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Simple Summary: Ovarian cancer is the most lethal gynecologic malignancy and is characterized
by genomic instability and DNA repair defects. PARP inhibitors (PARPi) changed the treatment
paradigm of ovarian cancer but the development of resistance to PARPi is a pressing clinical challenge.
In this review, we discuss how RecQ helicases can be targeted as a novel therapeutic strategy to
prevent such treatment resistance. The combination of helicase inhibitor with a PARP inhibitor
(PARPi) or ATR inhibitor may overcome PARPi resistance in ovarian cancer.

Abstract: RecQ helicases are essential for DNA replication, recombination, DNA damage repair, and
other nucleic acid metabolic pathways required for normal cell growth, survival, and genome stability.
More recently, RecQ helicases have been shown to be important for replication fork stabilization, one
of the major mechanisms of PARP inhibitor resistance. Cancer cells often have upregulated helicases
and depend on these enzymes to repair rapid growth-promoted DNA lesions. Several studies are
now evaluating the use of RecQ helicases as potential biomarkers of breast and gynecologic cancers.
Furthermore, RecQ helicases have attracted interest as possible targets for cancer treatment. In this
review, we discuss the characteristics of RecQ helicases and their interacting partners that may be
utilized for effective treatment strategies (as cancers depend on helicases for survival). We also discuss
how targeting helicase in combination with DNA repair inhibitors (i.e., PARP and ATR inhibitors)
can be used as novel approaches for cancer treatment to increase sensitivity to current treatment to
prevent rise of treatment resistance.

Keywords: ovarian cancer; RecQ helicases; BLM; WRN; RECQL4; novel treatment

1. Introduction

Since the discovery of helicases in 1976, there has been immense progress in their
classification, characterization, and our understanding of their functions [1–3]. Helicases
are molecular motors that can separate DNA or RNA double helices using the energy
generated from ATP hydrolysis [4]. This function makes helicases critical players in cellular
replication, transcription, DNA repair, and the maintenance of both genomic integrity and
cellular homeostasis.

There are an estimated 95 human helicases, of which 31 are DNA helicases and 64
are RNA helicases [5]. These helicases can be classified into six superfamilies (SF1 to SF6)
based on their conserved motifs and structure (Figure 1) [4]. Among the six superfamilies,
SF2 is the largest group, containing many conserved motifs. In terms of structure, SF1
and SF2 have a monomeric (non-ring-shaped) structure while SF3 to SF6 are hexameric
(ring-shaped) in structure [4]. Helicases can be further classified into alpha or beta helicases.
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Alpha helicases bind to single-strand DNA, while beta helicases bind to double-strand
DNA. SF1 is the only superfamily made up of alpha helicases. The SF2 to SF6 families are
all beta helicases. When a helicase translocates from 3′ to 5′, it is considered type A, while
if translocation occurs from 5′ to 3′, the helicase is considered type B. SF1, SF2, and SF6
have examples of type A and type B, while SF3 only has type A, and SF4 and SF5 are only
type B [4]. These characteristics allow them to have roles such as replication, repair, and
genomic stability which will be further discussed in this review.
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Figure 1. The RecQ helicases. Schematic representation of all five RecQ helicases (RECQL, BLM,
WRN, RECQ4, RECQ5). Each helicase domain (helicase, RQC, acidic, NLS, HRDC, and exonuclease
domain) is represented in different colors. Abbreviations: RQC, RecQ C terminal; NLS, nucleolar
localization signal; HRDC, helicase-and-ribonuclease D/C-terminal. The size (amino acid) of each
protein is indicated on the right side.

Due to their diverse activities, mutations in helicases often result in genetic diseases
and their dysregulation can directly lead to the development of cancer. One member
of the SF2 superfamily, RecQ, is one of the important helicases involved in DNA repair
and stabilizing the genome. There are five members of RecQ, which are RECQL [6] (also
called RECQL1), BLM (Bloom’s syndrome gene) [7], WRN (Werner’s syndrome gene) [8],
RECQL4 [9], and RECQL5 [9] with unique biochemical functions [10]. Among these five,
mutations in BLM, WRN, and RECQL4 are associated with premature aging and a higher
risk of developing cancers.

For instance, homozygous loss-of-function mutations of BLM cause Bloom’s syndrome
which is characterized as premature aging, immune deficiency, and skin lesions. Bloom’s
syndrome is also linked to predisposition to different cancers such as leukemias, lym-
phomas, and carcinomas in the breast, skin, and colon [7,11]. Similarly, homozygous and
compound heterozygous loss-of-function mutations in WRN is associated with Werner
syndrome, which is characterized by premature aging, skin changes (scleroderma), short
stature, osteoporosis, cataracts, diabetes, hypogonadism, and premature atherosclero-
sis [8,12]. Patients with Werner syndrome are at increased risk for cancers such as thyroid
neoplasms (16.1%), melanoma (13.3%), meningioma (10.9%), and others [13]. Mutation in
RECQL4 is associated with Rothmund-Thomson syndrome [14] which is characterized by
poikiloderma (discoloration of skin), skeletal abnormalities, and juvenile cataracts. Sub-
sequent studies have shown that mutation of RECQL4 is also related to RAPADILINO
syndrome (short stature, limb malformation, and infantile diarrhea) [15] and Baller-Gerold
syndrome (radial hypoplasia with craniosynostosis) [16]. Aside from these associated
genetic diseases, a person with a mutation in RECQL4 has a higher risk of developing
osteosarcoma (32%) and skin cancer (2%) [17,18].

In this review, we focus on the roles of RecQ helicases (Figure 2), particularly on the
cancer-associated BLM, WRN, and RECQL4, and discuss their potential as targets for cancer
treatment.
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Figure 2. Functional roles of RecQ helicases. The major functions of RecQ helicases are indicated in
the rectangular column and its subsequent effect to the cells are indicated in circle. Each function
is represented in different colors. The major functions of helicases include removal of blockage at
stalled replication fork, maintenance of stressed replication fork, removal of non-canonical secondary
structure at genome, denatures dsDNA and RNA secondary structure, repair of DNA damage, and
maintenance of telomere length, chromatin structure, and integrity.

2. BLM Function, Its Interacting Partners, and Its Implication in Cancer

BLM primarily take part in DNA replication and double-stranded break (DSB) repair
and preferentially unwinds structures such as G-quadruplex and Holiday Junctions [19,20].
During DNA replication, cells undergo replication stress and BLM provides stability to the
replication fork. BLM also stabilizes the fork following DNA damage to assist in restarting
replication [21]. To do so, BLM is recruited to the site of stalled replication fork in an
ATR/ATM-dependent manner, which then recruits 53BP1 to the site of damage [22]. BLM
then recruits MRE11-RAD50-NBS1 (MRN) complex for replication fork restart [23,24].

During homologous recombination (HR)-mediated DSB repair, DNA ends at the
break site is resected to generate single-strand DNA regions. This resection is initiated
by the MRN complex with BRCA1 and C-terminal-binding protein-interacting protein
(CtIP), which is further enhanced by helicases and nucleases (e.g., BLM, WRN, EXO1, and
DNA2) [25]. The single-strand DNA then becomes a substrate for RAD51 monomer that
loads in a BRCA2-dependent manner [25]. BLM also interacts with topoisomerase III alpha
(TopIIIα), RMI1, and RMI2 to form a BTRR complex [26,27]. This complex is evolutionarily
conserved and binds to the double Holiday Junction, an intermediate formed during HR
after the resection step. This results in the dissolution of the double Holiday Junction which
prevents genetic crossover [20]. The dissolution step is further enhanced by the replication
protein A (RPA), which binds through the RMI1 subunit of the BTR complex [28]. Recently,
aside from RMI1, it was identified that there are conserved RPA binding motifs within
BLM and this RPA-binding helps BLM to be recruited to the strained DNA replication
site for fork restart [29,30]. BLM accumulates at the stalled replication forks to interact
with FANCM and FANCC, bridging key components required for proper DNA repair, to
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dissolve the double Holiday Junctions [31,32]. WRN also interacts with BRCA1 during the
repair of intrastrand cross-links (ICLs) and requires its WRN helicase activity, and not the
exonuclease activity, to process the ICLs [33].

Previously, it has been shown that BLM acts as a tumor suppressor since it prevents
crossover between homologous chromosomes [34,35]. However, loss-of-heterozygosity in
BLM-deficient cells is rare, suggesting other cellular functions of BLM that may contribute
to increased predisposition to cancer. Furthermore, the recent largest study to date (14,804
unselected breast cancer cases and 4698 cancer-free controls) has found that heterozygous
BLM mutation does not appear to increase the risk of breast cancer [36]. Perhaps it is
possible that BLM mutation results in genomic instability, affecting its interaction with its
binding partners to predispose a person to cancer.

Additionally, several reports have also suggested BLM as a potential driver of oncoge-
nesis. A person with Bloom’s syndrome has a high occurrence of hematologic malignancies.
Among 136 persons in the Bloom’s syndrome Registry, 40 of them have leukemia, 35 of
them have lymphoma, and 15 of them have carcinoma in small and large intestines [37].
Recent studies have shown that BLM is upregulated in many cancers including lung squa-
mous cell carcinoma, colon adenocarcinoma, endometrial carcinoma, cervical squamous
cell carcinoma, and endocervical adenocarcinoma [38,39]. Furthermore, overexpression of
BLM is associated with poor overall survival in patients with lung and gastric cancers [40].

Although there are contradictory reports suggesting the roles of BLM as tumor sup-
pressor versus oncogenic driver, it is likely that proper BLM expression (no higher or
lower expression) is required for genome stability and any disruption to that balance
could lead to tumorigenesis. This may explain why patients with Bloom’s syndrome with
genomic instability have a higher risk of developing cancer. As such, recent post-hoc
exploratory biomarker studies have evaluated BLM as a prognostic or potential predictive
biomarkers in breast and gynecology cancers (Table 1). Mutations in homologous recombi-
nation repair were associated with increased progression-free survival and overall survival
independent of treatment [41]. Moreover, BLM copy number gain was found more fre-
quent in platinum-sensitive triple negative breast cancer (TNBC) than in platinum-resistant
TNBC [42]. However, more studies need to be conducted to test the potential use of BLM
as a druggable target or biomarker for cancer therapy (Table 1).

Table 1. Studies evaluating BLM as a prognostic or potential predictive biomarkers in breast and
gynecological cancers.

Cancer Subtypes Study Setting Key Findings Related to BLM Ref.

Newly diagnosed, stage III or IV
ovarian, fallopian tube, or primary

peritoneal carcinoma

Post-hoc exploratory biomarker
analysis from GOG-0218

(NCT00262847), a phase III trial.

Homologous recombination repair (HRR)
mutations were found in 25.7% of tissue samples.

BLM mutation was found in 1.6% of these
patients.

[41]

Arm 1: carboplatin plus paclitaxel
Arm 2: carboplatin plus paclitaxel and

concurrent bevacizumab
Arm 3: carboplatin plus paclitaxel and
concurrent bevacizumab followed by

bevacizumab maintenance

BRCA wild type, HRR mutations were
associated with increased progression-free

survival (PFS) and overall survival (OS)
independent of treatment. However, no

difference for PFS was identified by addition of
bevacizumab between patients with or without

HRR mutation.

Stage II or III triple negative breast
cancer (TNBC)

Post-hoc exploratory biomarker
analyses of two, single arm,
neoadjuvant phase II trials:

BLM copy number gain was found in 33% of
platinum-sensitive and 0% in resistant tumors in
trial 1 and 44% of combination therapy-sensitive

and 12% in resistant tumors in trial 2.
[42]

Trial 1 (NCT00148694) evaluated
cisplatin

Trial 2 (NCT00580333) evaluated
cisplatin and bevacizumab

BLM mRNA levels were higher in
cisplatin-sensitive tumors compared to resistant
tumors. Stratification of results by bevacizumab

was not given in this article.

3. WRN Function, Its Interacting Partners, and Its Implication in Cancer

As with other RecQ helicases, WRN has 3′-5′ helicase activity to unwind duplex DNA
in an ATP-dependent manner [43]. Similar to BLM, WRN can exert its unwinding activities
on complex structures such as G-quadruplex and D-loops, that would normally prevent
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proper DNA replication [44]. WRN also binds to Holliday Junctions to help repair DSBs
during HR in a similar manner to BLM as described above. WRN binds to RPA and this
interaction enhances DNA unwinding capabilities of the WRN helicase [45,46]. WRN also
binds to proliferating cell nuclear antigen (PCNA) [47], topoisomerase I [47], polymerase
delta [48], RAD52 [49], and MRN complex via binding with NBS1 [50]. Separately, WRN
is required for ATM activation [51]. Depletion of WRN results in an intra-S checkpoint
defect which then prevents the activation of ATM and downstream phosphorylation of
ATM targeted proteins [51]. But what is unique about WRN helicase among other RecQ
helicases is that it has an exonuclease domain with 3′-5′ exonuclease activity [52]. WRN
can proofread the DNA strand with its exonuclease domain and help compensate for
the lack of DNA polymerase β (Pol β) proofreading capability [53]. Altogether, WRN is
multi-functional with various binding partners involved in DNA replication and repair.

Recent large-scale silencing screens using CRISPR-Cas9 mediated knockouts and RNA
interference in 517 cell lines identified WRN as essential for the survival of cancers with
microsatellite instability (MSI) but is dispensable in microsatellite stable (MSS) cancers [54].
MSI is a hypermutation that is caused by defects in DNA mismatch repair genes. Early
evidence of the association between MSI and cancer was revealed in studies from 1993
which showed presence of MSI in colorectal cancer [55–57]. Since then, not only corre-
lations between MSI and other cancers have been identified, but also it led to the new
treatment opportunity for immune checkpoint blockade (ICB) [58]. MSI is found in ~30% of
endometrial cancer, ~15% of colorectal cancer, ~15% of gastric cancer, and ~2% of ovarian
cancer [59]. ICB has been granted the first tissue/site-agonistic indication by the U.S. Food
and Drug Administration for the treatment of MSI-high tumors.

Another complementary study of CRISPR-Cas9 screens in 324 cancer cell lines also
linked MSI-associated cancers to WRN [60]. Mechanistically, the TA-dinucleotide repeats
are highly unstable in MSI and undergo an expansion which results in the formation of
non-B DNA secondary structures. These structures stall replication forks, which require
WRN for proper restart. However, in the absence of WRN, these expanded TA-dinucleotide
repeats get cleaved by MUS81 nuclease, causing chromosome shattering [61]. Thus, the
dependence of MSI-associated cancers on WRN could be exploited as a therapeutic target.
In line with this, the first human DNA helicase inhibitor, NSC 19630, was discovered from
the National Cancer Institute library of compounds that specifically targeted the unwinding
capability of WRN [62]. A subsequent study from the same group also discovered a WRN
inhibitor, NSC 617,145 [63]. More recently, the group screened 350,000 small molecules and
identified small molecule inhibitors of WRN helicase [64]. In addition, there are several
studies evaluating BLM, WRN, and RECQL4 as prognostic biomarkers in breast and
gynecologic cancers (Table 2). For example, high BLM mRNA expression is associated with
aggressive clinicopathological features and poor survival in breast cancer and cytoplasmic
localization of BLM protein is associated with aggressive breast cancer phenotype [65].
Although further testing and evaluations are still needed, these studies provide promising
avenues of the potential targeting of RecQ helicases for therapies of breast and gynecologic
cancers (Table 2).
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Table 2. Studies evaluating BLM, WRN, and RECQL4 as prognostic biomarkers in breast and
gynecological cancers.

Biomarker Cancer Subtype Study Setting Key Findings Related to BLM, WRN, or
RECQL4 Ref.

BLM Breast Cancer (BC)

Retrospective study of BLM mRNA expression in BC
(n= 1950) and in publicly available external BC
dataset (n = 2413). BLM protein level was also

evaluated in another BC dataset (n = 1650) and 20
normal breast tissues.

High BLM mRNA expression was associated
with aggressive clinicopathological features

and poor survival.

[65]
At a protein level, high cytoplasmic BLM (53%

of tumors) and low nuclear BLM (54% of
tumors) were associated with aggressive

phenotypes. Strong nuclear BLM expression
was found in 95% of normal breast tissues.

BLM, WRN,
RECQL4 Breast cancer (BC)

Retrospective study of 1269 invasive BC. Of which,
1032 were positive for tumor-infiltrating CD8+ T

lymphocytes (TILs), and 237 cases were negative for
CD8+ TILs. Independent ER- BC cohort was used for

validation (n = 279).

BLM and RECQL4 protein expressions were
not associated with survival in CD8+ TIL+ or

CD8+ TIL- BCs. [66]Low WRN protein expression was associated
with poor survival in CD8+ TIL- BCs, but not

in CD8+ TIL+ BCs.

BLM, WRN,
RECQL4 BC

Retrospective study of gene expression data and
clinical outcomes from a publicly available dataset on

BC with relapse-free survival (RFS) (n = 3955),
overall survival (OS) (n = 1402), distant

metastasis-free survival (DMFS) (n = 1747), and
post-progression survival (PPS) (n = 414). Additional

BC samples (n = 160) were used for IHC staining.

High BLM mRNA levels were associated with
worse DMFS but were not correlated with OS,

RFS, or PPS.

[67]

High WRN mRNA levels were associated
with better OS and better but were not

correlated with DMFS or PPS.
High RECQL4 mRNA levels were associated

with worse OS, DMFS and RFS, and
moderately correlated with poor PPS.

Since WRN and RECQL4 mRNA expressions
were associated with OS, WRN and RECQL4

protein expressions were tested for association
with OS. High levels of WRN protein level

were associated with increased OS while high
RECQL4 protein level was associated with

reduced OS.

RECQL4 BC

Retrospective study of independent cohorts of
general BC to study copy number changes (n = 1970),

mRNA expression (n = 1977), protein levels (n =
1902), and BC incidence in type II

Rothmund-Thomson syndrome (RTS) (n = 58).

RECQL4 copy number gain and amplification
were found in 27.6% and 3% of tumors,
respectively. ER- tumors showed higher

likelihood of gain or amplification of RECQL4
compared to ER+ tumors.

[68]

RECQL4 mRNA expressions were high in 51%
of tumors. ER- tumors had higher RECQL4

mRNA expressions compared to ER+ tumors.
RECQL4 protein expression had complex
subcellular localizations in BC. RECQL4

staining were exclusively found in 17.6% of
nucleus, 23.4% in cytoplasm, 24.8% in both

nucleus and cytoplasm, or 34.2% with absence
of staining.

No increased incidence of BC was found in
type II RTS patients.

RECQL4 BC
Meta-analysis of gene expression data from eight
public datasets of BC patients (n = 1366 total with

some possible overlap between datasets)

Differential expression of genes analysis
showed that RECQL4 was differentially

upregulated in metastatic versus
non-metastatic tumors.

[69]

RECQL4 Cervical cancer
Cross-sectional comparative study of primary tumor
biopsy (n = 60) and hysterectomized control patients

(n = 30)

RECQL4 mRNA levels were higher in tumor
samples (n = 30) than in control samples (n =

60), but they did not correlate with tumor
stage.

[70]

RECQL4

Stage III or IV
High-grade serous

ovarian cancer
(HGSOC)

Prespecified post-hoc exploratory biomarker study of
newly diagnosed HGSOC patients who either

received platinum alone (n = 42), combination of
platinum and taxane (n = 85), or other

platinum-based treatment (n = 16). A public dataset
(TCGA) of HGSOC DNA containing methylation

data (n = 311) was used for validation.

Hypermethylation of RECQL4 promoter was
associated with increased hazard of disease

progression in the prospective cohorts and in
the TCGA dataset of HGSOC.

[71]

RECQL4 Ovarian cancer (OC)

Retrospective cohort study of OC patients (n = 157)
and fallopian tube (FT) tissue (n = 54) from benign
tumors of patients undergoing hysterectomy and

adnexectomy for tissue microarray study.
Fresh-frozen OC (n = 40) and normal FT tissues (n =

20) were used to measure RECQL4 mRNA and
protein expressions.

RECQL4 mRNA levels were about 10-fold
higher in OCs compared to normal FT tissues.

[72]

60.5% of patients had high nuclear RECQL4
expression.

High RECQL4 protein expression was
associated with poor OS, cisplatin resistance

status, serum CA125 level, and omental
metastasis.

WRN BRCA-mutant and
sporadic BC

Retrospective study of BRCA-mutant (n = 75) and
sporadic (n = 1650) invasive BC patients

Low nuclear or cytoplasmic WRN protein
expression was associated with poor overall

BC-specific survival.
[73]
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4. RECQL4 Function, Its Interacting Partners, and Its Implication in Cancer

Unlike BLM and WRN, which are more characterized, little is known about the func-
tion of RECQL4. RECQL4 is the only RecQ helicase that is expressed at mitochondria [74,75].
Its intracellular localization throughout the nucleus, cytoplasm, and mitochondria may
contribute to the heterogeneity seen in RECQL4-associated diseases. For instance, the
subcellular localization of RECQL4 in normal breast tissue is exclusively in the nucleus
while breast cancer tissues had complex subcellular localization [68]. This observation
needs to be further followed up to test whether subcellular localization of RECQL4 can
give rise to cancer. Furthermore, RECQL4 amplification is observed in 20–30% of ovarian
cancer and high RECQL4 expression is associated with a poor prognosis in ovarian cancer
(Figure 3A,B).
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Figure 3. RECQL4 amplification in ovarian cancer patients. (A) RECQL4 alteration frequency in
patients with ovarian cancer from four studies (n = 1725 samples) are extrapolated from c-bio portal
(cbioportal.org, accessed on 27 October 2021). Alterations include mutation (green), structural variant
(purple), amplification (red), deep deletion (blue), and multiple alterations (grey). Approximately
20–30% of ovarian cancer patients have amplification of RECQL4. (B) High RECQL4 amplification
is associated with a poor prognosis in ovarian cancer (n= 614) (Kmplot.com, accessed on 26 Octo-
ber 2021).
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In terms of structure, RECQL4 lacks the RecQ conserved domain (RQC) found in all
other RecQ helicases and lacks the RNase D conserved domain (HRDC) that are found in
BLM and WRN [76]. This may explain why the helicase activity of RECQL4 has not been
detected in resolving G-quadruplexed DNA, which requires the RQC domain, nor Holliday
Junctions, which requires both RQC and HRDC [77]. Unlike the typical unwinding activity
of helicases, RECQL4 has weak helicase activity but has two distinct regions within the
protein, the conserved helicase motif and Sld2-like N-terminal domain, that have DNA
unwinding capabilities [78].

There have been several proteins that have been identified to bind to RECQL4 includ-
ing CUT5, MCM10, RAD51, PARP1, XPA, FEN1, Pol β, APE1, RPA, BML, WRN, URB1/2,
and p300 [76]. RECQL4 also physically interacts with the MRN complex that initiates
the DNA end resection with CtIP for HR-mediated DSB repair [79]. Perhaps unique to
RECQL4 is its interaction with proteins found in mitochondria such as p53, TOM20, and
TFAM, and with proteins found at telomeres including TRF1 and TRF2 [76]. This suggests
that, in addition to general genome integrity maintenance, RECQL4 may also play a role in
mitochondrial and telomere maintenance. However, the exact mechanisms and functions
of RECQL4 still needs to be elucidated.

Recently, RECQL4 has been suggested to be involved in breast cancer. It has been
reported that 88.4% (38/43) of breast cancer tissues displayed a three-fold increase in
mRNA expression of RECQL4 compared to normal tissues. The highest RECQL4 expression
was observed in stage IV breast cancer [80]. In vitro studies comparing multiple breast
cancer cell lines have also found high mRNA levels of RECQL4 in the cancer lines [80].
Separately, Arora et al. showed that depletion of RECQL4 reduced DNA replication rates
and decreased cellular proliferation, making breast cancer cells more sensitive to cisplatin,
doxorubicin, and 5-FU [68]. Thus, targeting RECQL4 helicase may be an avenue for novel
cancer treatment.

5. Using Helicase Inhibitors in Combination Treatments with DNA Repair Inhibitors

Since cancer cells are highly proliferative and heavily rely on helicases for optimal DNA
replication and repair, they would be more susceptible to helicase inhibition. Accordingly,
many helicase inhibitors have been developed for their potential use in cancer therapy [81].
While exciting, a major drawback to using helicase inhibitors for cancer treatment is that
normal cells also need helicases for normal cellular replication and DNA repair. Therefore,
helicase inhibitors as monotherapies would not be an ideal treatment regimen when
considering side effects such as marrow toxicity. However, they can be used in combination
with other drugs while using lower doses to achieve synthetic lethality specifically for
cancers.

One such example would be the use of helicase inhibitor with DNA repair inhibitors
for the treatment of ovarian cancer. About 25% of ovarian cancer patients have BRCA1
or BRCA2 germline or somatic mutations [82], which results in HR repair deficiency.
In addition to BRCA1 and BRCA2 mutations, up to 51% of ovarian cancer cases have
alterations in genes that are involved in HR pathways [83]. Such deficiency in HR repair
can be exploited to induce synthetic lethality. Here, we discuss how helicase inhibitors can
be used as combination therapy with inhibitors of Poly(ADP-ribose) polymerase (PARP) or
ATR to target DNA repair and replication machinery in ovarian cancer.

6. Combination Therapy with a PARP Inhibitor

PARP1 functions in base-excision repair (BER) which is important in the repair of
single-stranded DNA breaks. Studies have shown that ovarian cancer cells with HR
deficiency (with BRCA1 or BRCA2 mutations) have elevated sensitivity to PARP inhibi-
tion [84,85]. This is due to the fact that when PARP is inhibited, the single-strand break is
not fixed, ultimately leading to the collapse of the replication fork. This pushes the repair
system to be HR-dependent. But, in the absence of functional HR, there is a persistence of
DNA lesions that leads to synthetic lethality for the cell [85]. All PARP inhibitors (PARPis)
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compete with NAD+, which is a substrate for poly(ADP-ribose) chain, resulting in inhibi-
tion of the enzymatic activity of PARP1 and PARP2 [86]. Another well-known mechanism
of PARPi is that it can trap PARP1 and PARP2 enzymes at a damaged DNA site. This
trapped PARP-DNA complexes are more cytotoxic than unrepaired single-strand breaks.
Thus, targeting BER in combination with PARPi could lead to synthetic lethality [87]. As
such, PARPis are one of the recent drug armamentariums for ovarian cancer treatment [88].
Due to its success, other factors involved in DNA damage repair are also being pursued as
potential targets for cancer therapy.

While PARPi changed the treatment paradigm in ovarian cancer, there is a high
fraction of patients who were not responsive to PARPi [89,90]. Several mechanisms of
PARPi resistance are addressed in the recent review [91]. It has been suggested that the
restoration of HR and other protective mechanisms (e.g., DNA replication fork protection
can counteract PARPi) [92]. More recently, RecQ helicases have been shown to be important
for replication fork stabilization, one of the major mechanisms of PARPi resistance. Since
RecQ helicases are involved in unwinding DNA to promote the replication fork restart and
HR repair, combining PARPi with helicase inhibition might be a viable option to enhance
the efficacy of PARPi. One such example is the use of WRN inhibitor (NSC 19630) with
PARPi (KU0058948) resulted in ~60% reduction of cell proliferation in HeLa cells while
neither compound alone had any detectable effect, suggesting synergistic effect of WRN
inhibitor and PARPi [62]. Another example is targeting of DDX3 RNA helicase with PARPi
(olaparib). RK-33 is a DDX3 helicase inhibitor that is made of a fused diimidazodiazepine
molecular that binds to DDX3 to inhibit its helicase function. This inhibitor has been shown
to inhibit non-homologous end joining [93,94]. The combination of RK-33 with olaparib
showed synergy in effective killing of MCF7 (hormone receptor positive) and MDA-MB-468
(triple negative) breast cancer cells [94]. In ovarian cancer, a recent study by Guo et al. also
demonstrated the involvement of RECQL4 in cisplatin resistance and that suppression of
RECQL4 resulted in sensitivity to cisplatin and PARP inhibitor, olaparib [72]. Furthermore,
a recent study by Datta et al. showed that WRN inhibitor can potentiate the cytotoxicity of
olaparib in BRCA2-mutated ovarian cancer cells that otherwise normally exhibit de novo
or acquired PARPi resistance [95]. These data suggest the potential of combined inhibition
of PARP and helicase as a way of overcoming PARPi resistance.

7. Combination Therapy with an ATR Inhibitor

There are a series of new therapeutic developments that target the G2 cell-cycle
checkpoint of high-grade serous ovarian cancers (HGSOC) [96]. Over 96% of HGSOC have
dysfunctional p53, which normally functions as a regulator of cell cycle arrest, DNA repair,
and apoptosis [82,83]. Cell cycle checkpoints allow proper control and fixing of damaged
DNA to prevent the accumulation of disease-causing mutations. However, since nearly all
HGSOC have dysfunctional p53 and G1/S phase checkpoint is dependent on the function
of p53, this forces HGSOC to depend on the G2 checkpoint arrest for proper DNA repair to
occur [92]. This unique dependency on the G2 checkpoint may be a prime opportunity to
design and utilize small molecule inhibitors for the selective targeting of HGSOC.

In the presence of chemotherapeutic drugs, replication is stalled at sites of damaged
DNA. However, RecQ helicases can continue to unwind the DNA. This activity triggers the
cell cycle checkpoint protein ATR and its downstream effector protein, checkpoint kinase 1
(CHK1) [97]. Both WRN and BLM helicases are phosphorylation substrates of ATR [98].
To prevent activation of the ATR pathway, dual inhibition of the helicases along with ATR
might result in more selective cancer cell death.

Aside from dual inhibition of helicases with ATR, ATR inhibitor may be useful to be
given in combination with PARPi as well. A recent study has shown that one of the reasons
why PARPi resistance occurs is due to the ATR/CHK1-mediated fork protection [99]. The
study reported that the dependency of PARPi treated cells on ATR/CHK1 for genome
stability made the cells more sensitive to combination treatment with ATRi. Currently,
there is a phase II clinical trial (NCT03462342) that is investigating the efficacy of combined
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ATRi (AZD 6738) and PARPi (olaparib) on recurrent ovarian cancer. All of these emerging
studies on combination treatments will help us better improve ovarian cancer treatments.

8. Conclusions

Helicases are required for DNA replication, DNA damage repair, maintenance of
genomic stability, replication fork stabilization, and re-start. Mutations of helicases are
associated with genetic diseases and increased predisposition to cancer. In cancer, helicases
are often upregulated to support proliferative properties of cancers and resistance to DNA-
damaging agents. Several new therapeutic approaches that target DNA repair systems have
shown great promise in the treatment of ovarian cancers. However, the cancer field remains
plagued by the frequent rise of resistance against cancer therapies. Perhaps combining
those new anti-cancer drugs (i.e., PARPi and ATRi) with helicase inhibitors could lead to
enhanced sensitivity and selectivity while diminishing resistance potential. Although not
discussed in this review, combining immune checkpoint inhibitors with helicase inhibitors
may be new avenues for treatment. However, this would still be at an early stage and
requires further investigation. Altogether, cancers often depend on helicases for their
survival, and this phenomenon should be taken advantage of by combining helicase
inhibitors with other drugs to improve overall cancer treatment outcomes.
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