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Abstract

Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers
faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy
and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end
basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with
only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously
unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics
processing units.
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Introduction

DNA sequencing via bioengineered nanopores, recently intro-
duced to the market by Oxford Nanopore Technologies (ONT),
has profoundly changed the landscape of genomics. A key inno-
vation of the ONT nanopore sequencing device, MinION, is that
it measures the changes in electrical current across the pore as
a single-stranded molecule of DNA passes through it. The signal
is then used to determine the nucleotide sequence of the DNA
strand [1–3]. Importantly, this signal can be obtained and ana-
lyzed by the user while the sequencing is still in progress. A large
number of pores can be packed into a MinION device that is the
size of a stapler, making the technology extremely portable. The
small size and real-time nature of the sequencing opens up new
opportunities in time-critical genomics applications [4–7] and in
remote regions [8–11].

While nanopore sequencing can be massively scaled up by
designing large arrays of nanopores and allowing faster translo-
cation of DNA fragments, one of the bottlenecks in the analysis
pipeline is the translation of the raw signal into nucleotide se-
quence, or basecalling. Prior to the release of Chiron, basecall-
ing of nanopore data involved two stages. Raw data series are
first divided into segments corresponding to signals obtained
from a k-mer (segmentation) before a model is then applied to
translate segment signals into k-mers. DeepNano[12] introduced
the idea of using a bidirectional recurrent neural network (RNN)
that uses the basic statistics of a segment (mean signal, stan-
dard deviation, and length) to predict the corresponding k-mer.
The official basecallers released by ONT, nanonet, and Albacore
(prior to v2.0.1) also employ similar techniques. As k-mers from
successive segments are expected to overlap by k-1 bases, these
methods use a dynamic programming algorithm to find the most
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2 Translating nanopore signal directly into nucleotide seqeunce

probable path, which results in the basecalled sequence data.
BasecRAWller [13] uses a pair of unidirectional RNNs; the first
RNN predicts the probability of segment boundary for segmen-
tation, while the second one translates the discrete event into
base sequence. As such, BasecRAWller is able to process the raw
signal data in a streaming fashion.

In this article we present Chiron, which is the first deep neu-
ral network model that can translate raw electrical signal di-
rectly to nucleotide sequence. Chiron has a novel architecture
that couples a convolutional neural network (CNN) with an RNN
and a connectionist temporal classification (CTC) decoder [13].
This enables it to model the raw signal data directly, without use
of an event segmentation step. ONT has also developed a seg-
mentation free basecaller, Albacore v2.0.1, which was released
shortly after Chiron v0.1.

Chiron was trained on a small dataset sequenced from a viral
and bacterial genome and yet it is able to generalize to a range
of genomes such as other bacteria and Human. Chiron is as ac-
curate as the ONT-designed and -trained Albacore v2.0.1 on bac-
terial and viral basecalling and outperforms all other existing
methods. Moreover, unlike Albacore, Chiron allows users to train
their own neural network, and it is also fully open-source, en-
abling development of specialized basecalling applications, such
as detection of base modifications.

Results
Deep neural network architecture

We have developed a deep neural network (NN) for end-to-end,
segmentation-free basecalling that consists of two sets of layers:
a set of convolutional layers and a set of recurrent layers ( Fig.1).
The convolutional layers discriminate local patterns in the raw
input signal, whereas the recurrent layers integrate these pat-
terns into basecall probabilities. At the top of the neural network
is a CTC decoder [14] to provide the final DNA sequence accord-
ing to the base probabilities (Fig. 2) . More details pertaining to
the NN are provided in the Methods section.

Chiron presents an end-to-end basecaller in that it predicts
a complete DNA sequence from raw signal. It translates sliding
windows of 300 raw signals to sequences of roughly 10-20 base
pairs (which we call slices). These overlapping slices are stacked
together to get a consensus sequence in real time. The window
is shifted by 30 raw signals; by processing the slices in parallel,
the basecalling accuracy can be improved with little speed loss.

Performance comparison

For training and evaluating the performance of Chiron, a phage
Lambda virus sample (Escherichia virus Lambda) provided by ONT
and an Escherichia coli (K12 MG1655) sample using 1D protocol
on R9.4 flowcells were sequenced for calibrating the MinION de-
vice (see the Methods section). A total of 34,383 reads were ob-
tained for the Lambda sample and 15,012 reads were obtained
for E. coli, but only 2,000 reads were randomly picked from each
sample to train Chiron. It took the model 10 hours to train 3
epoch with 4,000 reads (∼4 Mbp) on a Nvidia K80 Graphics Pro-
cessing Unit (GPU). Then Chiron was cross-validated on the re-
mainder of the reads from two runs, and the model was further
evaluated by testing its basecalling accuracy on other species.
A Mycobacterium tuberculosis sample was sequenced and a set of
Human data was downloaded from chromosome 21 part 3 from
the Nanopore WGS Consortium [15], to be used in testing the
generality of Chiron.

In order to establish the ground-truth of the data, the
E. coli and M. tuberculosis samples were sequenced using Il-
lumina technology (see the Methods section) and assembled,
which provided a high per-base accuracy reference. The refer-
ence sequence for the Phage Lambda virus was National Cen-
ter for Biotechnology Information (NCBI) reference sequence
NC 001416.1; for the Human data, the GRCh38 reference was
used. The raw signals were labeled by identifying the raw sig-
nal segment corresponding to the nucleotide assumed to be in
the pore at a given time point (see the Methods section).

Table 1 presents the accuracy of the four basecalling meth-
ods, including the Metrichor basecaller (ONT cloud service), Al-
bacore v1.1 (ONT official local basecaller), BasecRAWller [13], and
Chiron, with a greedy decoder (Chiron) and beam-search de-
coder (Chiron-BS), on the data. Chiron had the highest iden-
tity rate on the Lambda, E. coli, and M. tuberculosis samples.
Additionally, it had the lowest deletion rate; mismatch rate on
Lambda, M. tuberculosis, and E. coli; and the lowest insertion rate
on Lambda and E. coli. In the Human dataset where Chiron did
not have the highest identity rate, it is was no more than 0.01
from the best.

In addition, we compared the segmentation-free ONT base-
caller Albacore v2.0.1 with Chiron-BS in Table 1. Chiron-BS had a
consistently lower insertion rate across all species tested, as well
as a lower deletion rate on Lambda and E. coli; however, it suf-
fered a slightly higher mismatch rate on all species except E. coli.
The performance is comparable to Albacore v2.0.1 on all species
except for Human; however, this is likely at least partially due to
the fact that it had not been trained on any Human DNA.

In order to assess the quality of genomes assembled from
reads generated by each basecaller, we used Miniasm together
with Racon to generate a de novo genome assembly for each bac-
terial and viral genome (see the Methods section). The results
presented in Table 2 demonstrate that Chiron assemblies for
Phage lambda and E. coli had approximately half as many errors
as those generated from Albacore (v1 or v2) reads. For M. tubercu-
losis, Chiron had fewer errors than Albacore v1 but slightly more
than Albacore v2. The identity rate and relative length for each
round of polishing with Racon are shown in Fig. 3.

In terms of speed on a central processing unit (CPU) pro-
cessor (Table 3), Chiron is slower (21 bp/sec, 17 bp/secusing
a beam-search decoder with a 50 beam width) than Albacore
(2,975 bp/sec) and, to a lesser extent, slower than BasecRAWller
(81bp/sec). However, when run on a Nvidia K80 GPU, a basecall-
ing rate of 1,652 bp/secand 1,204 bp/secusing a beam-search de-
coder is achieved. (Chiron was also tested on a Nvidia GTX 1080
Ti GPU, and the rate was 2,657 bp/sec). The GPU rate for the
other two local basecallers are not included, as Albacore and
BasecRAWller do not currently offer GPU support. Metrichor was
not included in the speed benchmarking as it is not possible to
gather information about CPU/GPU speed as it is a cloud base-
caller.

Discussion

Segmenting the raw nanopore electrical signal into piece-wise
constant regions that correspond to the presence of different
k-mers in the pore is an appealing but error-prone approach.
Segmentation algorithms determine a boundary between two
segments based on a sharp change of signal values within a
window. The window size is determined by the expected speed
of the translocation of the DNA fragment in the pore. We no-
ticed that the speed of DNA translocation is variable during a
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Figure 1: (A) An unrolled sketch of the NN architecture. The circles at the bottom represent the time series of raw signal input data. Local pattern information is then
discriminated from this input by a CNN. The output of the CNN is then fed into an RNN to discern the long-range interaction information. A FC layer is used to get
the base probability from the output of the RNN. These probabilities are then used by a CTC decoder to create the nucleotide sequence. The repeated component is

omitted. (B) Final architecture of the Chiron model. Variants of this architecture were explored by varying the number of convolutional layers from 3 to 10 and recurrent
layers from 3 to 5. We also explored networks with only convolutional layers or recurrent layers, 1×3 conv, 256, no bias means a convolution operation with a 1×3 filter
and a 256-channeloutput with no bias added. LTSM = long-term short memory.

Figure 2: Visualization of the predicted probability of bases and the readout sequence. The upper panel is a normalized raw signal from the MinION nanopore sequencer,
normalized by subtracting the mean of the whole signal and then dividing by the standard deviation. The bottom panel shows the predicted probability of each base
at each position from Chiron. The final output DNA sequence is annotated on the x-axis of the bottom plane.

sequencing run; coupled with the high level of signal-to-noise
in the raw data, this can result in low segmentation accuracy.
As a result, the segmentation algorithm often makes conserva-
tive estimates of the window size, resulting in segments that are
smaller than the actual signal group for k-mers. While dynamic
programming can correct this by joining several segments to-
gether for a k-mer, this effects the prediction model.

All existing nanopore basecallers prior to Chiron use a seg-
mentation step. The first nanopore basecalling algorithms [16,
17] used a hidden Markov model, which maintains a table of
event models for all possible k-mers. These event models were
learned from a large set of training data. More recent methods
(DeepNano [12], nanonet) train a deep neural network for infer-
ring k-mers from segmented raw signal data.
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Table 1: Results from the experimental validation and benchmarking of Chiron against three segmentation-based nanopore basecallers and
Albacore v2, which is also a segmentation-free basecaller

Dataset Basecaller Deletion rate (%) Insertion rate (%) Mismatch rate (%) Identity rate (%) Error rate (%)

Metrichor 8.93 2.38 4.57 86.50 15.88
Albacore v1.1 6.35 3.82 4.69 88.96 14.86
Albacore v2 6.19 3.38 3.98 89.82 13.55

Lambda BasecRAWller 7.89 10.01 10.56 81.54 28.46
Chiron 8.20 2.13 4.03 87.76 14.36
Chiron-BS 6.20 2.13 4.20 89.60 12.53
Metrichor 7.52 1.93 3.84 88.64 13.29
Albacore v1.1 5.76 3.27 4.14 90.10 13.17
Albacore v2 5.21 2.99 3.57 91.22 11.77

E. coli BasecRAWller 7.16 10.40 10.30 82.54 27.86
Chiron 6.36 1.81 3.07 90.57 11.24
Chiron-BS 4.94 2.36 3.16 91.90 10.46
Metrichor 7.63 2.40 4.35 88.02 14.38
Albacore v1.1 6.12 3.57 4.68 89.19 14.37
Albacore v2 5.05 3.58 4.05 90.90 12.68

M. tuberculosis BasecRAWller 7.17 10.85 10.42 82.41 28.44
Chiron 7.16 2.50 4.33 88.51 13.99
Chiron-BS 5.84 3.05 4.50 89.66 13.39
Metrichor 12.95 4.15 7.65 79.4 24.75
Albacore v1.1 8.62 6.51 7.52 83.86 22.65
Albacore v2 8.71 6.03 6.05 85.24 20.79

Human BasecRAWller 8.41 10.28 10.10 81.49 28.79
Chiron 9.13 5.14 9.33 81.54 23.60
Chiron-BS 9.30 5.62 7.87 82.83 22.79

Deletion, insertion, and mismatch rates (%) are defined as the number of deleted, inserted, and mismatched bases divided by the number of bases in the reference
genome (the lower the better). Identity rate (%) is defined as the number of matched bases divided by the number of bases in the reference genome for that sample
(the higher the better; identity rate = 1 - deletion rate - mismatch rate). Error rate (%) is defined as the sum of deletion, insertion, and mismatch rates (the lower the
better; error rate = deletion rate + insertion rate + mismatch rate). This statistic effectively summarizes the basecalling accuracy of the associated model. The best

result in each category is indicated in bold.

Table 2: Assembly identity rate and relative length benchmark,

Sample
(coverage) Albacore Albacore 2 Chiron-BS Metrichor Albacore Albacore 2 Chiron-BS Metrichor

E. coli-S18
(27X)

99.004 99.162 99.533 87.678 100.055 99.715 99.720 94.253

E. coli-S10
(40X)

99.106 99.316 99.646 88.745 100.144 99.739 99.811 94.829

M. tuberculosis
(130X)

99.541 99.628 99.554 84.736 100.126 100.029 99.900 90.875

Lambda
Phage (790X)

97.926 99.207 99.507 99.164 101.104 100.123 99.800 99.335

Draft genomes generated by Miniasm is polished 10 rounds by Racon to calculate the statistics. Assembly identity rates are presented in the left 4 columns, relative
lengths are presented in the right 4 columns. Identity rate (%) is calculated by first shredding the assembly contigs into 10K read fragments and then obtaining the
mean of the identity rate of the aligned reads, relative length (%) is defined as the sum of the length of all the aligned pieces divided by the length of the reference

genome. E. coli-S10 and E. coli-S18 are reads from two independent sequencing events.

A recent basecaller named BasecRAWller [13] was used an
initial neural network (referred to as a raw network) to output
probabilities of boundaries between segments. A segmentation
algorithm was then applied to segment these probabilities into
discrete events. BasecRAWller then used a second neural net-
work (referred to as the fine-tune network) to translate the seg-
mented data into the base sequence.

Our proposed model is a departure from the above ap-
proaches in that it performs base prediction directly from raw
data without segmentation. Moreover, the core model is an end-
to-end basecaller in the sense that it predicts the complete base
sequence from raw signal. This is made possible by combining
a multilayer convolutional neural network to extract the local

features of the signal, with a recurrent neural network to predict
the probability of nucleotides in the current position. Finally, the
complete sequence is called by a simple greedy algorithm, based
on a typical CTC-style decoder [14], reading out the nucleotide
in each position with the highest probability. Thus, the model
need not make any assumption of the speed of DNA fragment
translocation and can avoid the errors introduced during seg-
mentation.

To improve the basecalling speed and minimize its mem-
ory requirements, the neural network is run on a 300-signal
sliding window (equivalent to approximately 20bp), overlapping
the sequences on these windows and generating a consensus
sequence. Chiron has the potential to stream these input raw
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Figure 3: (A) Assembly error rate (%) for each polishing round using Racon. Two individually sequenced E. coli samples are included (S10, S18). All basecallers have
a similar performance on the M. tuberculosis dataset due to its high sequencing depth (130X). (B) Relative assembly length (%) after each round of polishing. Relative

length is defined as the length of the assembly divided by the length of reference genome.

signal ”slices” into output sequence data, which will become
an increasingly important aspect of basecalling very long reads
(100kb+), particularly if used in conjunction with the read-until
capabilities of the MinION.

Our model was either the best or second-best in terms of ac-
curacy on all of the datasets we tested in terms of read-level ac-
curacy. This includes the Human dataset, despite the fact that
the model had not seen Human DNA during training. Our model
had only been trained on a mixture of 2,000 bacterial and 2,000
viral reads. The most accurate basecaller is the proprietary ONT
Albacore basecaller. Chiron is within 1% accuracy on bacterial
DNA but only within 2% accuracy on Human DNA. More exten-
sive training on a broader spectrum of species, including Hu-
man, can be expected to improve the performance of our model.
There are also improvements in accuracy to be gained from bet-
ter alignment of overlapping reads and consensus calling. In-
creasing the size of the sliding window will also improve accu-
racy but at the cost of increased memory and running time.

Bacterial and viral genome assemblies generated from Chi-
ron basecalled reads all had less than 0.5% error, whereas those
generated by Albacore had up to 0.8% accuracy Fig. 3. This
marked reduction in error rate is essential for generating accu-
rate single-nucleotide polymorphism genotypes, a prerequisite
for many applications such as outbreak tracking. These results
are consistent with those reported in a recent study of read and
assembly level accuracy for Klebsiella pneumoniae [18].

Our model is substantially more computationally expensive
than Albacore and somewhat more computationally expensive
than BasecRAWller. This is to be expected given the extra depth
in the neural network. Our model can be run in a GPU mode,
which makes computation feasible on small- to medium-sized
datasets on a modern desktop computer. Our method can be
further sped up by increasing the step size of the sliding win-
dow, although this may impact accuracy. Also, there are several
existing methods that can be used to accelerate NN-based base-

Table 4: Details on the number of reads and their median read length
for data that was used to evaluate various basecallers

Sample Number of reads
Median read length

(bp)

Phage Lambda 34,383 5,720
E. coli 15,012 5,836
M. tuberculosis 147,594 3,423
Human 10,000 6,154

callers such as Chiron. One such example is Quantization, which
reformats 32-bit float weights as 8-bit integers by binning the
weight into a 256 linear set. As neural networks are robust to
noise, this will likely have negligible impact on the performance.
Weight pruning, which prunes the weights whose absolute value
is under a certain threshold and then retrains the NN, is another
method used to compress and accelerate NN [19].

Conclusion

We have presented a novel deep neural network approach for
segmentation-free basecalling of raw nanopore signal. Our ap-
proach is the first method that can map the raw signal data di-
rectly to base sequence without segmentation. We trained our
method on only 4,000 reads sequenced from the simple genome
lambda virus and E. coli, but the method is sufficiently general-
ized to be able to basecall data from other species, including Hu-
man. Our method has state-of-art accuracy, outperforming the
ONT cloud basecaller Metrichor as well as another third-party
basecaller, BasecRAWller.

Methods
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Deep neural network architecture

Our model combines a five-layer convolutional neural network
(CNN) [20]with a three-layer recurrent neural network (RNN) and
a fully connected (FC) layer in the last layer that calculates the
probability for a CTC decoder to get the final output. This struc-
ture is similar to that used in speech recognition [21]. Both the
CNN and RNN layers are found to be essential to the basecalling,
as removing either would cause a dramatic drop in prediction
accuracy, which is described more in the Training section.

Preliminaries. Let a raw signal input with T time points s = [s1,
s2, ..., sT] and the corresponding DNA sequence label (with K
bases) y = [y1, y2, ..., yK] with yi ∈ {A, G, C, T} be sampled from
a training dataset χ = {(s(1), y(1)), (s(2), y(2)), ...}. Our network di-
rectly translates the input signal time series s to the sequence y
without any segmentation steps.

The input signal is normalized by subtracting the mean of
the whole read and dividing by the standard deviation. s′ = (s −
s)/std(s).

Then the normalized signal is fed into a residual block [22]
combined with global batch normalization [23] in the five con-
volution layers to extract the local pattern from the signal. The
stride is set as 1 to ensure the output of the CNN has the same
length as the input raw signal. The residual block is illustrated
in Fig.1. A convolution operation with a l×m filter, n×p stride,
and s output channels on a k channels input is defined as:

Output(i, j, s) =
∑

di<l,dj<m,q<k

I nput(i · n + di, j · p + dj, q) · F ilter(di, dj, q, s).

An activation operation is performed after the convolution oper-
ation. Various kinds of activation functions can be chosen. How-
ever, in this model a rectified linear unit (ReLU) function is used
as the activation operation, which has been reported to have a
good performance in CNN, defined as :

ReLU (x) = max(x, 0)

Following the convolution layers are multiple bidirectional RNN
layers [24], a long short-term memory (LSTM) cell [25] is used as
the RNN cell, with a separate batch normalization on the inside
cell state and input term [26].

A typical batch normalization procedure [23] is

B N(x; γ, β) = β + γ � x − Ê [x]√
ˆVar[x] + ε

, (1)

where x be a inactivation term.
Let hl

t be the output of lth RNN layer at time t, the batch nor-
malization for a LSTM cell is

(ft, it, ot, gt) = B N(Whhl
t−1; γh, βh) + B N(Wxhl−1

t ; γx, βx) + b (2)

ct = σ (ft) � ct−1 + σ (it) � tanh(gt) (3)

ht = σ (ot) � tanh(B N(ct; γc, βc)) (4)

The batch normalization is calculated separately in the re-
current term Whhl

t−1 as well as the input term Wxhl−1
t . The pa-

rameters βh and βx are set to zero to avoid the redundancy with
b. The last forward layer �hL

i f and the backward layer �hL
ib are con-

catenated together as an input to a FC layer :

Hi = [hL
iw, hL

ib]. (5)

The final output is transferred through a FC layer followed by a
softmax operation :

p(oi = j) = exp W j Hi∑
j exp W j Hi

(6)

The output oi, i = 1, 2, ..., T predicts the symbol given the
input vector x, P(oi = j|x). If the read is a DNA sequence, then j ∈
{A, G, C, T, b}, where b represents a blank symbol ( Fig.1). During
training, the CTC loss is calculated between the output sequence
o and label y [13], and back-propagation is used to update the
parameters. An Adam optimizer [26] with an initial learning rate
of 0.001 is used to minimize the CTC loss.

During inference, the final sequence is constructed using ei-
ther a greedy decoder [14] or a beam-search decoder [27]. The
greedy decoder works by first getting the argument of maxi-
mum probability in each position of o and then producing the
sequence call by first removing the consecutive repeat, and then
removing the blank symbols. For example, the greedy path of an
output o is A A - - - A - - G -, here - represents the blank sym-
bol, the consecutive repeat is removed first and leads to A - A -
G -, and the blank is removed to get the final sequence AAG. The
beam-search decoder, with beam width W, maintains a list of
the W most probable sequences (after collapsing repeats and re-
moving blanks) up to position i of o. To obtain this list at position
i+1, it constructs the probability of all possible extensions of the
W most probable at position i based on adding each symbol ac-
cording to p(oi = j) and collapsing and summing up over repeated
bases, or repeated blanks that are terminated by a nonblank.
The greedy decoder is a special case of the beam-search decoder
when the beam width is 1. It should be noted that the model can
still call homopolymer repeats provided each repeated base is
separated by a blank, which is typically the case.

Convolutional network to extract local patterns. A total of 256
channel filters are used for all five convolutional layers. In each
layer, there is a residual block [28] (Fig. 1) with two branches. A
1x1 filter is used for reshaping in the first branch. In the second
branch, a 1x1 convolution filter is followed by a ReLU [29] acti-
vation function and a 1x3 filter with a RELU activation function
as well as a 1x1 filter. All filters have the same channel num-
ber of 256. An element-wise addition is performed on the two
branches followed by a ReLU activation function. A global batch
normalization operation is added after every convolution oper-
ation. A large kernel size (5,7,11) and different channel numbers
(128,1024) are also tested. The above combination is found to
yield the best performance.

Recurrent layers for unsegmented labeling. The local pattern ex-
tracted from the CNN described above is then fed to a three-
layer RNN (Fig.1). Under the current ONT sequencing settings,
the DNA fragments translocate through the pore with a speed
of roughly 250 or 450 bases per second, depending on the se-
quencing chemistry used, while the sampling rate is 4,000 sam-
ples per second. Because the sampling rate is higher than the
translocation rate, each nucleotide usually stays in the current
position for about 5 to 15 samplings, on average. Furthermore,
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as a number of nearby nucleotides also influence the current,
40 to 100 samples (based on a 4- or 5-mer assumption) could
contain information about a particular nucleotide. A three-layer
bidirectional RNN is used for extracting this long range informa-
tion. LSTM cells [26, 30] with 200 hidden units are used in every
layer, and a FC layer is used to translate the output from the last
RNN layer into a prediction. The output of the FC layer is then fed
into a CTC decoder to obtain the predicted nucleotide sequence
for the given raw signals.

Improving basecalling performance. To achieve better accuracy
and less memory allocation, a sliding window is applied (default
of 300 raw signals), with a preset sliding step size (default of
10% of window size), to the long raw signal. This gives a group
of short reads with uniform length (window length) that over-
lap the original long read. Then, basecalling is run in parallel on
these short reads, and the whole DNA sequence is reassembled
by finding the maximum overlap between two adjacent short
reads and read out of the consensus sequence. Note that here
the reassembly is very easy because the order of the short reads
is known. This procedure improves the accuracy of the basecall-
ing and also enables parallel processing on one read.

Data preparation

Sequencing. The library preparations of the E. coli and M. tubercu-
losis samples were done using the 1D gDNA selecting for long reads
using SQK-LSK108 (March 2017 version) protocol with the follow-
ing modifications. Increase the incubation time to 20 minutes in
each end-repair and ligation step; use 0.7x AgencourtR AMPureR

XP beads (Beckman Coulter) immediately after the end-repair
step and incubation of the eluted beads for 10 minutes; and use
elution buffer (ELB) warmed up at 50

o
C with the incubation of

the eluted bead at the same temperature. For the Lambda sam-
ple, the 1D Lambda Control Experiment for MinION device using SQK-
LSK108 (January 2017 version) protocol was followed with the fol-
lowing changes: sheared the sample at 4000 rpm(2x1 minutes);
30 minutes of incubation in each end-repair step; and 20 min-
utes for adaptor ligation and elution of the library with 17 μLof
ELB. All samples were sequenced on new FLO-MIN106, version
R9.4, flow cells with more than 1,100 active single pores, and
the phage was sequenced in a MinION Mk1 (232 ngin 6-hourrun)
while the bacteria samples were sequenced in a MinION Mk1B (1
μg E. coli and 595 ng M. tuberculosis in 22-hourand 44-hourruns,
respectively). The E. coli sample was run on the MinKNOW, ver-
sion 1.4.3, and the other samples in earlier versions of the soft-
ware. The E. coli sample was also sequenced on Illumina MiSeq
using paired-end 300x2 to 100-fold coverage. An assembly of the
E. coli genome was constructed by running Spades [31] on the
MiSeq sequencing data of the sample. The genome sequence of
the Phage Lambda is NCBI reference sequence NC 001416.1.

Labeling of raw signal. Metrichor, the basecaller provided by
ONT that runs as a cloud service, is used to basecall the MinION
sequencing data first. Then, Nanoraw [32] is used for labeling
the data. Briefly, the basecalled sequence data are aligned back
to the genome of the sample; from the alignment, the errors in-
troduced by Metrichor are corrected to avoid the bias from Met-
richor being learned into Chiron. The corrected data are mapped
back to the raw data. The resulting labeling consists of the raw
signal data, as well as the boundaries of raw signals when the
DNA fragment translocates to a new base. We use the base-level
segmentation of the raw data to obtain matched pairs of signal
segment (of lengths 200, 400, and 1000) together with the cor-
responding DNA base sequence. From this point onwards the

exact matching of the signal to each base within a segment is
disregarded.

Training and testing datasets. A dataset using 2,000 reads from
E. coli and 2,000 reads from Phage Lambda is created for train-
ing Chiron. In every start of the training epoch, the dataset is
shuffled first and then fed into the model by batch. Training on
this mixture dataset gave the model better performance both on
generality and accuracy on not only the E. coli and Phage Lambda
but also on M. tuberculosis and Human data. The testing dataset
is shown in Table 4.

Training

The labeling from Metrichor described previously is used to train
Chiron. Although the neural network architecture is translation
invariant and not restricted by the sequence length, a uniform
length of sequences is suited for batch feeding and thus can ac-
celerate the training process. From this view, the original reads
were cut into short segments with a uniform length of 200, 400,
and 1,000 and trained on these batches in alternation. Several
different architectures of the neural network were tested (Table
5), with the CNN-RNN network architecture having the best ac-
curacy compared to a CNN- or RNN-only network. Also, using
more layers seems to increase the performance of the model;
however, the time consumed for training and basecalling is also
increased. In the final structure, an NN with five convolution lay-
ers and three recurrent layers is adopted, as adding layers above
this structure gave negligible performance improvement but re-
quired more calculation and also increased the risk of overfitting
(Table 5).

Parameters for basecalling

All basecallers were invoked on the same set of reads for each
sample. When using Chiron to basecall, the raw signal was first
sliced by a 300 length window, the window was slided by 30, and
the sliced segments were fed into the basecaller with a batch size
equal to 1,100. Then, the output short reads were simply assem-
bled by a pair-wise alignment between neighboring reads, and
the consensus sequence was output from this alignment. All
basecalling with Albacore (v1.1.1 and v2.0.1) and BasecRAWller
[13] (version 0.1) was done with default parameters. For the con-
figuration setting in Albacore, r94 450bps linear.cfg was used
for all samples, as this matches the flowcell and kit used for each
sample. The data were basecalled on Metrichor on 3 June 2017
(Lambda), 18 May 2017 (E. coli), 4 June 2017(M. tuberculosis), and
20 June 2017 (NA12878-Human).

Quality score

The quality score is calculated using the following algorithm:
qs = 10 ∗ log10( P1

P2 ), where P1 is the probability of the most prob-
able base in the current position, and P2 is the probability of the
second probable base in the current position.

Comparison of raw read accuracy

To assess the performance of each program, the resulting
FASTA/FASTQ file from basecalling was aligned to the refer-
ence genome using graphmap [33] with the default parameters.
The resulting BAM file was then assessed using the japsa er-
ror analysis tool (jsa.hts.errorAnalysis), which looks at the
deletion, insertion, and mismatch rates; the number of un-
aligned and aligned reads; and the identification rate compared
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Table 5: Comparison of normalized edit distance with different neural network architectures.

Architecture
Normalized edit

distance

3 convolutional layers 0.4007 ± 0.0277
5 convolutional layers 0.3903 ± 0.0230
10 convolutional layers 0.3874 ± 0.0186
3 bidirectional recurrent layers 0.2987 ± 0.0221
5 bidirectional recurrent layers 0.2930 ± 0.0215
3 convolutional layers + 3 bidirectional
recurrent layers

0.2011 ± 0.0252

5 convolutional layers + 5 bidirectional
recurrent layers

0.2001 ± 0.0177

The normalized edit distance is the edit distance between predicted reads and labeled reads and normalized by segment length.

to the reference genome. The identity rate was calculated as
number of matched bases

number of bases in reference
and is the marker used here for base-

calling accuracy.

Assembly identity rate comparison

We assessed the quality of assemblies generated from reads pro-
duced by different basecallers. For each basecaller, a de novo as-
sembly was generated using only Nanopore reads for the M.
tuberculosis, E. coli, and Lambda Phage genomes. We used Min-
imap2 [34] and Miniasm [35] to generate a draft genome, then
Racon [36] was used to polish on the draft genome for 10 rounds.

Availability of supporting data

The M. tuberculosis sequencing data have been deposited in Gen-
bank under project number PRJNA386696. The Human nanopore
data were downloaded from https://github.com/nanopore-wgs-
consortium/NA12878. Supporting data, including training and
testing datasets, are available via GigaDB [37].

Availability of supporting source code and
requirements

Program and code are available at https://github.com/haotiante
ng/chiron pypi package index 0.3 at https://pypi.python.org/pypi
/chiron. Chiron is registered in SciCrunch with RRID:SCR 015950.
Chiron is available under a Mozilla Public License v2.0. Chiron is
built with Tensorflow and requires python 2.7
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