properties are also assigned with
reference to different documents, which may be different from
the real organization. The method of finite element analysis
will have personal errors when the model is established, and
some structures will be different from the real spine condition.
Moreover, maximum stress experiments and fatigue experi-
ments are required to further test the properties of the plate.
If necessary, we will further improve the device because the
new plate is still in the experimental stage.

Abbreviations

PLC: Posterior ligamentous complex

TDFI:  The traditional double-segment fixation instrument
NSFI: The novel instrument in single-segment fixation
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NDFIL:  The novel instrument in double-segment fixation
instrument

ROM:  Range of motion

3D: Three dimensional

CT: Computed tomography

DICOM: Digital imaging and communications in medicine
ASD: Adjacent segment disease.
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