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The role of lipids in corneal diseases 
and dystrophies: a systematic review
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Abstract 

Corneal diseases are an extensive cause of blindness worldwide and continue to persist as a challenging public 
health concern. Recently, various lipid-based therapies have been advocated for the modulation of corneal diseases; 
however, the number of studies is still very limited. Here we focus on developments and challenges on lipid-based 
therapies for dry eye disease, diabetic neuropathy, and Fuchs’ endothelial corneal dystrophy. All three diseases are 
highly prevalent conditions and involve corneal stress and inflammation. Lipid-based therapeutics discussed includes 
cyclooxygenase inhibitors, essential fatty acids, and resolvin analogs. Lipids also show increasing promise as biomark-
ers of disease and are explored in this review.
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Introduction
Cornea structure
The cornea is composed of a clear, dome-shaped layer of 
tissue that provides transparency and light refraction to 
the eye [1–3]. The cornea, limbus, and bulbar and tar-
sal conjunctiva make up the ocular surface and function 
to protect the eye by providing the first line of defense 
against damage and infection [3, 4]. The cornea consists 
of five major layers including the epithelium, Bowman’s 
Layer, stroma, Descemet’s membrane, and endothelium 
(Fig. 1); it is approximately 500 μm thick and accounts for 
two-thirds of the refractive power of the eye [5]. The cor-
nea is one of the most sensitive areas in the body, highly 
innervated, with a nerve density that tends to be around 
300–600 times higher than that of the skin [3]. The 
peripheral cornea has sensory nerve fibers that have a 
myelinated shell. The central cornea, which is innervated 
by the ophthalmic nerve, tends to be less sensitive along 
the vertical meridian and more sensitive along the hori-
zontal meridian [6]. The arrangement of the collagen lay-
ers in the stroma and the regular arrangement of collagen 

fibrils in the cornea are considered to be critical for the 
maintenance of corneal transparency [7].

Damage to the cornea
When injury or disease proceeds, it can lead to cor-
neal opacities or even blindness through the disor-
dering of the extracellular matrix [7]. The corneal 
endothelial monolayer of cells is the primary contributor 
to the maintenance of corneal transparency. When the 
barrier functions of the endothelium are compromised, it 
results in a loss of visual acuity [8, 9]. Unfortunately, once 
there is damage to the cornea, it has proven to be com-
plicated through countless studies to reverse this process.

Wound healing in the cornea is a diverse process 
involving many factors including cell death, migration, 
proliferation, differentiation, and extracellular matrix 
remodeling [10]. Similarities and differences are observed 
in the healing processes of corneal epithelium, stroma, 
and endothelium, as well as cell-specific alterations in 
each of the layers [10]. Damage to the cornea from dis-
eases such as dry eye, corneal edema, diabetes melli-
tus, and dystrophies are prevalent conditions and often 
involve ocular surface stress and inflammation. One 
of the key features associated with these corneal dis-
eases is oxidative stress [11]. Oxidative stress increases 
advanced glycation end product (AGE) accumulation 
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and activation of Protein kinase C and the polyol path-
way [12, 13]. Chronic inflammation of the ocular surface 
is common among many diseases such as dry eye disease 
[14–17]. The inflammatory process within the cornea can 
cause substantial irreversible damage to the corneal as 
well as the conjunctival epithelia, with subsequent visual 
loss [18]. The damage to the cornea from these diseases 
are an extensive cause of blindness worldwide and con-
tinue to persist as a challenging public health concern 
[19].

Current treatments and lipids
The anatomical and physiological barriers that the cornea 
offers against the entrance of bacteria and other patho-
gens may also pose difficulties for the access and effec-
tiveness of drugs. Current topical treatment options for 
ocular surface inflammation available today include 
mainly corticosteroid eye drops containing antibiotics, 
non-steroidal anti-inflammatory agents and cyclosporine 
A. Topical corticosteroids have shown through previ-
ous studies to have a rapid onset of action and efficacy 
when treating DED [20], but they have a limited range of 
effectiveness because of their potential side effects, which 
include posterior subscapsular cataract and increased 

intraocular pressure [21]. Other studies have found that 
these barriers may be overcome through the use of a vari-
ety of lipid based therapies.

Lipids are classified from a group of hydrophobic or 
amphiphilic small molecules composed of the carbanion-
based condensation of thioester or isoprene groups; they 
include fatty acids, glycerololipids, sphingolipids, and 
sterols [22]. Lipids execute a variety of biological func-
tions including cell signaling, energy storage, and main-
tenance of compartmental boundaries. In this review, we 
highlight the most recent developments in lipid-based 
therapies to modulate ocular surface inflammation as 
well as the potential for lipid-based molecules as a bio-
marker of disease in multiple ocular dysfunctions includ-
ing DED, diabetic retinopathy, and Fuchs’ endothelial 
corneal dystrophy (FECD) (Table 1). Recent research has 
revealed the potential use of lipid therapeutics for the 
improvement of corneal damage due to dystrophies and 
disease.

Dry eye disease
Dry eye disease refers to a condition in which the indi-
vidual does not produce enough quality tears to lubricate 
and nourish the eye [23]. Tears are needed to maintain 

Fig. 1 Structure of the cornea. Some images were provided by servier medical images
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the health of the front surface of the eye and also to allow 
clear vision. DED is a complicated disease of the ocular 
surface, which includes any of the following symptoms: 
visual disturbances, eye discomforts, and dryness due to 
tear film instability [24]. Pathogenesis for DED includes 
increased osmolarity of the tear film and inflammation 
of ocular surfaces and lacrimal glands [25]. It is clinically 
characterized into two separate subtypes: hyperevapora-
tive DED with increased tear evaporation and aqueous-
deficient DED with decreased tear secretion [26]. It can 
lead to visual loss, damage to the ocular surface, discom-
fort and overall reduction in the quality of life [25].

Due to the significant role meibomian glands play in 
providing lipids to the tear film, meibomian gland dys-
function (MGD) is one of the leading causes of DED [27]. 
A decrease in MGD leads to an increase in the evapo-
ration of tears from the ocular surface [28]. Meibum is 
secreted by the Meibomian gland, and it is a predomi-
nant source of lipids that are important for the mainte-
nance of tear film stability [29]. DED is a common and 
often chronic problem, particularly in older adults. There 
are numerous new therapeutic approaches that are under 
development, including anti-inflammatory agents, secre-
tory stimulants, and tear film stabilizers; as a result, as 
improved endpoints are incorporated into clinical trials, 
it is likely that multiple therapeutic agents will emerge in 
the foreseeable future [4]. One recently approved lipid 
based molecule for the treatment of DED is lifitegrast; 
it exerts its mechanism of action by preventing LFA-1/
ICAM-1 from interacting which prevents T cell activa-
tion and recruitment [30]. This drug was approved for 
the treatment of DED in 2016 due to its excellent thera-
peutic efficacy as ophthalmic drops and its rapid onset of 
action [30].

Omega‑6 linolenic acid/omega‑3 fatty acids
Artificial tears provide temporary symptomatic relief and 
are the most common therapy for DED, but they do not 
address any of the underlying pathogenic mechanisms 

that lead to DED. Inflammation plays a contributing role 
in the pathogenesis of DED, indicating the vast impor-
tance of lipid-based therapies to reduce inflammation of 
the ocular surface.

There are three ω-3 fatty acids that cannot be synthe-
sized in the body and must therefore be supplemented 
in the diet; these include eicosapentaenoic acid (EPA), 
docosahexaenoic acid (DHA), and alpha linolenic acid 
(ALA) [31]. Prostaglandin metabolism is modulated 
through EPA and DHA through an anti-inflammatory 
prostaglandin synthesis due to the competitive inhi-
bition of the arachidonic acid pathway [32]. Supple-
mentation of ω-3 prevents the creation of any new ω-6 
prostaglandin precursors, which in turn inhibits apopto-
sis of the secretory epithelial cells in the lacrimal gland 
and helps clear meibomitis; this allows for a healthier 
lipid layer to protect the cornea and tear film [33]. ALA 
is a polyunsaturated fatty acid (PUFA) that has shown 
the potential to improve dry eye symptoms through a 
dietary supplement due to its anti-inflammatory effects 
[34–36]. An in  vivo study showed that n-3 PUFA has 
several mechanisms that contribute to its anti-inflamma-
tory effects through inhibition of nuclear factor kappa 
B (NF-κβ) activation in an animal inflammation model 
as well as through regulation of eicosanoid metabolism 
[37]. Recent studies have also shown that the ocular sur-
face epithelia and tears of patients with DED, as well as 
in many animal models have an enhanced expression 
of pro-inflammatory mediators which include adhesion 
molecules, protein matrix metalloproteinases, cytokines, 
and chemokines [38, 39]. DED patients, as well as those 
who suffer from Sjogren’s syndrome have also been 
found to have an increased production and activation 
of interleukin-1β (IL-1β), interleukin-6 (IL-6), inter-
leukin-8 (IL-8), tumor-necrosis factor-α (TNF-α), and 
transforming-growth factor-β (TGF-β), indicating the 
significant therapeutic implications of treatment with 
ALA [40]. Interleukin-1α (IL-1α) is able to up-regulate 
TNF-α release as well as its own autocrine production 

Table 1 Lipid therapeutics/biomarkers available for corneal diseases

Disease Lipid therapeutics/biomarkers

Dry eye disease [17] Eicosapentaenoic acid, docosahexaenoic acid, and alpha linolenic acid, and resolvins have shown promise in 
improving symptoms of DED, matrix metalloproteinase-9 as an ideal biomarker due to its involvement in 
ocular surface inflammation

Diabetic neuropathy Menhaden oil, daily injections of resolvin-D1, salsalate, enalapril, neuroprotectin D1, docosahexaenoic acid, 
as well as combination of enalapril, α-lipoic acid and menhaden oil have all shown to improve diabetic 
neuropathy

Fuchs’ endothelial corneal dystrophy Mefenamic acid and nimesulide have shown to improve oxidative stress, ROCK inhibitor show potential for 
regenerative medicine, Diacylglycerophosphocholines, 1-ether, 2-acylglycerophosphocholines, eight sphin-
gomyelins, and up to two long-chain highly unsaturated cholesteryl esters increased in the AH of FECD 
eyes, indicating potential oxidative stress markers
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[41]. TNF-α has been described as a key mediator in the 
pathogenesis of DED [42]. ALA treatment was shown to 
be an effective treatment for decreasing the corneal and 
conjunctival expression of IL-1α and TNF-α [43]. Rashid 
et  al. also revealed that the treatment of ALA caused a 
nearly 100-fold increase in expression of interleukin-10 
(IL-10) in dry eye conjunctiva [43]. IL-10 is produced 
by activated machophages and lymphocytes, and it acts 
to inhibit IL-1 and TNF production, which further con-
tributes to the down-regulation of inflammation [43]. 
The PUFA pathways for n-3 and n-6 ω-fatty acids com-
petitively utilize the same enzymes [44]. Topical ALA 
treatment led to significant decrease in dry eye signs and 
inflammatory changes at both cellular and molecular 
levels [43]. Findings demonstrated that ω-3 and ω-6 can 
act directly on immortalized human Meibomian gland 
epithelial cells to have positive impacts on the quality 
and quantity of intracellular lipids [31].

In vivo studies
In order to demonstrate that an oral supplementation of 
ω-3 fatty acids, antioxidants, and vitamins improves dry 
eye symptoms, a large study was conducted to deter-
mine the effects of this treatment. One study population, 
which consisted of 1419 patients, included 74% women 
with a median age of 58.9 years showed dietary supple-
mentation with ω-3 essential fatty acids, antioxidants, 
vitamins, and minerals were useful to improve dry eye 
symptoms [45]. To relieve ocular surface dysfunction 
associated with DED, these patients used artificial tears 
as well as attended routine daily practice [45]. Other 
positive effects shown in this study included a decrease 
in the use of artificial tears, reduced conjunctival hyper-
emia, and improvement in tear secretion and tear film 
stability (Table 2) [45].

Epitropoulos et  al. sought out to assess the effect of 
oral re-esterified ω-3 fatty acids on tear osmolarity, 
matrix metalloproteinase-9 (MMP-9), tear break-up time 
(TBUT), Ocular Surface Disease Index, fluorescein cor-
neal staining, Schirmer score, MGD stage and ω-3 index 
in subjects with dry eyes and confirmed MGD (Table 2) 
[46]. The mean of 105 subjects who completed the study 
were 56.8 ± 17.0 years, of which 51% were randomized to 
the ω-3 group and 49% to the control group with 71.4% of 
the group being females [46]. Tear osmolarity plays a key 
role in determining the severity of DED; as a result, there 
was a significant reduction in osmolarity within this study 
at 12 weeks (P = 0.004) [46]. This study showed signifi-
cant improvement in the TBUT scores and a significant 
reduction in subjects testing positive for MMP-9 bio-
enzyme in the tear film, which are both correlated with 
an improvement in DED [46]. An improvement in the 
TBUT scores indicates that the dietary supplementation 

with the ω-3 fatty acids improves the inherent stability of 
the tear film [46].

Sambursky and co-authors conducted a retrospective 
single center medical chart review of 100 patients that 
determined the effectiveness of using MMP-9, which is 
induced by key cytokines in the early stages of the inflam-
matory cascade, as an ideal biomarker because its eleva-
tion confirms the presence of clinically significant ocular 
surface inflammation [31]. MMP-9 is characterized as a 
proteolytic enzyme produced by stressed epithelial cells 
on the ocular surface in DED, which is elevated through-
out the progression of DED [47, 48].

Malhotra et  al. conducted a study that involved 60 
patients with moderate MGD that were divided into a 
treatment group, composed of seventeen females and 
thirteen males aged 53.3  ±  6.9  years that received an 
oral supplementation of a triglyceride formulation of ω-3 
fatty acids (FAs) and a control group, composed of eleven 
females and nineteen males aged 53.6 ±  8.7  years [49]. 
Artificial tear substitutes and eyelid hygiene was given to 
each group, which consisted of warm compressers and 
lid massage once daily for a period of 12 weeks (Table 2) 
[49]. Multiple improvements were noted including pho-
topic and scotopic contrast sensitivity, tear film stability 
represented by the prolongation of the TBUT from base-
line, an increase in tear secretion noted by the increased 
value of Schirmer score, and an improvement in ocular 
surface staining over the duration of the study from base-
line to 12 weeks [49]. Deinema and co-authors revealed 
through a randomized, double-masked, placebo-con-
trolled clinical trial with 54 participants that a moder-
ate daily dose of krill oil (945  mg/day EPA, +510  mg/
day DHA) and fish oil (1000 mg/day EPA + 500 mg/day 
DHA) for 3  months, resulted in improved symptoms in 
individuals with DED, including reduced tear osmolarity 
and increased tear stability (Table 2) [50].

In vitro studies
Recent research has also indicated promising results 
through experiments performed in vitro through the use 
of human corneal epithelial [51] cells.

Erdinest and co-authors determined the anti-inflam-
matory effects of systemic PUFAs on HCE cells in vitro 
[52]. Studies revealed that topical anti-inflammatory 
therapies inhibit the various inflammatory mediators and 
reduce the signs and symptoms of DED [52]. Topical cor-
ticosteroids show efficacy in treating dry eye associated 
inflammation, and have a rapid onset of action [20]. In 
this study, cells were treated with inflammation inducers 
such as lipopolysaccharide (LPS) and LPS binding pro-
tein or with polyriboinosinic: polyribocytidylic acids at 
a dose of 25 µg/mL [52]. ALA dramatically reduced the 
poly I:C and LPS complex stimulated production of the 
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pro-inflammatory cytokines TNF-α, IL-6, interleukin-1β 
(IL-1β), and the chemokine interleukin-8 (IL-8) in cul-
tured HCE cells, specifically a dose-dependent reduction 
was demonstrated by ALA for all of these anti-inflamma-
tory mediators [52]. ALA showed inhibitory effects on 
the protein secretion of the inflammatory mediators [52], 
and it also demonstrated a decrease in nuclear factor of 
kappa light polypeptide gene enhancer in B-cells inhibi-
tor, alpha (Iκβα) mRNA expression, suggesting the anti-
inflammatory effects of ALA involve regulatory effects of 
the NF-κβ pathway [52].

In the PUFAs family, there have been four new groups of 
pro-resolution mediators that have been identified which 
include lipoxins, protectins, maresins and resolvins (RVs) 
[18]. RVs are endogenous, potent, local acting molecules 
classified as non-classical Eicosanoids [18, 53]. RVs can be 
formed through metabolizing the compounds EPA and 
DHA [18, 54]. The E-series RVs are formed when EPA is 
metabolized first by cyclooxygenase-2 or the cytochrome-
P450 pathway in vascular endothelial cells, and then by 
neutrophil 5-lipooxygenase [54]. Since inflammation plays 
a crucial role in the pathogenesis of DED, RVs could have 
significant therapeutic implications. Erdinest et al. looked 
at the efficacy of RV-D1 treatment in HCE cells in  vitro 
after stimulation with poly I:C [55]. Results indicated a 
highly potent anti-inflammatory effect of RV-D1 on HCE 
cells in  vitro [55]. RV-D1 significantly reduced the Poly 
I:C inflammatory reaction and dramatically reduced the 
production of the pro-inflammatory cytokines TNF-α, 
IL-6, IL-1β and IL-8 in cultured HCE cells [55]. A sig-
nificant dose-dependent reduction was demonstrated by 
RV-D1 for TNF-α and IL-1β [55]. RV-D1 demonstrated 
inhibitory effects on the protein production of the inflam-
matory mediators [55]. Furthermore, the HCE cells stim-
ulated by Poly I:C and treated with RV-D1 demonstrated 
a decrease in Iκβα mRNA expression, suggesting that the 
anti-inflammatory effects of RV-D1 involve regulatory 
effects of the NF-κB pathway [55].

Future directions and challenges for dry eye disease
Dry eye disease is a relatively common condition in which 
the individual does not produce enough quality tears to 
lubricate and nourish the eye. Despite recent advances, 
advances in ocular surface lipid research for DED have 
been slow going due to numerous unanswered questions 
regarding the role of lipids. Once the lipidomic profiles of 
this disease has been characterized, it will provide vital 
answers to how lipid-based therapies are incorporated 
into overall anti-inflammatory strategies for the ocu-
lar surface. Furthermore, there are still limited options 
for lipid-based anti-inflammatory therapy. In the future, 
advances in identifying and quantifying lipids throughout 
this disease will provide a better understanding of ocular 

surface inflammation and allow clinicians to provide bet-
ter treatments for DED.

Diabetes mellitus
Diabetes mellitus (DM) is a common metabolic disease 
characterized as a hyperglycemic condition [56, 57]. In 
the United States, it is an epidemic disease where approx-
imately 6.2 million people are underdiagnosed [56]. DM 
is separated into two main categories: type 1DM (T1DM) 
and type 2DM (T2DM). T1DM, or insulin depend-
ent diabetes, is due to the autoimmune destruction of 
the β-cells in the pancreas [58, 59]. A prolonged exces-
sive elevated blood glucose level that eventually leads to 
insulin resistance leads to T2DM, or non-insulin depend-
ent diabetes [58, 59]. T2DM is the most prevalent in the 
United States, and it has seen significant rises in preva-
lence over the past thirty years.

The cornea suffers from a substantial amount of 
changes and injuries in DM due to reduced corneal sen-
sitivity, increased corneal thickness, susceptibility to 
corneal trauma, persistent epithelial defects, corneal epi-
thelial damage, recurrent corneal erosions, and alteration 
in tear quality and quantity [57, 60]. A severe complica-
tion of diabetes and leading cause of preventable blind-
ness is diabetic peripheral neuropathy (DPN). DPN is 
a well-known microvascular complication of T2DM 
which leads to further infections and increases the risk 
of mortality; it occurs in a considerable amount of dia-
betic patients [61, 62]. As DM continues to become more 
prevalent across the world, the number of people at risk 
for developing DPN continues to increase. DM has a sub-
stantial effect on the ocular tissues even when it is well 
managed, which contributes to the disease severity when 
concerning the cornea. The major pathogenic factor of 
DM is hyperglycemia, which is a significant contributor 
to the accumulation of AGEs [13, 63]. Diabetic retinopa-
thy is the most common ocular complication of diabetes, 
but there are many others including corneal dysfunction, 
cataracts, glaucoma, neuropathy, ischemic optic neurop-
athy, and diabetic macular edema [64, 65].

Many attempts with approved treatments have failed 
in clinical trials to slow progression or inhibit all of the 
complications associated with corneal DM. Recent stud-
ies have suggested the possibility of using lipid-based 
therapies to provide benefit to patients suffering from 
DPN, and research plays a key role in discovering novel 
treatments for these individuals. Recent advances in the 
use of lipids as novel therapeutics are discussed.

Novel lipid‑based therapeutics to treat diabetic 
neuropathy
Recent studies have determined one beneficial treat-
ment for DPN is dietary enrichment with n-3 fatty acids. 
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Coppey and co-authors used a rat model for T1DM with 
a dietary enrichment of menhaden oil, a natural source 
of n-3 fatty acids, that prevented and reversed multiple 
pathological endpoints associated with DPN [66]. Former 
studies have demonstrated that DM can cause the pro-
duction and accumulation of free oxygen radicals, key fac-
tors contributing to the early development of DPN [67].

Corneal nerves in the subepithelial layer and epithe-
lium are significantly decreased in diabetic rats indicating 
an excessive amount of damage to the nerve fibers [66]. 
However, upon treatment with a diet enriched with men-
haden oil, a prevention and/or reversal in the loss of cor-
neal nerves was observed in these diabetic rats indicating 
potential therapeutic benefits for this molecule [66]. 
Menhaden oil is used as a source of ω-3 (n-3) polyunsatu-
rated fatty acids, enriched in EPA and DHA as a dietary 
supplement for human consumption [68]. Upon onset of 
hyperglycemia and the development of diabetic compli-
cations related to neuropathy, Shevalye et al. has shown 
that treatment of a mouse model suffering from T2DM 
with a dietary supplement of menhaden oil or daily injec-
tions of RV-D1 reverses neuropathic deficits [68]. This 
includes the slowing of nerve conduction velocity and 
decreased progression of loss of sensitivity and/or den-
sity of nerves in the skin, cornea, and retina [68]. RvE1 
is also a potential anti-inflammatory therapy for patients 
with corneal inflammation [69].

Another potential treatment to patients suffering from 
DPN is the use of anti-inflammatory compounds such 
as salsalate [70]. Salsalate, a prodrug of salicylate that 
allows for better oral absorption, establishes its primary 
mechanism of action as a nonsteroidal anti-inflammatory 
which functions to inhibit the synthesis of prostaglan-
dins through the inactivation of cyclooxygenase enzymes 
[71]. Research has indicated the usefulness of enalapril, 
an angiotensin converting enzyme inhibitor and α-lipoic 
acid, an antioxidant, in their ability to individually par-
tially improve DPN [72]. More recent studies have indi-
cated that the combination of enalapril, α-lipoic acid and 
menhaden oil treatment was able to fully reverse the neu-
ropathic endpoints except for motor nerve conduction 
velocity [72].

Lipid‑mediated corneal neuroprotection
Docosahexaenoic acid is necessary for a multitude of 
functions in the body including memory formation, 
neuroprotection, synaptic function, as well as brain and 
retina development; it is involved in several processes, 
including photoreceptor biogenesis and function, excit-
able membranes functions, and photoreceptor biogen-
esis and function [73–80]. The importance of these (n-3) 
fatty acids in vision has been established through recent 
studies. One of the more characterized members of this 

family include neuroprotectin D1 (NPD1), which exhib-
its many beneficial effects throughout other parts of the 
body including reactive oxygen species (ROS) production 
and cyclooxygenase activities in human neutrophils [81–
83]. Due to the anti-inflammatory effects it has shown in 
various parts of the body, it has been speculated for the 
potential use as a neuroprotectin within the cornea.

Docosahexaenoic acid is the precursor to the lipid 
mediator NPD1, which has shown to have potent anti-
inflammatory actions [84, 85]. However, specialized 
pro-resolving mediators such as DHA and NPD1 have 
shown the ability to resolve inflammation without the 
mechanism of immune suppression, indicating the use 
of the term immunoresolvents [86, 87]. Recent studies 
have shown that corneas treated with DHA along with 
pigment epithelial-derived factor exhibit an increase in 
NPD1 synthesis, indicating the potential use of NPD1 
as an effective treatment for neurotrophic corneas [18, 
88]. An early inflammatory response is key for corneal 
wound healing, but it must be resolved to see proper tis-
sue homeostasis [89]; as a result, Cortina et al. has indi-
cated the effect of NPD1 on corneal nerves may be due 
to an injury to the cornea, leading to modulation of the 
inflammatory response, which leads to corneal epithelial 
cell survival [88]. These neuroprotectins offer interesting 
options for novel therapeutics in the treatment of DPN 
and other diseases involving corneal nerve damage.

Future directions and challenges for diabetes mellitus
Corneal defects have been reported in both T1DM and 
T2DM patients, but the literature is currently lack-
ing exact pathophysiological differences. DM involves 
increased corneal thickness [90, 91], reduced corneal 
sensitivity, corneal epithelial lesions [92, 93], delayed 
wound healing capacity and repair mechanisms [94, 95], 
and weakening of the epithelial barrier [96] leading to 
corneal infections and stromal fibrosis [97, 98].

Recent studies have shown that there are several metab-
olites that are differentially regulated in both T1DM and 
T2DM constructs when compared to human corneal 
fibroblasts (HCFs) as well as significant differences in 
mitochondrial structure in both T1DM and T2DMs, as 
compared to HCFs, when allowed to secrete and assem-
bly their own extracellular matrix [60]. Future studies 
are needed to investigate the molecular mechanisms of 
human diabetic keratopathy in order to better understand 
corneal stromal defects due to DM and develop novel 
therapeutics to treat diabetic keratopathy defects.

Fuchs’ endothelial corneal dystrophy
Fuchs’ endothelial corneal dystrophy (FECD) is a rela-
tively frequent degenerative corneal condition confined 
to the corneal endothelium, characterized by subsequent 
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changes in cell morphology, as well as deposits of col-
lagen in the Descemet membrane, apoptosis, [99–101] 
and endothelial cell loss that is inherited in an autoso-
mal dominant pattern with 100% penetrance with vari-
able expressivity [102, 103]. FECD is estimated to affect 
approximately 4% of Americans older than 40 years old, 
but the exact incidence is unknown due to the fact that 
symptomatic FECD is preceded by an asymptomatic 
phase [104]. FECD is associated with a loss of  Na+/
K+-ATPase pump sites within the endothelium that 
eventually leads to corneal swelling [105, 106]. FECD is 
associated with blurred vision, which is caused by this 
corneal swelling from defects in the inner corneal layer, 
the corneal endothelium [104, 107].

The current definitive therapy is lacking, but it includes 
endothelial keratoplasty; furthermore, there are currently 
no available nonsurgical treatments to delay or prevent 
the progression of the disease [100, 108]. The disease 
typically presents with its clinical characteristics at some 
point between the 5th and 6th decades of life and can 
vary from macroscopic guttae producing light scattering 
to a decrease in visual quality, tochronic, and full thick-
ness corneal edema [107]. Currently, the disease is con-
sidered to be a multifactorial condition, in which genetic 
[109, 110] and environmental factors, such as UV light-
induced oxidative stress [100, 108, 111], contribute to its 
onset. Keratoplasty, specifically penetrating keratoplasty, 
has been the surgical approach of choice for many years, 
but currently endothelial keratoplasty such as Descemet 
membrane endothelial keratoplasty and Descemet-strip-
ping automated endothelial keratoplasty are mainly per-
formed for patients with FECD [112–114]. Currently, 
the primary cause of this endothelial dysfunction is 
unknown, but recent studies have attempted to classify 
changes associated with this disease.

Lipidomic profiling in FECD
The potential to identify differences in lipids associated 
with diseases such as FECD has been greatly improved 
by recent technical advances in lipidomic research such 
as ultra-performance liquid chromatography mass 
spectrometry [115]. Aqueous humor (AH) composition 
has been suspected to play a role in the pathophysiol-
ogy of FECD [116], but the precise role remains unclear. 
A recent study revealed key mediators in the lipidomic 
profile for individuals suffering from FECD indicating 
the lipid composition of the AH in FECD patients dif-
fers from that of healthy subjects. The concentration of 
most diacylglycerophosphocholines, 1-ether, 2-acylg-
lycerophosphocholines, eight sphingomyelins, and up 
to two long-chain highly unsaturated cholesteryl esters 
increased in the AH of FECD eyes as compared to the 
healthy controls [117]. These differences may be due to 

oxidative stress-related changes in the lipid metabo-
lism of the corneal endothelial cells in FECD, but this 
is one of the first studies published concerning lipi-
domic changes in FECD and was performed with an 
exploratory scope to screen for more specific works in 
the future [117]. The lipidomic profile of ten AH con-
trols with an average age of 50.8  years and eight AH 
FECD patients with an average age of 56.8  years were 
analyzed in the study, indicating a need for expansion 
to verify results [117]. Richardson et  al. looked at the 
varying differences of protein concentration between 
FECD individuals and control, indicating potential 
markers for the disease [118], but Cabrerizo et al. was 
the first study to look at the lipid profile of FECD indi-
viduals. Future studies could indicate a set of markers 
for the disease and enable detection before there is a 
deficit in vision.

Nonsurgical treatments for FECD
Due to the lack of nonsurgical treatments to delay or 
prevent the onset of FECD, Kim et  al. has sought out 
to screen drugs with corneal endothelial cell survival 
effects against two of the key physiologic markers of 
FECD, including oxidative stress and unfolded protein 
response (UPR) [119]. Multiple studies have described 
an association of oxidative stress-triggered UPR through 
various models including an endoplasmic reticulum 
stress-mediated apoptosis induced by cigarette smoke 
via a ROS dependent mechanism, an oxidative stress-
triggered UPR in cell death evoked by Parkison mimet-
ics, and the induction of UPR in a ROS through tumor 
necrosis factor-alpha [120–123]. Results from this study 
demonstrated a dose response effect of the non-steroidal 
anti-inflammatory drugs (NSAIDs), mefenamic acid and 
nimesulide, against oxidative stress and UPR in a bovine 
corneal endothelial cell (CEC) culture model [119]. 
Mefenamic acid was shown to significantly decrease oxi-
dative stress in immortalized human corneal endothe-
lial cells (iHCECs) exposed to  H2O2 [119]. Nimesulide is 
a cyclooxygenase-2 inhibitor and acts as an antioxidant 
to correct lipid peroxidation products such as malondi-
aldehyde [124] in addition to reversing UPR through the 
NF-κβ and pp38 kinase pathways [125]. Results indi-
cate potential speculation for the use of NSAIDs such as 
mefenamic acid and nimesulide for the use as a survival 
factor for corneal endothelial cells undergoing oxidative 
stress and UPR [119].

Recent studies have also looked at the potential use of 
corneal regenerative medicine using cultured endothe-
lial cells, which includes mesenchymal stem cell derived 
conditioned media as well as Rho-associated protein 
kinase inhibitors [126–128]. The development of a suc-
cessful and reliable cell cultivation protocol for clinical 
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application has drastically slowed the establishment of 
tissue engineering-based therapy for corneal endothe-
lial dysfunction [129]. However, many studies have 
characterized the successful transplantation of a cul-
tured corneal endothelial sheet into an animal model 
[126, 130–133]. Studies have demonstrated that Rho–
ROCK signaling negatively regulates the integrin-medi-
ated adhesion of monocytes, and that the inhibition of 
ROCK by a selective ROCK inhibitor upregulates adhe-
sion, showing potential for enhancing the adhesion of 
CEC by inhibiting Rho/ROCK signaling [128, 134, 135]. 
Rho–ROCK signaling is involved in a multitude of cel-
lular processes including migration, morphogenesis, cell 
adhesion, and cell-cycle progression through mediating 
cytoskeletal dynamics [136, 137].

These studies promote the potential for using ROCK 
inhibitor Y-27632 to enable the establishment of a cul-
tivated-CEC-based therapy by inhibiting apoptosis, 
increasing the number of proliferating cells, and pro-
moting the adhesion through a rabbit and primate cor-
neal endothelial dysfunction model [127, 128]. This novel 
strategy may ultimately provide clinicians with a poten-
tial treatment for FECD, through the use of a ROCK 
inhibitor using regenerative medicine [127].

Future directions and challenges for Fuchs’ endothelial 
corneal dystrophy
Investigation into FECD has revealed a better under-
standing of this disease at the tissue, cellular, and 
molecular level. Despite substantial research, the litera-
ture still lacks consistent markers for this multifactorial 
disease.

Cabrerizo and co-authors have revealed the poten-
tial use of various lipids as biomarkers for the severity 
of disease in FECD [117], indicating promise for a bet-
ter understanding of the pathophysiology of this disease. 
Corneal endothelial dysfunction is a substantial problem 
in FECD, and it is accompanied by visual disturbance 
which provides a major indication for corneal trans-
plantation surgery [138]. Descemet’s stripping endothe-
lial keratoplasty is a highly effective surgical technique 
designed to replace corneal endothelium and overcome 
pathological dysfunctions of corneal endothelial tissue 
[139–141]. Corneal transplantation is still widely used 
for corneal endothelial dysfunction, but the transplanta-
tion of cultivated corneal endothelium is a new potential 
therapeutic strategy [127].

Studies involving lipids reveal the potential use of 
NSAIDs [119] for improving symptoms associated with 
FECD. The need for nonsurgical treatments for FECD 
continues to be a problem despite recent advances, indi-
cating the need for future studies for novel lipid-based 
therapeutics.

Concluding remarks
The health of the ocular surface is crucial for the patient’s 
quality of life, and it may be compromised through dis-
eases or dystrophies. There are still limited options for 
lipid-based therapies, but there have been numerous 
advances over the past few years in novel lipid-based 
therapeutics for the treatments of these diseases. Lipids 
also show increasing promise as biomarkers for diseases 
such as FECD indicating increasing clinical relevance. 
Immunomodulation through lipids such as essential 
fatty acids has shown promising results as therapeutic 
molecules.

Despite significant progress, further studies concerning 
the role of lipids and the exact mechanism of action must 
be classified. However, lipid-based therapies provide 
encouraging results for the treatment of these diseases 
and dystrophies.
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