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Simple Summary: Hepatoblastoma is the most common childhood liver cancer, making up over
90% of malignant liver tumors in children younger than 5 years of age. Currently, research to find
new treatments for treatment-resistant hepatoblastoma is limited by a lack of appropriate models to
study the disease. In this study, we describe a novel patient-derived organoid model of aggressive
hepatoblastoma that can be used to study the disease in the laboratory and test new treatments.
We demonstrate that tumor organoids share the same genomic profile as the patient tumors from
which they are derived, and also demonstrate similar features with respect to gene expression profiles
and beta-catenin signaling. We also demonstrate the feasibility of using hepatoblastoma organoids to
complete a drug screen alongside normal liver control organoids derived from the same patient, and
report promising initial results of anti-tumor activity of the BET inhibitor JQ1.

Abstract: Hepatoblastoma is the most common childhood liver cancer. Although survival has
improved significantly over the past few decades, there remains a group of children with aggressive
disease who do not respond to current treatment regimens. There is a critical need for novel models
to study aggressive hepatoblastoma as research to find new treatments is hampered by the small
number of laboratory models of the disease. Organoids have emerged as robust models for many
diseases, including cancer. We have generated and characterized a novel organoid model of aggressive
hepatoblastoma directly from freshly resected patient tumors as a proof of concept for this approach.
Hepatoblastoma tumor organoids recapitulate the key elements of patient tumors, including tumor
architecture, mutational profile, gene expression patterns, and features of Wnt/β-catenin signaling
that are hallmarks of hepatoblastoma pathophysiology. Tumor organoids were successfully used
alongside non-tumor liver organoids from the same patient to perform a drug screen using twelve
candidate compounds. One drug, JQ1, demonstrated increased destruction of liver organoids from
hepatoblastoma tumor tissue relative to organoids from the adjacent non-tumor liver. Our findings
suggest that hepatoblastoma organoids could be used for a variety of applications and have the
potential to improve treatment options for the subset of hepatoblastoma patients who do not respond
to existing treatments.
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1. Introduction

Hepatoblastoma is the most common childhood liver cancer, making up 80% of all malignant liver
neoplasms in children, with over 90% of such lesions being in children younger than 5 years of age [1].
The development of hepatoblastoma has been linked to environmental factors such as prematurity and
genetic syndromes including Beckwith–Wiedemann syndrome [2]. Recent evidence suggests that the
incidence rate of hepatoblastoma is increasing by more than 4% annually [3]. Unlike hepatocellular
carcinoma—the most common liver malignancy in adults—hepatoblastoma is an embryonal neoplasm
believed to arise from hepatic precursor cells (hepatoblasts). Tumors display heterogeneous histologic
and molecular features that appear similar to patterns present at various stages of liver development [4].
Aberrations of Wnt/β-catenin signaling are key to the pathogenesis of the disease [2,4–6]. Although
survival for hepatoblastoma has improved significantly over the past few decades, there remains a
group of children who experience poor outcomes, including death. These patients are not eligible
for surgical resection and do not respond to current chemotherapy regimens. In order to develop
improved therapies for such children, additional research is required to understand the biology of
aggressive hepatoblastoma and perform targeted drug screening. Currently, research of this nature is
limited by the small number of in vitro models that accurately reflect the disease [7,8]. In particular,
there is a specific dearth of models that reflect the aggressive subset of tumors that lead to the majority
of deaths from hepatoblastoma [7].

Organoids have emerged as model systems for a variety of tissue types and disease states.
Organoids are generally defined as three-dimensional cell culture systems that recapitulate tissue
architecture and function. They can be derived from induced pluripotent stem cells (iPSCs) or from
adult stem cells (ASCs) present in mature tissues [9]. Organoid models have shown special promise as a
bridge between standard two-dimensional in vitro culture models, and in vivo models such as murine
xenografts. Traditional two-dimensional cell culture techniques require significant adaptations by cells
simply to grow in vitro and also do not recapitulate important features of three-dimensional cellular
organization of tissues, including complex cell-cell interactions [10]. Animal models are routinely used
in preclinical testing of drugs before human trials. However, such in vivo models generally take many
months to establish, are costly to develop and maintain, and are optimal only for low-throughput
testing of a small number of drugs. Recent work demonstrated that organoid models of cancer can
recapitulate the biology of a variety of tumor types [11–14]. Additionally, when used in conjunction
with drug testing assays, these models can accurately reflect the treatment response observed in
patients [15]. By generating organoid models directly from patient tissue, we have the opportunity to
establish a biobank of tumors which can reflect the wide range of histologic and molecular tumor types
that exist under the umbrella of a single diagnosis such as hepatoblastoma [13]. As an added benefit of
this technique, organoid models of non-tumor “normal” tissue can be established concurrently from
patients and used as matched controls for a variety of experimental techniques.

On the basis of previous work establishing the genomic stability and hepatic functionality of
liver organoids derived from primary tissue [16–18], we successfully developed and characterized
a novel organoid model of aggressive hepatoblastoma as a proof of concept for this approach.
We demonstrate that hepatoblastoma tumor organoids faithfully recapitulate the mutational profile and
tumor architecture observed in vivo in the patient and in a patient-derived xenograft (PDX). We also
demonstrate that tumor organoids share similar gene expression patterns with other hepatoblastoma
tumors, and that these transcriptomic profiles are unique from both normal tissue, and organoids derived
from normal tissue. This hepatoblastoma organoid model also exhibits key features of Wnt/β-catenin
signaling that are hallmarks of hepatoblastoma. Furthermore, we show that hepatoblastoma organoids
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can be used in a screen of potential therapeutics. Further applications of this model, and expansion to
include hepatoblastoma organoids from additional patients, have the potential to improve treatment
options for hepatoblastoma patients who do not respond to existing treatment modalities.

2. Results

2.1. Hepatoblastoma Normal and Tumor Organoids are Established from Primary Tumors through Culture at
the Time of Surgery

Protocols for the establishment and long-term expansion of human liver organoid cultures have
been previously published elsewhere [16–18]. Hepatoblastoma tumor tissue and surrounding tissue
was collected in the operating room at the time of tumor resection. For six patients, the resection was a
primary liver tumor and included the adjacent non-tumor liver. In one patient (HB9), the resection was
of a lung metastasis and the surrounding lung tissue. For three patients (HB2, HB3, and HB5), only
frozen tissue was collected. This tissue was used only for the evaluation of histology, whole exome
sequencing (WES), and transcriptomic profiling with RNA sequence analysis (RNAseq). For four
patients (HB6, HB7, HB8, and HB9), both fresh and frozen tissue was collected.

Frozen tissue was used for histology, WES, and RNAseq, while fresh tissue was used to establish
patient-derived xenografts and to grow organoid cultures (see Figure 1 for schematic of the workflow and
Methods section for full details). Fresh tissue pieces were mechanically and enzymatically dissociated
to a near single-cell suspension and plated on 24-well plates in suspension in three-dimensional matrix
domes. The initial media was an isolation media (IM) which contained Wnt3α, R-spondin, Noggin,
and inhibitors of TGF-beta and Rho kinase. After the formation of organoids (usually by 5–7 days),
cultures were transferred to an expansion media (EM), for at least 5 additional days. Organoid cultures
were expanded in EM and passaged as needed (every 5–7 days for normal organoids and every
10–14 days for tumor organoids). All organoid lines had grown for at least 10 passages (at least
60 days). A subset of organoids was transferred to differentiation media (DM) for 14 days to induce
hepatocyte differentiation [17]. DM organoids were analyzed for histology and WES, and both EM and
DM organoids were used for transcriptome analysis.
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Figure 1. Fresh hepatoblastoma tumor tissue and surrounding normal tissue is collected from
patients at the time of surgery. The tissue is dissociated to single-cell suspension and cultured in
a 3-dimensional matrix to create tumor and normal liver organoids. Pieces of fresh tumor are also
implanted subcutaneously into mice to generate PDXs. Collection of DNA and RNA, and histologic
examination is performed at multiple points in the experimental workflow.
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We successfully established six human liver organoid lines from three patients with hepatoblastoma
(HB6, HB7, and HB8). After multiple passages, two of the organoids that were derived from tumor
tissue (HB6 tumor, and HB7 tumor) did not show evidence of the mutations present in their associated
tumor tissue samples. We hypothesize that non-tumor cells in the tissue sample outgrew the tumor cells
in culture prior to organoid harvest for analysis, as has been previously reported [14]. Patient-derived
xenografts were also established for two lines (HB8 and HB9) through subcutaneous implantation of
tumor pieces (see Methods for full details).

2.2. Normal and HB Tumor Organoids Show Morphologic and Genomic Similarity to Human Tissue from
Which They Are Derived

Hepatoblastoma is divided into several histologic subtypes depending on morphologic features,
and tumors often contain a heterogeneous mix of histologic subtypes [19]. The tumors included in our
cohort represent a range of histologic subtypes reflecting these histologically observed variations of
hepatoblastoma (Table 1).

Table 1. Frozen tumor and surrounding normal tissue were collected from seven patients. The table
shows the histologic subtypes of tumors included in the sample cohort, and the grey boxes indicate the
material collected for each patient sample.

Sample Histologic Subtype Frozen
Tissue Fresh Tissue Normal

Organoid
Tumor

Organoid PDX

HB2 Fetal

HB3 Mixed epithelial
and mesenchymal

HB5 Fetal and embryonal
HB6 Fetal

HB7 Mixed epithelial
and mesenchymal

HB8
Predominantly fetal

with minor
embryonal

HB9 Mixed embryonal
and fetal

Additionally, tumors had a variety of risk profiles based on previously published groupings by
Sumazin [4], and Cairo [5]. HB3, HB5, HB8, and HB9 harbored high risk features in the prognostic
model by Sumazin (see Figure S1 and Table S1), and HB3, HB5, and HB9 also clustered together in
analysis of the 16-gene risk signature by Cairo. Hepatoblastoma tumor organoids were generated
from a patient with one of these high-risk tumors, HB8. These organoids display similar morphologic
features to the tissue from which they were derived, including disorganized tissue structure and
the presence of primitive tubules that are characteristic of the embryonal subtype [19] (Figure 2).
Tumor organoids also appear notably different in appearance from organoids derived from adjacent
non-tumor liver from the same patient. In contrast with the disorganized clusters characteristic of
tumor organoids, non-tumor liver organoids form well-organized spheres. At higher magnification,
the differences in tumor and normal organoids can be observed at the cellular level. Normal organoids
are made up of cells that have relatively uniform size and shape with a nucleus to cytoplasm ratio that
is similar to normal hepatocytes. The cells of tumor organoids, similar to the cells from the tumor,
are pleiomorphic with non-uniform nuclei and a high nucleus to cytoplasm ratio (NC ratio) that is
characteristic of malignancy in general, and hepatoblastoma in particular (Figure 2) [20].
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appearance and include immature tubular structures (dark arrows). 
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cohort (Figure 3), consistent with previous reports of such mutations being present in 60–90% of 
hepatoblastoma tumors [4,6]. Tumor organoids and tumor tissue, but not normal tissue, from HB8 
also both had a point mutation in NFE2L2, a gene involved in the regulation of oxidative stress. This 
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more aggressive clinical phenotype [4,22].  

Figure 2. Representative hematoxylin and eosin staining of normal and tumor tissue and organoids
from a patient with hepatoblastoma (HB8). Healthy liver and primary tumor tissue sections were
obtained from frozen sections of tissue blocks that were used for whole exome sequencing (WES) and
RNAseq. All images were obtained with a 60× objective except brightfield images which were obtained
with a 10 × objective. Normal tissue and organoid samples show relatively uniform cell size and shape,
while hepatoblastoma tumor tissue and tumor organoids have a similar disorganized appearance and
include immature tubular structures (dark arrows).

Hepatoblastoma tumors typically show minimal genomic alterations including few somatic
mutations and limited copy number alterations. We used whole exome sequencing (WES) to determine
the genomic similarity between organoids and the tissues from which they were derived. Our sample
of seven hepatoblastoma tumors demonstrated a range of mutations that have been reported in
previous genomic descriptions of hepatoblastoma, most notably mutations in CTNNB1, the gene
encoding beta-catenin [4,6,21,22]. Tumor organoids harbored the same mutations that were present
in the patient tumor that were characteristic of hepatoblastoma. The normal liver organoids did
not harbor any of these mutations. Tumor organoids had a large deletion of exon 3 in CTNNB1.
Mutations in this region of CTNNB1 were identified in samples from HB3, HB5, HB7 and HB9 in
our cohort (Figure 3), consistent with previous reports of such mutations being present in 60–90% of
hepatoblastoma tumors [4,6]. Tumor organoids and tumor tissue, but not normal tissue, from HB8
also both had a point mutation in NFE2L2, a gene involved in the regulation of oxidative stress. This
mutation has been identified in 5–10% of hepatoblastoma tumors, and has been associated with a more
aggressive clinical phenotype [4,22].

Copy number variation was also determined by whole exome sequencing by comparing tumor
samples to matched normal samples from the same patient (Figure 3). As has been described in other
genomic characterizations of hepatoblastoma, there are few consistent copy number variations in the
tumors in our cohort. Some tumors displayed previously described alterations including gains in
chromosome regions 1q (three of seven tumors), 2 (one of seven, with two of seven showing focal
gains in 2q), and 8q (one of seven) [4,23]. Tumor organoids, as well as the PDX derived from the same
sample, showed similar copy number variation profiles to the tumor tissue sample from which they
were derived. Interestingly, the increase in copy number variations in PDX and organoid samples was
greater than in the human tumor tissue samples. This is likely due to the fact that organoid and PDX
samples are enriched for tumor cells while tumor tissue samples also contain normal cells and stromal
tissue that do not contain the same genomic alterations as tumor cells themselves. Normal organoids
did not demonstrate copy number variations that were present in tumor samples. They did show mild
gains in small regions of chromosomes 7 and 19 in all three normal organoid lines. The low level of
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samples. 
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Figure 3. Mutations in exon 3 of CTNNB1 were found in 4 out of 7 tumor samples. Three tumors had a
single point mutation. HB8 tumor had a complete deletion of exon 3, while another (HB3) had multiple
frameshift insertion/deletions. A copy number variation plot for all tissue and organoid samples
demonstrates that tumors reflect known hepatoblastoma copy number variations. These variations are
similarly reflected in tumor organoid and PDX samples but not in normal organoid samples.

2.3. HB tumor Organoids Recapitulate Beta-Catenin Signaling Patterns Present in Human HB Tumors

Aberrant Wnt/β-catenin signaling is central to the pathogenesis of hepatoblastoma. We performed
multiple assays to evaluate elements of the Wnt/β-catenin signaling pathway in organoid samples
compared to tissue and found that hepatoblastoma tumor organoids show signaling abnormalities
indistinguishable from the tumor tissue. As noted above, at the genomic level, WES demonstrated a
mutation resulting in a complete deletion of exon 3 of β-catenin in HB8 organoid and tumor tissue.
We probed for the presence of the β-catenin protein product using Western blotting. Tumor tissue,
organoids, and PDX, but not normal tissue, all contain a protein band migrating faster than the expected
β-catenin band at 90 kDa. This apparent molecular weight corresponds with what is expected from
the truncated version of β-catenin without exon 3 (Figure 4C). We further tested this hypothesis by
performing Western blotting using an antibody against an epitope on exon 3 of β-catenin. While there
was a clear band in normal samples, no protein was detected in the tumor samples. This is consistent
with β-catenin missing the exon 3 epitope in tumor samples (Figure 4D).
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Figure 4. (A,B) Immunofluorescence images demonstrate that hepatoblastoma tumor tissue and
tumor organoids have greater cytoplasmic and nuclear beta-catenin staining than normal tissue and
normal organoids. Green = β-catenin, blue = Hoechst, gray = co-localization. Scale bars = 50 µm.
(C) Immunoblot of total β-catenin in normal organoids and tissue shows full length protein at 90 kDa
and truncated β-catenin in HB8 tumor organoids, tissue, and PDX associated with large deletion of
exon 3. (D) Immunoblot of β-catenin using an antibody with an epitope on exon 3 demonstrates
the loss of staining in HB8 tumor organoids that harbor an exon 3 deletion. Detail information can
be found at Figure S2. (E) Gene Set Enrichment Analysis (GSEA) of the Wnt/β-catenin pathway in
normal tissue compared to all tumor samples demonstrates a significant increase in the transcription of
Wnt/β-catenin signaling genes in tumor samples. (F) Wnt/β-catenin gene expression patterns at the
single gene level compared between normal tissue (NT), tumor tissue (TT), normal organoids (NO),
tumor organoids (TO), and patient derived xenografts (PDX) demonstrate similar expression between
tumor tissue and tumor organoid samples.

The distribution of β-catenin was examined in cells with immunofluorescence. Both normal
liver tissue (Figure 4A) and organoids (Figure 4B) from normal tissue display primarily membrane
staining. In contrast, tumor tissue and organoids derived from tumor tissue show increased overall
immunoreactivity, with much of it cytoplasmic and nuclear, as evidenced by the increased colocalization
with the Hoechst stains (Figure 4A,B). β-catenin is active as a transcription factor when it is localized
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to the nucleus [24,25], suggesting that Wnt signaling is increased in activation in both the tumor and
tumor organoid samples.

We performed Gene Set Enrichment Analysis (GSEA) [26] using a validated set of 50 genes related
to Wnt/β-catenin signaling to examine downstream signaling changes in Wnt/β-catenin signaling.
This analysis demonstrated that there is a generalized overactivity of the Wnt/β-catenin signaling
pathway in hepatoblastoma tumor tissue, tumor organoid, and PDX tumor samples compared to
normal tissue (Figure 4E). To further investigate Wnt/β-catenin signaling at the single-gene level
we examined patterns in specific transcripts and again found similar expression in tumor tissue
and organoid samples (Figure 4F). Interestingly, some Wnt/β-catenin genes also showed expression
alterations in normal organoids compared to normal tissues (e.g., β-catenin and AXIN2), while others
did not show alterations (e.g., DKK4 and WNT6).

2.4. Hepatoblastoma Tumor Organoids Have a Similar Transcriptome to Human Tumor Tissue

To explore gene expression patterns in hepatoblastoma tumors and organoids, we performed
RNAseq on all tumor and normal tissue samples (see Methods), as well as tumor and normal organoid,
and PDX samples in our cohort (24 unique samples in total). In principal component analysis (PCA)
we found that the adjacent non-tumor tissue samples clustered in a tight group with the exception of
HB9 (Figure 5A).

All of the adjacent non-tumor tissue was from the liver, except for HB9, which was collected from
the surrounding lung. We suspect that the normal gene expression differences between the lung and
liver explain the separation of HB9 from other normal samples. In contrast, tumor samples separated
broadly from normal tissue, mostly along principal component 2 (PC2), with tumor organoids and
PDX samples clustering the furthest away from normal tissue samples of any of the tumor samples.
We hypothesize that the greater separation of the organoids from the normal, relative to the separation
of the primary tumor from the normal tissue samples, may be due to higher enrichment of tumor cells
in PDX and organoid samples compared to tumor tissue samples. This is similar to what we observed
with the greater magnitude of copy number alterations described above.

Interestingly, normal liver organoid samples clustered in a unique group separate from both
tumor samples and normal tissue samples. Normal organoid samples were very similar to normal
tissue samples on the axis of PC2 (which separates normal and tumor tissue samples), but separated
on the axis of PC1. A similar phenomenon was described by Huch and colleagues in their study of
hepatocellular carcinoma and cholangiocarcinoma organoids, in which they demonstrated that one
principal component dimension distinguished various tumor types, while another separated tissue
samples from organoid samples [14]. Interestingly, of all the tumor samples, the tumor organoid
samples were shifted furthest on PC1 toward the normal organoid samples. This shift suggests that
tumor organoid samples have expression characteristics inherent to both hepatoblastoma tumors
(demonstrated by tumor associated PC2 shift away from normal tissue and organoids), and of organoids
in general (demonstrated by PC1 shift away from tissue samples and toward other organoids). Our
RNAseq cohort included both expansion media (EM) and differentiation media (DM) samples of all
organoids. The samples in EM clustered in one group while DM samples clustered in a separate group.
The DM group shifted slightly towards the human tissue samples in accordance with their greater
similarity to mature hepatocytes.

We performed differential expression analysis between normal tissue and tumor tissue samples
and found 3413 genes that were differentially expressed at a false discovery rate (FDR) < 0.05 and
|Log2fold change| greater than 1 (Figure 5B). In order to determine whether tumor organoids showed
similar transcriptomic alterations to tumor tissue, we performed unsupervised clustering of sample
based on this set of 3413 genes differentially expressed in tissue. We found that all tumor samples
clustered together. Normal organoids clustered separately from all tumor samples, but also separately
from normal tissue samples. This suggests that tumor organoids recapitulate the gene expression
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patterns of tumor tissue with high fidelity. In contrast, normal organoids predominantly share the
gene expression patterns of normal tissue, but do show some variations.
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Figure 5. (A) Principal component analysis (PCA) plot of dimensions 1 and 2 (PC1 vs PC2) for RNAseq
data (normalized counts per gene). The plot demonstrates similarity between normal tissue samples
and a separation of normal organoids along PC1 and tumor samples along PC2. (B) Heatmap showing
differentially expressed genes (n = 3413) between hepatoblastoma tumor tissue samples and normal
tissue samples. Individual genes are represented by rows, and samples are represented by columns.
Columns are organized by unsupervised clustering. All normal samples cluster together as do all
tumor samples, however normal organoids cluster as a distinct group from normal tissues. (C) Gene
Set Enrichment Analysis comparing organoids in EM and DM. DM organoids show increased activity
in a variety of normal hepatocyte functions and enriched TGF-β signaling. Organoid expansion media
contains a TGF-β inhibitor, while DM does not.

We employed Gene Set Enrichment Analysis (GSEA) to further explore the gene expression
patterns that characterized different paired sets of samples [26]. We performed comparisons between
tumor samples and normal tissue samples, and between normal EM organoids and normal DM
organoids. We queried samples against 50 canonical gene sets that include verified groups of genes
associated with well-defined biological states and cellular processes [27]. We found seven gene sets
that had enriched expression in tumor samples compared to normal tissue at a nominal p value of <

0.05 (Table S2). The expression of gene sets related to Wnt/β-catenin signaling, MYC target genes, E2F
transcription targets, and others were enriched in tumor samples compared to normal samples. In
comparing EM and DM samples, DM samples were found to exhibit enrichment of gene sets related
to a number of fundamental hepatocyte functions including coagulation, complement, and drug
metabolism (Figure 5C, Table S3). Enrichment of TGF-β signaling in DM samples validates the effect
of TGF-β inhibition in EM samples provided by compound A8301 in EM media.
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2.5. HB Organoids Allow Medium-Throughput Drug Screening and Can Be Used for Individualized
Drug Testing

Using normal liver organoids and tumor organoids from the HB8 lines, we performed a
proof-of-concept drug screen. This patient had previously received standard-of-care therapies,
yet experienced subsequent recurrences and metastases. Thus, we wanted to explore novel compounds
that had not previously been used to treat hepatoblastoma. Based on a high-throughput drug screen
that we are pursuing against PDX for various liver tumors, we chose 12 candidate compounds from a
screen of 5200 compounds [28]. Organoids were treated in dilution series of all compounds for six
days and then evaluated using a cell viability assay (Figure 6). Complete results for all compounds
are in the Supplementary Materials. The assay was conducted simultaneously with three technical
replicates and repeated with later passage organoid populations and organoids transduced with an
L10 GFP (again in triplicate) as biological replicates (see Table S4 for full results).
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Figure 6. Organoid drug screen results for 6 selected compounds. Normal and tumor organoids were
tested simultaneously for multiple concentrations between 1 nM and 10 µM. Plots shown are the mean
of three biologic replicates each performed in triplicate at each dilution. Error bars represent standard
error of all replicates. Cisplatin which is commonly used to treat hepatoblastoma showed no differential
effect on tumor organoids compared to normal. JQ1 demonstrated increased killing of tumor organoids
compared to normal organoids and may be candidate for novel therapy in aggressive hepatoblastoma.

Cisplatin, the cornerstone of standard chemotherapy for hepatoblastoma, was included in the
screen in addition to the candidate compounds. The drug had no differential effect on tumor organoids
compared to normal organoids, even at high concentrations. A few drugs including the proteasome
inhibitor MG-132 and the broad-spectrum kinase inhibitor Staurosporine demonstrated increased
killing of normal organoids compared to tumor. Some drugs exhibited greater reduction in tumor
organoid populations compared to normal organoids, but only at relatively high concentrations
that also resulted in significant death in normal organoids (e.g., a674563 and AZD3463). One drug,
JQ1, demonstrated a promising result of increased destruction of tumor organoids compared to
normal organoids. This was true at multiple concentrations and suggests there may be an acceptable
therapeutic index for JQ1 in hepatoblastoma.

3. Discussion

There is a critical need for novel models to study hepatoblastoma [7]. In addition to the small
number of cell lines for the disease, there is significant inconsistency in the literature characterizing
some of these models. For example, the HepG2 cell line, which is widely used in hepatoblastoma
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research, was cultured from a patient significantly older than usual hepatoblastoma patients (15 years
old) and is alternately referred to as a hepatocellular carcinoma cell line or a hepatoblastoma cell line
in different publications [29–32]. In order to develop targeted therapies for hepatoblastoma, disease
models should faithfully reflect the diversity of histological and molecular subtypes to specifically
target the more aggressive forms of the disease.

Recently, three-dimensional organoid culture models have transformed in vitro studies of human
biology and disease. Organoids have allowed scientists to recapitulate normal and disease physiology
at a multicellular level that facilitates both single-cell analysis and the understanding of cellular
interactions across heterogenous cellular populations analogous to the heterogenous makeup of organs
in living animals. Thus, organoid models have the potential to fulfill their promise as a missing
link between the two-dimensional cell culture models that lack the richness of cell interactions in
animals, and in vivo models that prohibit high throughput approaches. Cancer organoids have now
been shown to faithfully recapitulate key elements of disease including sequential mutation [33],
treatment response [14,15], and host immune response to the tumor [34]. Organoid biobanks have been
established as a proof-of-concept for a number of tumor types including colon cancer [13] and breast
cancer [35]. These biobanks have the potential to be used to direct the treatment of individual patients
in a precision medicine approach [36], or can be used to guide treatment for broader groups based on
molecular or mutational profiles [13]. The objective of using phenotypically diverse laboratory models
to guide novel treatments for aggressive pediatric liver cancer is a goal shared by a number of authors
in the field. Nicolle and colleagues demonstrated the feasibility of using a bank of patient-derived
xenografts to predict clinical outcomes and select appropriate therapies in pediatric liver cancer [37].
Additionally, a recently published study by Eloranta and colleagues used a panel of cell-line-derived
aggressive hepatoblastoma spheroids for drug testing in a similar fashion [38].

Our study presents a novel organoid model of hepatoblastoma, the most common pediatric
liver tumor. Moreover, this model represents a particularly aggressive subtype of the disease that is
most often associated with poor outcomes. This aggressive subtype is under-represented in existing
hepatoblastoma models [7], and is the subject of special focus for novel therapeutic techniques [39]. We
have demonstrated that hepatoblastoma tumor organoids show morphologic similarity to the tumors
from which they were derived, and retain genomic and transcriptomic alterations associated with
the tumors. Wnt/β-catenin signaling aberrations, which are fundamental to the pathophysiology of
hepatoblastoma, were also retained between tumor tissue and organoids. While the yield of tumor
organoid lines was relatively low in our study (one of four fresh samples collected), this may be
improved with culture techniques optimized to select for tumor organoids similar to those presented
by Broutier and colleagues [14].

In addition to our organoid lines, we also developed two murine patient-derived xenografts from
patient samples in our cohort. The results from tumor histology, exome sequencing, gene expression,
and β-catenin protein expression experiments suggest similar biology between our organoid and PDX
models of hepatoblastoma. Organoids have the advantage that they can be generated within weeks of
resection, unlike a PDX, which could take up to a year before being validated. Thus, the organoid
can provide drug-response data in a time frame that could directly inform patient care. The in vivo
murine PDX models are also costlier and more labor intensive to maintain, further strengthening the
advantages of organoid models as a surrogate. However, PDX models have the unique advantage
of modeling the tumor in a living animal and thus maintain a key role in validating results from
experiments first carried out in organoids.

Until now, organoid models have not been widely used to study pediatric cancer. This is likely
due to the fact that pediatric cancers are comparatively rare, comprising less than 1% of all cancer
cases diagnosed in the United States. This is despite the fact that cancer is the second leading cause
of death among individuals younger than 20 years of age [40]. Organoids have unique promise in
pediatric cancer, however, specifically due to the rarity of pediatric tumors and the dearth of validated
in vitro models. In the case of hepatoblastoma, a biobank of hepatoblastoma tumors with unique



Cancers 2020, 12, 2668 12 of 18

molecular features has the potential to guide treatment for patients with extremely rare tumor subtypes
that would likely not be captured in standard drug screening using cell lines and xenografts. Our
initial proof-of-concept drug screen identified JQ1 as a compound with promising activity against
our aggressive hepatoblastoma tumor organoid model. JQ1 is an inhibitor of the bromodomain
and extraterminal domain (BET) family of proteins, and has shown promise in pre-clinical trials
in a wide variety of tumors, including another common pediatric solid tumor, neuroblastoma [41].
The mechanism of action of BET inhibitors is related to epigenetic regulation of the cell cycle with
specific effects on the MYC oncogene. NMYC amplification is a fundamental element of the aggressive
form of neuroblastoma [42] and there is evidence that MYC activation plays a role in the aggressive
phenotype in hepatoblastoma as well [5,43]. Our tumor organoids showed significant MYC signaling
enrichment in GSEA. Other BET inhibitor molecules have been altered to improve pharmacologic
characteristics for delivery in human patients and are being used in phase I and II clinicals trials
in both solid tumors and hematologic malignancies [44]. BET inhibitors have not yet been applied
to hepatoblastoma but have been recently shown to have some effect in improving the response to
immunotherapy in mouse models of hepatocellular carcinoma [45]. These compounds may represent
new opportunities for therapy in aggressive forms of hepatoblastoma.

4. Materials and Methods

Supplementary methods are found in Appendix A.

4.1. Human Specimens

With Institutional Review Board approval (Rockefeller IRB# SSI-0797, SSI-0798 and Memorial
Sloan Kettering Cancer Center IRB Protocol #13-010), we obtained frozen OCT embedded tumor tissue
and adjacent normal tissue from 3 patients (HB2, HB3, and HB5) and fresh tumor tissue and adjacent
normal tissure from 4 patients (HB6, HB7, HB8, and HB9) (Table 1). In all patients, diagnosis of
hepatoblastoma was confirmed by an independent pathologist at the time of patient tumor resection.
Fresh tissue samples were separated and processed for histology, RNA and DNA isolation, implantation
into mice to produce xenografts, or dissociated and processed for organoid culture.

4.2. Isolation and Culture of Human Normal Liver and Tumor Organoids

Normal liver and tumor organoids were isolated and cultured using minor modifications of a
protocol previously published by Huch et al. [16–18]. See supplemental methods for additional details.

4.3. Histology and Immunofluorescence

Standard methods for histology and immunofluorescence staining and imaging were used. See
supplemental methods for additional details.

4.4. RNA Isolation and Sequencing

RNA was extracted from organoids in culture or from OCT embedded frozen hepatoblastoma
tumor and adjacent normal liver tissue samples using the miRNeasy Mini Kit (Qiagen, Germantown,
MD, USA). Organoids were mechanically disrupted and incubated in organoid harvesting solution
(Trevigen, Gaithersburg, MD, USA) at 4 ◦C for 1 hour prior to extracting RNA. RNA sequencing
libraries were generated using the TruSeq Stranded Total RNA Sample Prep Kit with Ribo-Zero
ribosomal RNA depletion (Illumina, San Diego, CA, USA). Libraries were sequenced with 2 × 150 bp
paired-end reads on an Illumina NextSeq system.

4.5. RNA Sequencing Analysis

Quality control of the sequencing files was performed using FastQC and MultiQC [46], followed
by adapter trimming using BBDuk (included in BBMap v37.47). Sequences were then mapped to the
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annotated Human Genome GRCh38.92 using STAR v2.6.1. The read counts per gene were analyzed
using R v3.5.1 and Rstudio v1.1.456. Differential expression analysis was performed using DESeq2
v1.18.1 [47] studying the sample type (normal tissue vs. tumor tissue). We selected those genes with
p-value (FDR) < 0.05 and log2|FoldChange| > 1. Box and scatter plots of the normalized gene counts
(log2 transformed) were generated for each gene of interest.

4.6. Exome Capture and Sequencing

DNA from frozen normal and tumor tissue and DNA from normal and tumor organoids were
extracted using the DNeasy Blood and Tissue Kit (Qiagen, Germantown, MD, USA), according to the
manufacturer’s protocol. After PicoGreen quantification and quality control by Agilent BioAnalyzer,
197–250 ng of DNA was used to prepare libraries using the KAPA Hyper Prep Kit (Kapa Biosystems
KK8504) with 8 cycles of PCR. After sample barcoding, 114–500 ng of library was captured by
hybridization using the xGen Exome Research Panel v1.0 (IDT) according to the manufacturer’s
protocol. PCR amplification of the post-capture libraries was carried out for 8 cycles. Samples were
run on a HiSeq 4000 in a 100 bp/100 bp paired end run, using the HiSeq 3000/4000 SBS Kit (Illumina).
Normal and tumor samples were covered to an average of 138 X and 172 X, respectively. Reads
were aligned to the reference human genome (hg38). Resulting BAM files were processed for quality
control and mutations were detected using MuTect 2 [48]. The results were visualized using Interactive
Genomics Viewer (IGV v2.4.9, Broad Institute, Cambridge, MA, USA).

4.7. Drug Screening

Drug screening was performed using a protocol previously published [49]. Briefly, organoids
were cultured as described above and were prepared for drug screening as follows. Organoids were
mechanically disrupted and counted as per the above-mentioned protocol. Organoids were diluted in
liver organoid expansion media with 2% BME-2 to about 15,000–20,000 organoids per mL. A layer of
matrix (10 µL of 7.5 mg/mL BME-2) was dispensed onto the bottom of each well of 384-well plates
and incubated at 37 ◦C until solidified. Thirty microliters of the organoid solution was dispensed
into each well of the 384-well plate on top of the solidified matrix. The plated organoids were
incubated overnight at 37 ◦C, 5% CO2. The next day, 10 µL of the compound (12 drugs: cisplatin, JQ1,
tryphostin 9, a674563, AZD3463, MG-132, RITA, OTX015, omaveloxolone, staurosporine, ivermectin,
and CCT137690) (Selleckchem, Houston, TX, USA) was added to each well at differing concentrations
(0.005, 0.01, 0.04, 0.1, 0.37. 1.1, 3.3, and 10 µM). After 6 days of incubation, cell viability was quantified
using CellTiter-Glo 3D Cell Viability Assay (Promega, Madison, WI, USA). The drug screen was
performed in triplicate on biological duplicates of differing passage number. The cell viability ratios
of drugged to untreated cells were plotted by average and standard deviation across the differing
concentrations of drug.

4.8. Mouse Xenograft Studies

Nod-Scid-Gamma (NSG) mice were purchased from Jackson Laboratories (Bar Harbor,
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (005557)) and bred at The Rockefeller University Center for
Comparative Biology SPF immune-core. With IACUC approval (#14681-H), mice were anesthetized
using isoflurane and given buprenorphine for analgesia. Fresh tumor pieces obtained from human
subjects were implanted subcutaneously on the flank bilaterally. Female and male mice were used,
and all mice were 6–8 weeks of age at time of tumor implantation. All interventions were performed
during the light cycle. Mice were fed LabDiet #5053—amoxicillin diet (LabDiet, St. Louis, MO, USA)
and kept in microvent individually ventilated cages (IVC) (Allentown, Allentown, NJ, USA) with
corn-cob bedding and paper enrichment. Mice were followed for general health and for tumor growth,
and tumors were passaged to new host mice based on deteriorating health or tumor size based on the
standard criteria for maintaining tumors in rodents.
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4.9. Immunoblotting

Standard immunoblotting methods were used. See supplemental methods for details.

5. Conclusions

In conclusion, our study demonstrates the feasibility of using patient-derived organoids as a
laboratory model for aggressive hepatoblastoma. We have developed such a model and validated
its similarity to hepatoblastoma tumor tissue using histology, exome sequencing, RNA sequencing,
and protein expression assays including immunoblotting and immunofluorescence. This model
has the additional advantage of the ability to use non-tumor organoids derived from the same
patient as a matched control. We have demonstrated that these organoids can be used successfully
for medium-throughput drug screening and, in doing so, identified a candidate compound, the
BET inhibitor JQ1, for further study in therapeutic applications for hepatoblastoma. In addition to
establishing an organoid model of hepatoblastoma, this study demonstrates the promise of organoids
to model other relatively uncommon pediatric solid tumors that have few validated laboratory models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/9/2668/s1,
Figure S1: Cairo risk grouping for HB tumors, Figure S2: Detail information about Figure 4, Table S1: Gene counts
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Appendix A

Appendix A.1. Supplemental Methods

Appendix A.1.1. Isolation and Culture of Human Normal Liver and Tumor Organoids

Normal tissue samples and tumor tissue samples were minced on ice in RPMI (Gibco, Gaithersburg,
MD, USA) supplemented with 1% penicillin/streptomycin (Gibco, Grand Island) using scalpel and
forceps. Approximately 0.5–1.0 cm3 of tissue was incubated in RPMI at 37 ◦C supplemented with
Collagenase D 1 mg/mL (Roche, Indianapolis, IN, USA) and DNase I 0.1 mg/mL (Sigma, St. Louis, MO,
USA) for 30–45 min. The suspension containing the digested tissue was filtered through a 100 µm nylon
cell strainer and centrifuged for 5 min at 300× g at 4 ◦C. The pellet was washed with ice-cold Advanced
DMEM/F12 (Gibco, Grand Island, NY, USA) supplemented with 1% penicillin/streptomycin (Gibco,
Grand Island, NY) and resuspended in BME (basement membrane extract, Type 2, Pathclear, Trevigen,
Gaithersburg, MD, USA). Cells were seeded in 24-well plates. Once the BME solidified, the cells were
cultured in classical human liver organoid isolation medium as previously published [17] RSpondin-1
10% vol/vol and Wnt3a 30% vol/vol conditioned media were made in house and assessed for their
efficacy by TOP/FOP assay as previously published [18]. (Advanced DMEM/F12 supplemented
with 1% penicillin/streptomycin, 1% Glutamax, 1:50 B27 supplement (without vitamin A), 1:100
N2 supplement, FBS, 1.25-mM N-acetyl-L-cysteine, 10% (vol/vol) Rspo-1 conditioned medium, 30%
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(vol/vol) Wnt3a-conditioned medium, 10-mM nicotinamide, 10-nM recombinant human (Leu15)-gastrin
I, 50 ng/mL recombinant human EGF, 100 ng/mL recombinant human FGF10, 25 ng/mL recombinant
human HGF, 10 µM forskolin, 5 µM A8301, 25 ng/mL Noggin and 10 µM Y27632). Isolation medium
was changed every 48 to 72 hours. For normal liver organoids, after 1 week of culture in isolation
medium, they were changed over to human liver organoid expansion medium, as has been previously
published [17]. For tumor organoids, isolation medium was changed to human liver organoid
expansion medium after 2 weeks in culture. Human liver organoid expansion medium: Advanced
DMEM/F12 supplemented with 1% penicillin/streptomycin, 1% Glutamax, 10-mM HEPES, 1:50 B27
supplement (without vitamin A), 1:100 N2 supplement, 1.25-mM N-acetyl-L-cysteine, 10% (vol/vol)
Rspo-1 conditioned medium, 10-mM nicotinamide, 10-nM recombinant human (Leu15)-gastrin I,
50 ng/mL recombinant human EGF, 100 ng/mL recombinant human FGF10, 25 ng/mL recombinant
human HGF, 10 µM forskolin, 5 µM A8301. The expansion medium was changed every 48 to 72 hours
and cultures were passaged when organoids became dense. Organoids were passaged by mechanical
dissociation by trituration through a pipet tip and enzymatic disruption with TrypLE Express (Gibco,
Grand Island, NY). The dissociated organoids were washed in Advanced DMEM/F12 (Gibco, Grand
Island, NY) supplemented with 1% penicillin/streptomycin (Gibco, Grand Island, NY), which was
aspirated to remove all solution and excess BME before being resuspended in fresh BME.

Appendix A.1.2. Histology and Immunofluorescence

For histology, normal and tumor tissue samples and normal and tumor organoids were fixed at
room temperature in 10% neutral-buffered formalin for 24 hours or 30 min, respectively, and embedded
in paraffin. Hematoxylin and eosin staining were performed by the Memorial Sloan Kettering Cancer
Center pathology core lab using standard techniques. For immunofluorescence, normal and tumor
organoids were fixed for 30 min in 4% PFA at room temperature and washed with PBS. Organoids were
incubated in primary antibody (Cell Signaling β-Catenin (D10A8) XP® Rabbit mAb #8480, Danvers,
MA, USA), secondary antibody (Alexafluor 488 anti rabbit, ThermoFisher, Waltham, MA, USA). Nuclei
were stained with Hoechst 33342 (ThermoFisher, Waltham, MA). Immunofluorescence images were
obtained using laser scanning confocal microscopy.

Appendix A.1.3. Immunoblotting

Organoids were mechanically disrupted and incubated at 4 ◦C for 1 hour in organoid harvesting
solution (Trevigen, Gaithersburg, MD, USA). Organoids were centrifuged at 300× g for 5 min at 4 ◦C
and the supernatant was aspirated. The pellets were lysed in RIPA buffer (Sigma, St. Louis, MO,
USA) containing protease and phosphatase inhibitors (Complete EDTA-free and Phosphostop, Roche,
Indianapolis, IN, USA) on ice. Frozen normal and tumor tissue samples were sonicated in RIPA buffer
(Sigma, St. Louis, MO, USA) containing protease and phosphatase inhibitors (Complete EDTA-free
and Phosphostop, Roche, Indianapolis, IN) on ice. Samples were diluted with 4× Nupage LDS sample
buffer (Life technologies, Carlsbad, CA, USA) containing 10% β-mercaptoethanol and heated for 5 min
at 100 ◦C. Samples were loaded on 4–12% Bis-Tris gels (Nupage, Invitrogen, Carlsbad, CA, USA) and
run for 50 min at 200 V in MOPS buffer. The iBlot (Life Technologies, Carlsbad, CA) was used for
transfer and membranes were blocked in 5% milk in TBST for 1 hour, washed in TBST, and probed
with primary antibodies in 5% milk overnight at 4 ◦C. (β-Catenin (D10A8) XP® Rabbit mAb #8480 and
Non-phospho (Active) β-Catenin (Ser33/37/Thr41) (D13A1) Rabbit mAb #8814. Cell Signaling, Danvers,
MA, USA) Membranes were washed in TBST and incubated with horseradish peroxidase-conjugated
appropriate secondary antibodies in 5% milk in TBST for 1 hour. Membranes were washed in TBST
and incubated with Amersham ECL prime Western blotting detection reagent (GE Healthcare, Chicago,
IL, USA).
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