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Abstract: Obesity, along with metabolic disorders such as dyslipidemia and insulin resistance,
increases the risk of cardiovascular disease, diabetes, various cancers, and other non-communicable
diseases, thereby contributing to higher mortality rates. The intestinal microbiome plays a crucial role
in maintaining homeostasis and influencing human metabolism. This study enrolled 82 young obese
individuals, who were stratified into groups with or without metabolic disturbances. No significant
differences in the alpha or beta diversity of the microbiota were observed among the groups. Insulin
resistance was characterized by an increase in the number of Adlercreutzia and Dialister as well as
a decrease in Collinsella, Coprococcus and Clostridiales. The dyslipidemia and dyslipidemia+insulin
resistance groups had no significant differences in the gut microbiota. Dietary patterns also influenced
microbial composition, with high protein intake increasing Leuconostoc and Akkermansia, and high
fiber intake boosting Lactobacillus and Streptococcus. The genus Erwinia was associated with increases
in visceral fat and serum glucose as well as a decrease in high-density lipoprotein cholesterol. Our
findings highlight a significant association between gut microbiota composition and metabolic
disturbances in young obese individuals, and they suggest that dietary modifications may promote a
healthy microbiome and reduce the risk of developing metabolic disorders.

Keywords: obesity; diet; gut microbiome; 16s rRNA sequencing; biomarkers; metabolic syndrome;
insulin resistance; dyslipidemia

1. Introduction

Obesity and disorders of carbohydrate and lipid metabolism are risk factors for vari-
ous diseases, including cardiovascular disease, type 2 diabetes mellitus, musculoskeletal
disorders and diverse cancer forms, and they are associated with higher mortality rates [1].
The etiology of obesity and associated metabolic disorders is disputable and comprehen-
sive. Overall, diet, lifestyle, genetics, epigenetic modifications, socioeconomic status, and
environmental factors have a significant impact on the risk of developing and progressing
obesity [2]. Meanwhile, for the past few decades, the place of gut microbiota in the obesity
pathogenesis has been receiving growing interest among the scientific community [3].
The intestinal microbiome plays a pivotal role in the maintenance of normal homeostasis
and performs a wide range of functions affecting human metabolism. It contributes to
the biodegradation of polysaccharides and the extraction of additional energy from food.
Additionally, the gut biota integrates into the metabolism of short-chain fatty acids (SCFAs),
branched-chain amino acids (BCAAs), bile acids, sulfur-containing amino acids, indole
derivatives, trimethylamine N-oxide (TMAO), and vitamins [4,5].
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Recent studies suggest that certain issues related to the gut microbiome, such as its
composition, diversity index, relative levels, and functional pathways, may predispose to
obesity [6]. Mass sequencing techniques (shotgun sequencing, 16s rRNA sequencing) have
made it possible to determine the profile of the gut microbiota and how its composition
affects hosts’ health, playing a fundamental role in the development of this disease [7].

The normal human gut microbiota comprises predominantly five different phyla:
Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and Verrucomicrobia, with Bacteroidetes
and Firmicutes both accounting for 90% of bacterial species [8]. Obesity is associated with
structural and functional alterations in the gut microflora. On the other hand, gut dys-
biosis contributes to energy storage and the activation of metabolic pathways, leading
to obesity. Traditionally, the gut microbiome in obese individuals is thought to be char-
acterized by an overgrowth of Firmicutes and a corresponding decrease in Bacteroidetes
(Firmicutes/Bacteroidetes ratio), though contradictory studies exist [9]. Moreover, obese indi-
viduals exhibit marked decreases in the genera Faecalibacterium, Oscillibacter, and Alistipes
compared to normal-weight individuals [10]. Specific bacterial species such as Lactobacillus
reuteri, Bifidobacterium animalis, Methanobrevibacter smithii, and other Lactobacillus species
differ between obese and normal-weight individuals [11]. Current findings highlight the
association of the family Christensenellaceae with weight loss, which is inversely related to
host body mass index (BMI). Akkermansia muciniphila is also implicated positively in weight
loss [12,13].

The composition of the gut microbiome can be influenced by dietary patterns in
different ways. The Mediterranean diet (MedDiet) is characterized by a commitment to
the consumption of fresh fruits, vegetables containing fiber, olive oil, red wine, and foods
containing polyunsaturated fatty acids such as fish [14]. The gut microbiota of individuals
following the MedDiet is characterized by a reduction in the number of representatives of
the Firmicutes phylum and an increase in the number of Bacteroidetes, which is primarily
because of the action of fiber-fermenting bacteria involved in the synthesis of SCFAs. At
lower taxonomic levels, an increase in the abundance of Prevotella and Lachnospira, as well as
Roseburia and Faecalibacterium prausnitzii, and a decrease in the abundance of Ruminococcus
gnavus and Ruminococcus torques are observed [15]. A study examining the differences
between a vegan diet and a meat-rich diet (MD) revealed that the genus Coprococcus was
more prevalent in the vegan diet group and less prevalent in MD individuals. In contrast,
the genera Roseburia and Faecalibacterium were observed to be increased in the MD group
while being decreased in the vegan diet group [16].

The widespread Western-style diet is characterized by highly processed and refined
foods and high levels of sugar, salt, fat, and protein from red meat [17]. The Western diet
leads to a decrease in the overall diversity of gut microbes and a shift in the balance of
bacterial species. This includes an increase in the Firmicutes/Bacteroidetes ratio, often accom-
panied by higher levels of Proteobacteria and a decline in Bacteroidetes, notably Rikenellaceae
and Prevotellaceae, as well as a reduction in Actinobacteria, especially Bifidobacterium. The
overconsumption of red meat has been linked to changes in the gut microbiota, such as
elevated levels of Escherichia coli, Fusobacterium nucleatum and Streptococcus, and Bacteroides.
Additionally, a high-salt diet directly diminishes populations of Lactobacillus [18].

Dietary fiber intake plays a critical role in maintaining a healthy gut microbiota
and is associated with metabolic disorders such as obesity and diabetes [19]. Resistant
starch, found in many plant products, can increase the abundance of beneficial bacteria
such as Faecalibacterium prausnitzii and propionate-producing microorganisms [20]. A
low-fiber diet promotes the proliferation of bacteria that degrade the mucus layer of the
colon, leading to erosion of the intestinal mucosal barrier and increased susceptibility to
pathogens [21]. Meanwhile, excess fat consumption leads to diversity reduction, as high
saturated fat intake increases the Firmicutes/Bacteroidetes ratio, particularly the classes
Mollicutes and Clostridiales, and decreases the abundance of the class Bacteriodles. A high-
fat diet induces the rise of the abundance of Shigella, Escherichi and Enterococcus at the
genus level [22]. Palm oil consumption particularly increases Verrucomicrobia, particularly
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Akkermansia muciniphila prevalence [23]. There is a negative correlation between the intake
of mono- and polyunsaturated fatty acids and the abundance of Bifidobacterium. In contrast,
a high-protein diet increases the overgrowth of Bacteroidetes while decreasing the relative
number of Actinobacteria and Acidobacteria at the phylum level [24].

Most current research considers gut microbiota associations with either diseases or
metabolic conditions or with specific diet-patterns, products and nutraceuticals [25–28].
Meanwhile, the complex relationship between body composition, changes in lipid and
carbohydrates metabolism and microbial diversity are still under investigation [29]. Addi-
tionally, this sophisticated interconnection is particularly interesting in younger individuals,
as the potential targets for early prevention and treatment can be identified.

This study aimed to determine bacterial biomarkers associated with dyslipidemia and
insulin resistance. To meet this aim, a multifactorial analysis of nutritional status in young
obese adults, encompassing food diaries, body composition, markers of carbohydrate and
lipid metabolism, and the structure of the intestinal microbiome was conducted. Also,
the relationship between the consumption of micro and macronutrients and abundance
of certain microorganisms was analyzed in order to identify promising targets for dietary
intervention. The comprehensive profile generated from such data could offer insights
into the health status and future disease risk assessment and aid in selecting more effective
therapeutic strategies.

2. Materials and Methods
2.1. Subjects and Study Design

A total of 82 Caucasian obese subjects (28 men, 54 women) were examined at the
Nutrition Clinic of the Federal Research Center of Nutrition, Biotechnology, and Food
Safety. The mean age was 34 years (95% CI: 32.4; 35.9). The mean BMI was 35.80 kg/m2

(95% CI: 34.71, 36.97). The mean body weight was 105.02 kg (95% CI: 100.57, 109.48). All
participants exhibited low or moderate levels of physical activity as measured by wearable
activity trackers.

The distribution of participants by obesity level is presented in Table 1.

Table 1. Demographics, obesity class distribution, and prevalence of metabolic disorders (n = 82).

Parameter Mean (95% CI)/n (%)

Age 34.0 (32.4; 35.9)

Gender
male 28 (34.1)
female 54 (65.9)

Obesity
Class I 41 (50.0)
Class II 25 (30.5)
Class III 16 (19.5)

Smoking status
Current smokers 22 (26.8)
Non-smokers 60 (73.2)

Dyslipidemia 44 (53.7)

Insulin resistance 40 (48.8)

Hyperuricemia 38 (46.3)

Hypertension 24 (29.3)

When assessing anthropometric indicators and data body composition (by bioimpedance
analysis on InBody 770 analyzer (Inbody Co., Ltd., Seoul, Republic of Korea), a significant
increase in waist circumference (WC), hip circumference (HC), fat mass and visceral fat
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area was noted (Table 2). The average WC was 109.7 cm; the average HC was 112.7 cm; the
average fat mass was 45.61 kg; and the mean visceral adipose tissue area was 204.72 cm2.

Table 2. Anthropometry and body composition analysis (n = 82).

Parameter Mean (95% CI)

Body weight, kg 105.02 (100.57; 109.48)
BMI, kg/m2 35.80 (34.71; 36.97)
Waist circumference, cm 109.7 (107.1; 112.3)
Fat mass, kg 45.61 (43.02; 48.20)
Visceral adipose tissue area, cm2 204.72 (195.45; 213.98)
Muscle mass, kg 33.53 (31.72; 35.34)
Total body water, L 43.55 (41.36; 45.74)
Extracellular fluid, L 16,46 (15.64; 17.28)

2.2. Diet Assessment

We collected 72 h diet dairies from all participants. The nutrients as well as food groups
analyses were performed on the NIAP program Scientific Instrument for nutrition analysis
(https://nplanner.ru/) based on the food composition databases of Skyrykhin-Tutelyan
(http://web.ion.ru/food/FD_tree_grid.aspx, accessed on 15 May 2024), the United States
Department of Agriculture (USDA, https://fdc.nal.usda.gov/, accessed on 15 May 2024),
etc. [30].

2.3. Anthropometry, Body Composition and Biochemical Indicators

Body weight and height were measured on a medical scale and stadiometer and
performed as kg and m. The BMI was calculated with standard procedures. Body fat mass
(kg), muscle mass (kg), fate rate (%), etc. were measured by bioimpedance analysis on an
InBody 770 analyzer (Inbody Co., Ltd., Cheonan-si, Republic of Korea).

Serum total cholesterol (TC), low-density lipoproteins (LDL), high-density lipoproteins
(HDL), triglycerides (TG), glucose (Glu), insulin (Ins), aspartate aminotransferase (AST),
alanine aminotransferase (ALT), and uric acid levels were analyzed by standard laboratory
procedures on a «KONELAB Prime 60i» Laboratory analyzer (Thermo Fisher Scientific,
Waltham, MA, USA). Insulin resistance (IR) was calculated with a standard quotation for
HOMA-IR (Table 3).

Table 3. Biochemical parameters and lipid profile (n = 82).

Parameter Mean (95% CI) Reference

Glucose, mmol/L 5.05 (4.94; 5.15) 3.9–5.6
AST, U/L 22.65 (20.40; 24.90) 8–33
ALT, U/L 29.45 (24.72; 34.18) 7–56
Uric acid, µmol/L 356.61 (338.28; 374.94) M 110–420; W 110–360
TC, mmol/L 5.19 (4.98; 5.41) 3.5–5.2
TG, mmol/L 1.49 (1.31; 1.68) 0.68–1.69
LDL cholesterol, mmol/L 3.43 (3.24; 3.62) <3.2
HDL cholesterol, mmol/L 1.17 (1.13; 1.22) 0.9–1.2
Insulin, µIU/mL 14.35 (12.43; 16.26) 2.6–24.9
HOMA index 3.26 (2.79; 3.73) ≤2.7

Based on the serum TC levels, participants were divided into two subgroups: DLD
(+) (TC ≥ 5.2) and DLD (−) (TC < 5.2). Depending on the HOMA-IR, participants were
distributed into IR (+) (HOMA-IR > 2.7) and IR (−) (HOMA-IR ≤ 2.7) groups. Furthermore,
the study population was also separated into DLD-IR (+) and DLD-IR (−) groups (Figure 1).

https://nplanner.ru/
http://web.ion.ru/food/FD_tree_grid.aspx
https://fdc.nal.usda.gov/
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Figure 1. Flowchart visualizing participant recruitment. A total of 82 participants were enrolled
in the study. Individuals were stratified into groups with or without dyslipidemia (DLD), insulin
resistance (IR), and the combination (DLD-IR).

2.4. Fecal Sample Collection

Patients did not take any sorbents or laxatives (including magnesia and castor oil)
prior to sample collection. Fecal samples were collected using sterile collection tubes. The
frozen samples were stored at −20 ◦C and transported to the laboratory on dry ice.

2.5. DNA Extraction, Library Construction and Sequencing

Total DNA was extracted using a modified standard method [31]. Briefly, a stool
sample was placed in a 2 mL tube to which 0.1 mm and 0.5 mm diameter glass beads
(Sigma, Livonia, MI, USA) were added in a 3:1 ratio. Then, 1 mL of warm lysis buffer
(60 ◦C) containing 500 mM NaCl, 50 mM Tris-HCl (pH 8.0), 50 mM EDTA and 4% SDS was
added. The mixture was vortexed to obtain homogeneity and homogenized for 3 min using
a MiniLys (Bertin Technologies, Rockville, MD, USA). The resulting lysate was incubated
at 70 ◦C for 15 min and then centrifuged at 14,000 rpm for 20 min. Then, 1 mL of the
supernatant was transferred to new tubes and placed on ice. Afterwards, 1 mL of lysis
buffer was added to the sediment, and the homogenization process was repeated. The
supernatants were combined in 15 mL tubes and supplemented with 4 mL of 96% ethanol
and 200 mL of 3 M sodium acetate. The mixture was incubated at −20 ◦C for at least one
hour and then centrifuged at 14,000 rpm at +4 ◦C for 15 min. The resulting precipitate was
washed twice with 80% ethanol, dried at 53 ◦C for 30–60 min, and dissolved in 200 mL of
sterilized MilliQ water. The solution was centrifuged again and transferred to new tubes.
RNase A (5 mg/mL) was added to the solution and incubated at 37 ◦C for 1 h. Chloroform
was added to the solution at a 1:1 ratio, mixed by vortexing for 1 min, and centrifuged at
5000× g for 5 min. The liquid phase was carefully transferred to a new sterile tube and
used to perform the PCR. The resulting DNA solution was stored at −20 ◦C.

Amplification of the V4 variable region of the 16S rRNA gene was carried out in
one round using a Verity thermal cycler (Applied Biosystems, Waltham, MA, USA). PCR
products were purified using a Cleanup Mini DNA isolation kit for reaction mixtures
(Evrogen, Moscow, Russia). The concentration of the resulting 16S libraries in solution was
determined using a Qubit® fluorimeter (Invitrogen, Waltham, MA, USA) with the Quant-
iT™ dsDNA High-Sensitivity Assay Kit. Purified amplicons were mixed equimolarly based
on the obtained concentrations. The quality of the library prepared for sequencing was
assessed using agarose gel electrophoresis.

Further sample preparation and sequencing of the pooled sample were conducted
using the MiSeq Reagent Kit v2 (500 cycles) and the MiSeq instrument (Illumina, San Diego,
CA, USA) according to the manufacturer’s recommendations. After quality score trimming,
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DNA read pooling was performed using the SeqPrep package v. 1.2, resulting in a final
read length of 252 bp.

2.6. Gut Microbiota Composition Profiling

For each sample, at least 5000 reads were obtained per sample. During the sequencing
process, a negative control sample was sequenced along with samples from each batch;
reads with a high probability of corresponding to contaminating bacteria found in the
negative control were removed from the real sample files. Next, the data were analyzed
using the analytical system Knomics-Biota (https://biota.knomics.ru/, accessed on 15
May 2024), including basic filtering and assessment of data quality, profiling of taxonomic
composition, visualization, and comparison of composition with meta-data [32]. The main
steps of the analysis are briefly described below.

Raw reads were preprocessed using the QIIME v. 1.9.2 software package [33]. Low-
quality ends were trimmed using the split_libraries_fastq.py function (with a quality
threshold of --phred_quality_threshold 19), and reads for which the trimmed length was
less than 75 percent of the original length were discarded from further analysis. Next, the
reads were mapped onto the GreenGenes 13.5 database (with a 97% degree of similarity
between taxa) using the pick_closed_reference_otus.py function of the QIIME v. 1.9.2
program, as a result of which tables of representation of relative taxonomic units (OTUs)
were obtained [34]. Further analysis included samples for which at this stage there were at
least 5000 reads. Alpha diversity was assessed after thinning the resulting tables of OTU
representation to 5000 reads per sample using the Shannon and Chao1 metrics. Tables of
representation at the levels of species, genus, family, etc. were obtained by summing the
representation of OTUs belonging to the corresponding taxonomic group. The metabolic
potential of the microbial community was assessed using the PICRUSt2 program v. 2.3 [35].

In addition, to validate the results, an algorithm was applied that allows the commu-
nity composition to be assessed at a more detailed level compared to OTUs. This approach
consisted of applying the DADA2 algorithm to preprocessed (after trimming low-quality
ends) reads to obtain representative sequences [36]. Next, the taxonomic classification of
these sequences was carried out using a classifier implemented in the QIIME 2 (2020.6)
software package and trained on the GreenGenes 13.5 database [33,37]. These sequences
were trimmed in accordance with the primers using the TaxMan program and aggregated
to obtain 97% similarity between taxa using CD-hit [38,39].

2.7. Statistical Analysis

We analyzed participants’ characteristics using the Statistical Package for the Social
Sciences software version 20.0 (SPSS Inc., Chicago, IL, USA). The parameters investigated
were expressed as mean and standard deviation (SD) for parametric distributions or as
median value with 25th and 75th percentiles for nonparametric distributions. Significance
tests of alpha-diversity indices (Shannon and Chao1) were conducted using the Wilcoxon
test. Principal coordinates analysis (PCoA) based on Unifrac distances at the genus level
was utilized for beta-diversity to visualize differences in the microbial community structure
across samples. Principal component regression (PCR) was performed for beta diversity. We
also performed a differential population analysis based on the results of the gut microbiota
composition profiling using the permutation test. Statistically significant taxa were selected
(p-value < 0.05). log2FC was calculated for each statistically significantly different taxon,
where the fold change is the ratio of the average number in patients with and without
metabolic disorders. log2FC was used for the convenience of presenting the results.

3. Results
3.1. Characteristics of Carbohydrate and Lipid Metabolism

According to the biochemical blood test, there was an increase in the level of transam-
inases (AST, ALT) in 5 (6.1%) and 20 (24.4%) patients, respectively: AST in 3 men and
2 women, and ALT in 12 men and 8 women. Uric acid was elevated in 38 (46.3%): 23 men

https://biota.knomics.ru/
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and 15 women. The average AST level was 22.65 U/L; ALT—29.45 U/L, uric acid—
356.61 µmol/L. An increase in total cholesterol level (TC) was detected in 44 (53.7%)
patients: 20 men and 24 women, with an average TC level of 5.19 mmol/L. An increase in
the level of low-density lipoprotein (LDL) cholesterol was detected in 33 (40.2%). The initial
biochemical parameters and lipid spectrum are presented below in Table 3. An increase in
the HOMA index was detected in 40 (48.8%) patients: 17 men and 23 women. The average
fasting blood glucose level was 5.05 mmol/L; insulin—14.35 µIU/mL. The average HOMA
index was 3.26 (Table 3).

3.2. Diet

According to food consumption analysis (72-h food record), the diet of participants
before was characterized by a high consumption of proteins, fats, including saturated
(SFA) and unsaturated (UFA) fatty acids, n-6 PUFAs (n3:n6 ratio is 1 to 8), mono- and
disaccharides, sodium and an insufficient consumption of vitamins B9, D, and beta-carotene
when comparing actual nutrition data with the physiological needs for energy and nutrients
(Table S1) [30].

The groups were comparable in the energy intake: 2825.1 ± 1141.3 vs. 3118.1 ±
1513.9 kcal/d for the DLD (−) and DLD (+) groups, respectively; 3077.8 ± 1601.8 vs.
2888.4 ± 1059.9 kcal/d for the IR (−) and IR (+) groups, respectively; and 3050.6 ± 1465.2
vs. 2816.9 ± 1042.2 kcal/d for the DLD-IR (−) and DLD-IR (+) cohorts, respectively.
Macronutrient intake also did not differ significantly between the study groups, with
patients in the DLD and IR cohorts having a comparably higher intake of SFA, and the
DLD-IR cohort performing a tendency to a lower dietary fiber consumption. In addition, the
results showed reliable differences in some nutrient intake, with higher levels of omega-6
and zinc in participants with hyperlipidemia, and lower levels of beta-carotene, tocopherol,
resistant starch, pectin and oxalic acid in the insulin-resistant group. The DLD-IR cohort
had lower intakes of pectin, resistant starch and phytosterols (Figure 2).

3.3. Association of Gut Microbiota Composition and Dietary Variation with Clinical Parameters
and Metabolism

The composition of the gut microbiota was analyzed using 16s rRNA sequencing. In
total, 29 phyla, 481 genera, and 586 species of microorganisms were identified. The most
abundant phyla were Firmicutes (86.3 ± 7.9%), Actinobacteriota (6.4 ± 5.5%), Bacteroidetes
(2.9 ± 4.5%), Proteobacteria (2.1 ± 4.1%), and Verrucomicrobiota (1.0 ± 3.5%). However,
the insulin-resistant cohort exhibited elevated levels of Proteobacteria (2.6% vs. 1.7%) and
reduced Verrucomicrobiota (0.5% vs. 1.2%) compared to their non-insulin-resistant counter-
parts; similar indicators were observed in the DLD-IR groups (3.3% vs. 1.7% and 0.4% vs.
1.1% for Proteobacteria and Verrucomicrobiota, respectively). In addition, Bacteroidetes were
less abundant in the DLD-IR group (1.9% vs. 3.2%). At the genus level, predominant rep-
resentatives included unclassified Clostridiales (12.4 ± 5.1%), unclassified Ruminococcaceae
(12.0 ± 5.8%), unclassified Lachnospiraceae (10.4 ± 3.7%), Blautia (12.7 ± 6.9%), Feacal-
ibacterium (5.6 ± 5.3%), Coprococus (4.9 ± 2.5%), and Bifidobacterium (3.8 ± 5.2%). The
Firmicutes/Bacteroidetes ratio was high in all presented cohorts but did not have significant
differences. A detailed graphical representation of the data is provided in Figure 3.

We analyzed differences in microbial community structures among study groups,
measuring alpha diversity using the Chao1 and Shannon indices. There were no reliable
differences in alpha diversity between groups but there was a trend toward decreased
diversity in the IR (+) and DLD-IR (+) cohorts (Figure 4a,b). The Firmicutes/Bacteroidetes
ratio was high in all presented groups but did not have significant differences. Beta diversity
was estimated using unweighted and weighted Unifrac distances analyzed by principal
coordinate analysis (PCoA). There were also no differences in beta diversity between the
study groups (Figure 4c).
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composition of the average relative abundance of the 20 most represented genera (b).
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Figure 4. Comparative analysis of gut microbiota in the DLD (+/−), IR (+/−) and DLD-IR (+/−)
groups. Alpha diversity was assessed using several metrics: Chao1 index (a), Shannon index (b) (ns:
not significant). Beta diversity of bacteria identified with the principal coordinates analysis (PCoA)
using Unifrac distances measures (c). To assess statistical differences between groups, a permutation
test was used and log2FC was calculated. log2FC < 0 means that this taxon is more presented in IR (+)
patients, log2FC > 0 means that the taxon is more presented in IR (−) patients. Significant intergroup
changes were identified at the genus and species level. log2FC was calculated for each significantly
different taxon (p-value < 0.05) (d).

Significant intergroup changes were identified at the genus and species level. Results
showed that participants with dyslipidemia had no significant difference in levels of gut mi-
crobiota compared with the participants without dyslipidemia. Furthermore, no significant
difference was observed between the DLD-IR (+/−) groups. Participants with impaired
carbohydrate metabolism were characterized by an increase in the number of Adlercreutzia
and Dialister with a decrease in Collinsella aerofaciens, Coprococcus and Clostridiales. The data
are presented in Figure 4d.

Furthermore, we examined the relationship between the composition of the mi-
crobiome, body composition and key biochemical indicators of carbohydrate and lipid
metabolism. The results demonstrate that representatives of Lactobacillus, Dialister, and
Veillonellaceae are positively associated with weight and visceral fat mass. Veillonellaceae,
Dialister, Erwina, Lachnispira, families S24-7, Enterobacteriaceae, and the order Acitomycetales
were associated with lower BMI. And Blautia obeum, Coprococcus, and Erysipelotrichaceae
were correlated with lower visceral fat in obese adults.

At the phylum level, Acinobacteria was negatively associated with TG levels, while
Bacteroides was associated with higher serum HDL abundance. Proteobacteria was correlated
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with lower HDL and high ApoB, and Verrucomicrobia abundance was negatively associated
with TC, LDL, TG, and ApoB levels. The genus Bifidumbacteriaum, Bactroides uniformis
and Faecalibacterium prausnitzii were correlated with lower blood glucose levels, while
Erwinia, Lactococcus and Akkermansia muciniphila were associated with higher glucose levels.
Moreover, lower levels of TC and LDL were associated with Lactobacillus, Streptococus and
Akkermansia muciniphila. The data are presented in Figure 5.
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To assess the contribution of dietary macronutrients to the composition of the gut
microbiota at the genus and species levels, a Pearson correlation analysis was performed
between microbial abundance and nutrient intake for the entire study sample. The results
showed that higher protein intake leads to a rise of Leuconostoc, Holdemania and the genus
Akkermansia, while a decrease in Butyricimonas is noted. Leuconostoc was positively and
Prevotella was negatively correlated with SFA consumption. High mono- and disaccharides
intake is associated with increased levels of Lactobacillus zeae, Coprococcus spp., p-1630-c5
and Acinetobacter lwoffii and decreased levels of Mogibacterium and Ruminococcus. High fiber
intake reduces the abundance of Oscillospira and increases Lactobacillus zeae, Streptococcus
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anginosus, Coproccocus, Bulleidia, Holdemania, Neisseria, Cardibacterium, Acinetobacter lwoffii,
and Akkermansia. The data are presented in Figure 6a,b.
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4. Discussion

Despite extensive research into the relationship between obesity, metabolic disorders
and the gut microbiome, numerous aspects remain unclear. The impact of different diet
patterns and nutrients on the composition of the intestinal microbiome and the potential
for its dietary correction are of particular interest.

This study aimed to investigate dietary patterns, biochemical markers of carbohydrate
and lipid metabolism, and gut microbiota composition in young adults with dyslipidemia,
insulin resistance, and a combination of both.

The results demonstrated that there were no significant differences between the groups
in alpha diversity, which was evaluated using the Shannon and Chao1 indexes. Beta
diversity was also not significantly different. Current understanding suggests an association
between obesity and metabolic disorders with reduced gut microbiota diversity; however,
evidence is controversial. For instance, in a study of obese women with and without
metabolic syndrome, an increase in alpha diversity was observed in the group with both
obesity and metabolic syndrome [40]. Another study showed a reduction in diversity in
groups with obesity but not in those with diabetes [41]. Furthermore, research conducted
by Sroka-Oleksiak et al. revealed that there was no marked difference in either alpha or
beta diversity between participants with obesity, diabetes, and healthy controls [42].

Meanwhile, reliable differences in the genus and species diversity of microorganisms
were observed among the groups. The genus Dialister was more abundant in the IR
(+) group. Furthermore, Dialister was associated with higher body weight but lower



Biomedicines 2024, 12, 1601 12 of 16

plasma triglyceride concentrations. Dialister is a member of the Veillonellaceae family, and it
demonstrated a decreased abundance in insulin-sensitive obese and overweight adults [43].
In another study, a higher abundance of the genus Dialister was associated with impaired
glucose tolerance in overweight or obese African-American men [44]. Moreover, there is
evidence indicating a positive correlation between the presence of Dialister and the visceral
fat area [45]

The abundance of Adlercreutzia was higher in the group with impaired carbohydrate
metabolism. Additionally, a long-term study has shown that Adlercreutzia is associated
with increased BMI [46]. The high abundance of Adlercreutzia was associated with a
high-fat, high-sugar diet in a study of C57BL/6J mice [47]. However, there is evidence
that the amount of Adlercreutzia in the intestine is lower in individuals with non-alcoholic
fatty liver disease [48]. Collinsella aerofaciens was reduced in the group of participants with
insulin resistance. In a study of overweight and obese pregnant women, low dietary fiber
intake was associated with an increase in Collinsella abundance [49]. There is also evidence
that Colinsella overgrowth is associated with a number of inflammatory diseases, such as
rheumatoid arthritis [50].

The present study demonstrated a correlation between an increased abundance of
Blautia obeum and a higher visceral fat area as well as a decreased concentration of ApoB. A
number of studies have demonstrated a correlation between the growth of Blautia obeum
and obesity as well as a negative impact on various parameters, including weight, BMI,
and visceral fat [51,52]. However, the data on the effect of diet on the abundance of Blautia
obeum remain debatable. A study conducted among women in South Korea found that
Blautia obeum was associated with a diet with a low glycemic index. Another study of
1425 individuals in the Netherlands found a significant correlation between the genus
Blautia and a diet characterized by the frequent consumption of fast food [53].

Coprococcus was associated with a higher intake of dietary fiber and lower triglyceride
levels, and its abundance was decreased in the insulin-resistant group. In a study of 353 in-
dividuals in the American population, Coprococcus abundance was associated with better
insulin sensitivity [54]. The vegan diet was shown to promote the growth of Coprococcus,
while the meat-rich diet suppressed it [16]

The genus Holdemania (family Erysipelotrichaceae) was correlated with a high-protein
and high-fat diet according to the study. Members of this genus are capable of fermenting
simple sugars, including fructose, glucose, and sucrose. However, they are unable to
ferment complex carbohydrates, such as polyols and starch. A reduction in the abundance
of Holdemania was found to be associated with an improvement in glucose tolerance test
scores [55]. The species of the genus Ruminococcus showed a negative correlation with
mono- and disaccharide intake. A study conducted on 46 obese adult subjects revealed a
negative association between Ruminococcus abundance and insulin resistance, as measured
by the HOMA-IR index [56].

The genus Erwinia was correlated with body composition, lipid and carbohydrate
metabolism measures but was not associated with macronutrient intake. The growth of
genus members is associated with an increase in visceral fat, serum glucose and ApoB levels
and a decrease in HDL and ApoA levels consequently. According to scientific literature,
the health effects of this bacterium are inconclusive: in some cases, low levels of Erwinia
have been associated with the development of diabetic retinopathy, while another study
demonstrated its association with hypertension and increased salt intake [57,58].

Bifidobacterium, particularly Bifidobacterium adolescentis, was linked to decreased plasma
triglyceride and glucose levels as well as increased dietary fat intake. Bifidobacterium is
known for its positive health effects, such as reduced BMI, dyslipidemia, and hypertension,
possibly through an increased production of short-chain fatty acids [59,60].

A positive association was observed between the abundance of Akkermansia and lipid
metabolism, although an increased glucose concentration was also reported. A diet with
an increased intake of protein, fat, and fiber contributed to the increased abundance of this
bacterium. Akkermansia muciniphila is now regarded as a representative member of the gut
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microbiome with a positive effect on weight loss and a greater prevalence in individuals
without obesity [61].

Study Limitations

The total number of participants was limited, and there were not enough male sub-
jects to conduct additional subgroup analyses by gender. This study provides evidence
for differences in the gut microbiome structure but does not include the entire species
composition for analysis. This limitation is because of the use of a single region (v4) for 16s
rRNA sequencing, which allows the identification of some bacterial species with reliable
accuracy [62]. In this study, we used an OTU-based approach to analyze microbiota data,
which has lower resolution compared to ASV-based analysis. The Pearson correlation used
in our work may have a number of disadvantages compared to specialized statistical ap-
proaches, whereas this test has been widely used for such studies. Although investigating
the microbiome of healthy lean individuals was not the aim of our study, a comparison of
results with this group may be useful in identifying obesity features. Further large-scale
longitudinal studies are required to clarify the relationship between different metabolic
conditions and microbiome structure.

5. Conclusions

Obesity and metabolic disorders are common health conditions and tend to increase
in prevalence worldwide. Early diagnosis using evidence-based biomarkers can help in the
prevention of these disturbances. The gut microbiome composition represents a promising
target for the treatment of obesity-associated diseases. Discovering opportunities to modify
the intestinal microbiome through dietary interventions and the use of probiotics is a
relevant target of current research in this field. Overall, our study established an association
between features of gut microbiome composition, dyslipidemia, insulin resistance and
dietary patterns in young obese adults. The development of approaches to the dietary
management of metabolic disorders through specific effects on the structure of the gut
microbiome may significantly improve current strategies for the treatment of various
diseases. Particularly, increasing the intake of dietary fiber and non-digestible starch,
as well as a more diverse micronutrient composition of foods, can promote a healthy
microbiome and reduce the risk of developing metabolic disturbances. Further studies are
needed to expand the knowledge of the relationship between metabolic disorders and the
gut microbiome and to reveal mechanisms and pathways that will allow the development
of new treatments and prevention approaches.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomedicines12071601/s1, Table S1: Analysis of 72 h food diaries.

Author Contributions: Conceptualization, E.N.L. and A.V.S.; methodology, E.N.L., A.V.S., S.I.K. and
T.N.K.; software, E.N.L., S.I.K. and G.E.L.; validation, A.V.S. and D.B.N.; formal analysis, E.N.L.,
S.I.K., A.A.V. and G.E.L.; investigation, E.N.L. and Y.R.V.; resources, E.N.L., G.E.L. and Y.R.V.; data
curation, A.V.S.; writing—original draft preparation, G.E.L., A.A.V. and E.N.L.; writing—review and
editing, G.E.L. and Y.R.V.; visualization, G.E.L.; supervision, A.V.S.; project administration, A.V.S.;
funding acquisition, A.V.S. and D.B.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Russian Science Foundation, grant number 22-15-00252,
https://www.rscf.ru/en/project/22-15-00252/ (accessed on 24 May 2024).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Local Ethics Committee of the Federal Research Center of Nutrition,
Biotechnology and Food Safety (protocol code N1/2021 from 8 February2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

https://www.mdpi.com/article/10.3390/biomedicines12071601/s1
https://www.mdpi.com/article/10.3390/biomedicines12071601/s1
https://www.rscf.ru/en/project/22-15-00252/


Biomedicines 2024, 12, 1601 14 of 16

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The sequencing data were submitted to the NCBI SRA repository under the
accession number PRJNA1131598.

Acknowledgments: The authors acknowledge the BioRender team for providing the artwork creation
online service (BioRender.com).

Conflicts of Interest: Author Stanislav I. Koshechkin is employed by Nobias Technologies, Moscow.
The remaining authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

References
1. Fruh, S.M. Obesity: Risk Factors, Complications, and Strategies for Sustainable Long-term Weight Management. J. Am. Assoc.

Nurse Pract. 2017, 29, S3. [CrossRef]
2. Silva-Ochoa, A.D.; Velasteguí, E.; Falconí, I.B.; García-Solorzano, V.I.; Rendón-Riofrio, A.; Sanguña-Soliz, G.A.; Vanden Berghe,

W.; Orellana-Manzano, A. Metabolic Syndrome: Nutri-Epigenetic Cause or Consequence? Heliyon 2023, 9, e21106. [CrossRef]
3. Daniel, H. Diet and Gut Microbiome and the “Chicken or Egg” Problem. Front. Nutr. 2022, 8, 828630. [CrossRef]
4. Wu, J.; Wang, K.; Wang, X.; Pang, Y.; Jiang, C. The Role of the Gut Microbiome and Its Metabolites in Metabolic Diseases. Protein

Cell 2021, 12, 360–373. [CrossRef]
5. Leonov, G.E.; Varaeva, Y.R.; Livantsova, E.N.; Starodubova, A.V. The Complicated Relationship of Short-Chain Fatty Acids and

Oral Microbiome: A Narrative Review. Biomedicines 2023, 11, 2749. [CrossRef]
6. Cuevas-Sierra, A.; Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Martinez, J.A. Diet, Gut Microbiota, and Obesity: Links with

Host Genetics and Epigenetics and Potential Applications. Adv. Nutr. 2019, 10, S17–S30. [CrossRef]
7. Durazzi, F.; Sala, C.; Castellani, G.; Manfreda, G.; Remondini, D.; De Cesare, A. Comparison between 16S rRNA and Shotgun

Sequencing Data for the Taxonomic Characterization of the Gut Microbiota. Sci. Rep. 2021, 11, 3030. [CrossRef]
8. Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut

Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14.
[CrossRef]

9. Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio:
A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [CrossRef]

10. Di Ciaula, A.; Bonfrate, L.; Khalil, M.; Garruti, G.; Portincasa, P. Contribution of the Microbiome for Better Phenotyping of People
Living with Obesity. Rev. Endocr. Metab. Disord. 2023, 24, 839–870. [CrossRef]

11. Geng, J.; Ni, Q.; Sun, W.; Li, L.; Feng, X. The Links between Gut Microbiota and Obesity and Obesity Related Diseases. Biomed.
Pharmacother. 2022, 147, 112678. [CrossRef] [PubMed]

12. Li, X.; Li, Z.; He, Y.; Li, P.; Zhou, H.; Zeng, N. Regional Distribution of Christensenellaceae and Its Associations with Metabolic
Syndrome Based on a Population-Level Analysis. PeerJ 2020, 8, e9591. [CrossRef]

13. Niu, H.; Zhou, M.; Zogona, D.; Xing, Z.; Wu, T.; Chen, R.; Cui, D.; Liang, F.; Xu, X. Akkermansia Muciniphila: A Potential
Candidate for Ameliorating Metabolic Diseases. Front. Immunol. 2024, 15, 1370658. [CrossRef] [PubMed]

14. Tsigalou, C.; Paraschaki, A.; Karvelas, A.; Kantartzi, K.; Gagali, K.; Tsairidis, D.; Bezirtzoglou, E. Gut Microbiome and Mediter-
ranean Diet in the Context of Obesity. Current Knowledge, Perspectives and Potential Therapeutic Targets. Metab. Open 2021,
9, 100081. [CrossRef] [PubMed]

15. Gundogdu, A.; Nalbantoglu, O.U. The Role of the Mediterranean Diet in Modulating the Gut Microbiome: A Review of Current
Evidence. Nutrition 2023, 114, 112118. [CrossRef] [PubMed]

16. Kohnert, E.; Kreutz, C.; Binder, N.; Hannibal, L.; Gorkiewicz, G.; Müller, A.; Storz, M.A.; Huber, R.; Lederer, A.-K. Changes in Gut
Microbiota after a Four-Week Intervention with Vegan vs. Meat-Rich Diets in Healthy Participants: A Randomized Controlled
Trial. Microorganisms 2021, 9, 727. [CrossRef] [PubMed]

17. Odermatt, A. The Western-Style Diet: A Major Risk Factor for Impaired Kidney Function and Chronic Kidney Disease. Am. J.
Physiol. Ren. Physiol. 2011, 301, F919–F931. [CrossRef] [PubMed]

18. Severino, A.; Tohumcu, E.; Tamai, L.; Dargenio, P.; Porcari, S.; Rondinella, D.; Venturini, I.; Maida, M.; Gasbarrini, A.; Cammarota,
G.; et al. The Microbiome-Driven Impact of Western Diet in the Development of Noncommunicable Chronic Disorders. Best Pract.
Res. Clin. Gastroenterol. 2024; in press. [CrossRef]

19. Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell
Host Microbe 2018, 23, 705–715. [CrossRef] [PubMed]

20. Zheng, Y.; Qin, C.; Wen, M. The Effects of Food Nutrients and Bioactive Compounds on the Gut Microbiota: A Comprehensive
Review. Foods 2024, 13, 1345. [CrossRef] [PubMed]

21. Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon,
N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen
Susceptibility. Cell 2016, 167, 1339–1353.e21. [CrossRef]

BioRender.com
https://doi.org/10.1002/2327-6924.12510
https://doi.org/10.1016/j.heliyon.2023.e21106
https://doi.org/10.3389/fnut.2021.828630
https://doi.org/10.1007/s13238-020-00814-7
https://doi.org/10.3390/biomedicines11102749
https://doi.org/10.1093/advances/nmy078
https://doi.org/10.1038/s41598-021-82726-y
https://doi.org/10.3390/microorganisms7010014
https://doi.org/10.3390/nu12051474
https://doi.org/10.1007/s11154-023-09798-1
https://doi.org/10.1016/j.biopha.2022.112678
https://www.ncbi.nlm.nih.gov/pubmed/35134709
https://doi.org/10.7717/peerj.9591
https://doi.org/10.3389/fimmu.2024.1370658
https://www.ncbi.nlm.nih.gov/pubmed/38571945
https://doi.org/10.1016/j.metop.2021.100081
https://www.ncbi.nlm.nih.gov/pubmed/33644741
https://doi.org/10.1016/j.nut.2023.112118
https://www.ncbi.nlm.nih.gov/pubmed/37437419
https://doi.org/10.3390/microorganisms9040727
https://www.ncbi.nlm.nih.gov/pubmed/33807447
https://doi.org/10.1152/ajprenal.00068.2011
https://www.ncbi.nlm.nih.gov/pubmed/21880837
https://doi.org/10.1016/j.bpg.2024.101923
https://doi.org/10.1016/j.chom.2018.05.012
https://www.ncbi.nlm.nih.gov/pubmed/29902436
https://doi.org/10.3390/foods13091345
https://www.ncbi.nlm.nih.gov/pubmed/38731716
https://doi.org/10.1016/j.cell.2016.10.043


Biomedicines 2024, 12, 1601 15 of 16

22. Chen, C.; Chen, W.; Ding, H.; Wu, P.; Zhang, G.; Xie, K.; Zhang, T. High-Fat Diet-Induced Gut Microbiota Alteration Promotes
Lipogenesis by Butyric Acid/miR-204/ACSS2 Axis in Chickens. Poult. Sci. 2023, 102, 102856. [CrossRef] [PubMed]

23. Zhang, P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci. 2022, 23,
9588. [CrossRef] [PubMed]

24. Mu, C.; Yang, Y.; Luo, Z.; Zhu, W. Temporal Microbiota Changes of High-Protein Diet Intake in a Rat Model. Anaerobe 2017, 47,
218–225. [CrossRef] [PubMed]

25. Salvadori, M.; Rosso, G. Update on the Gut Microbiome in Health and Diseases. World J. Methodol. 2024, 14, 89196. [CrossRef]
[PubMed]

26. Kwon, D.; Zhang, K.; Paul, K.C.; Folle, A.D.; Del Rosario, I.; Jacobs, J.P.; Keener, A.M.; Bronstein, J.M.; Ritz, B. Diet and the Gut
Microbiome in Patients with Parkinson’s Disease. NPJ Park. Dis. 2024, 10, 89. [CrossRef] [PubMed]

27. Wetzel, S.; Müller, A.; Kohnert, E.; Mehrbarzin, N.; Huber, R.; Häcker, G.; Kreutz, C.; Lederer, A.-K.; Badr, M.T. Longitudinal
Dynamics of Gut Bacteriome and Mycobiome Interactions Pre- and Post-Visceral Surgery in Crohn’s Disease. Front. Cell. Infect.
Microbiol. 2024, 13, 1275405. [CrossRef] [PubMed]

28. Mantri, A.; Klümpen, L.; Seel, W.; Krawitz, P.; Stehle, P.; Weber, B.; Koban, L.; Plassmann, H.; Simon, M.-C. Beneficial Effects of
Synbiotics on the Gut Microbiome in Individuals with Low Fiber Intake: Secondary Analysis of a Double-Blind, Randomized
Controlled Trial. Nutrients 2024, 16, 2082. [CrossRef] [PubMed]

29. Horvath, A.; Zukauskaite, K.; Hazia, O.; Balazs, I.; Stadlbauer, V. Human Gut Microbiome: Therapeutic Opportunities for
Metabolic Syndrome—Hype or Hope? Endocrinol. Diabetes Metab. 2024, 7, e436. [CrossRef]

30. Popova, A.Y.; Tutelyan, V.A.; Nikityuk, D.V. On the new (2021) Norms of physiological requirements in energy and nutrients of
various groups of the population of the Russian Federation. Vopr. Pitan. 2021, 90, 6–19. [CrossRef]

31. Yu, Z.; Morrison, M. Improved Extraction of PCR-Quality Community DNA from Digesta and Fecal Samples. BioTechniques 2004,
36, 808–812. [CrossRef]

32. Efimova, D.; Tyakht, A.; Popenko, A.; Vasilyev, A.; Altukhov, I.; Dovidchenko, N.; Odintsova, V.; Klimenko, N.; Loshkarev, R.;
Pashkova, M.; et al. Knomics-Biota—A System for Exploratory Analysis of Human Gut Microbiota Data. BioData Min. 2018, 11,
25. [CrossRef]

33. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.;
Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336.
[CrossRef]

34. DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.
Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl. Environ. Microbiol. 2006,
72, 5069–5072. [CrossRef]

35. Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber,
R.L.; Knight, R.; et al. Predictive Functional Profiling of Microbial Communities Using 16S rRNA Marker Gene Sequences. Nat.
Biotechnol. 2013, 31, 814–821. [CrossRef]

36. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High Resolution Sample Inference
from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [CrossRef]

37. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.;
Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol.
2019, 37, 852–857. [CrossRef]

38. Brandt, B.W.; Bonder, M.J.; Huse, S.M.; Zaura, E. TaxMan: A Server to Trim rRNA Reference Databases and Inspect Taxonomic
Coverage. Nucleic Acids Res. 2012, 40, W82–W87. [CrossRef]

39. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data. Bioinformatics
2012, 28, 3150–3152. [CrossRef]

40. Chávez-Carbajal, A.; Nirmalkar, K.; Pérez-Lizaur, A.; Hernández-Quiroz, F.; Ramírez-del-Alto, S.; García-Mena, J.; Hernández-
Guerrero, C. Gut Microbiota and Predicted Metabolic Pathways in a Sample of Mexican Women Affected by Obesity and Obesity
Plus Metabolic Syndrome. Int. J. Mol. Sci. 2019, 20, 438. [CrossRef]

41. Thingholm, L.B.; Rühlemann, M.C.; Koch, M.; Fuqua, B.; Laucke, G.; Boehm, R.; Bang, C.; Franzosa, E.A.; Hübenthal, M.;
Rahnavard, A.; et al. Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and
Composition. Cell Host Microbe 2019, 26, 252–264.e10. [CrossRef]

42. Sroka-Oleksiak, A.; Młodzińska, A.; Bulanda, M.; Salamon, D.; Major, P.; Stanek, M.; Gosiewski, T. Metagenomic Analysis of
Duodenal Microbiota Reveals a Potential Biomarker of Dysbiosis in the Course of Obesity and Type 2 Diabetes: A Pilot Study. J.
Clin. Med. 2020, 9, 369. [CrossRef]

43. Naderpoor, N.; Mousa, A.; Gomez-Arango, L.F.; Barrett, H.L.; Dekker Nitert, M.; de Courten, B. Faecal Microbiota Are Related to
Insulin Sensitivity and Secretion in Overweight or Obese Adults. J. Clin. Med. 2019, 8, 452. [CrossRef]

44. Ciubotaru, I.; Green, S.J.; Kukreja, S.; Barengolts, E. Significant Differences in Fecal Microbiota Are Associated with Various Stages
of Glucose Tolerance in African American Male Veterans. Transl. Res. J. Lab. Clin. Med. 2015, 166, 401–411. [CrossRef]

45. Yan, H.; Qin, Q.; Chen, J.; Yan, S.; Li, T.; Gao, X.; Yang, Y.; Li, A.; Ding, S. Gut Microbiome Alterations in Patients with Visceral
Obesity Based on Quantitative Computed Tomography. Front. Cell. Infect. Microbiol. 2022, 11, 823262. [CrossRef]

https://doi.org/10.1016/j.psj.2023.102856
https://www.ncbi.nlm.nih.gov/pubmed/37390560
https://doi.org/10.3390/ijms23179588
https://www.ncbi.nlm.nih.gov/pubmed/36076980
https://doi.org/10.1016/j.anaerobe.2017.06.003
https://www.ncbi.nlm.nih.gov/pubmed/28629947
https://doi.org/10.5662/wjm.v14.i1.89196
https://www.ncbi.nlm.nih.gov/pubmed/38577200
https://doi.org/10.1038/s41531-024-00681-7
https://www.ncbi.nlm.nih.gov/pubmed/38649365
https://doi.org/10.3389/fcimb.2023.1275405
https://www.ncbi.nlm.nih.gov/pubmed/38287975
https://doi.org/10.3390/nu16132082
https://www.ncbi.nlm.nih.gov/pubmed/38999830
https://doi.org/10.1002/edm2.436
https://doi.org/10.33029/0042-8833-2021-90-4-6-19
https://doi.org/10.2144/04365ST04
https://doi.org/10.1186/s13040-018-0187-3
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.1093/nar/gks418
https://doi.org/10.1093/bioinformatics/bts565
https://doi.org/10.3390/ijms20020438
https://doi.org/10.1016/j.chom.2019.07.004
https://doi.org/10.3390/jcm9020369
https://doi.org/10.3390/jcm8040452
https://doi.org/10.1016/j.trsl.2015.06.015
https://doi.org/10.3389/fcimb.2021.823262


Biomedicines 2024, 12, 1601 16 of 16

46. Deng, K.; Shuai, M.; Zhang, Z.; Jiang, Z.; Fu, Y.; Shen, L.; Zheng, J.-S.; Chen, Y.-M. Temporal Relationship among Adiposity, Gut
Microbiota, and Insulin Resistance in a Longitudinal Human Cohort. BMC Med. 2022, 20, 171. [CrossRef]

47. Choi, B.S.-Y.; Daniel, N.; Houde, V.P.; Ouellette, A.; Marcotte, B.; Varin, T.V.; Vors, C.; Feutry, P.; Ilkayeva, O.; Ståhlman, M.; et al.
Feeding Diversified Protein Sources Exacerbates Hepatic Insulin Resistance via Increased Gut Microbial Branched-Chain Fatty
Acids and mTORC1 Signaling in Obese Mice. Nat. Commun. 2021, 12, 3377. [CrossRef]

48. Oñate, F.P.; Chamignon, C.; Burz, S.D.; Lapaque, N.; Monnoye, M.; Philippe, C.; Bredel, M.; Chêne, L.; Farin, W.; Paillarse, J.-M.;
et al. Adlercreutzia Equolifaciens Is an Anti-Inflammatory Commensal Bacterium with Decreased Abundance in Gut Microbiota
of Patients with Metabolic Liver Disease. Int. J. Mol. Sci. 2023, 24, 12232. [CrossRef]

49. Gomez-Arango, L.F.; Barrett, H.L.; Wilkinson, S.A.; Callaway, L.K.; McIntyre, H.D.; Morrison, M.; Dekker Nitert, M. Low Dietary
Fiber Intake Increases Collinsella Abundance in the Gut Microbiota of Overweight and Obese Pregnant Women. Gut Microbes
2018, 9, 189–201. [CrossRef]

50. Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The Impact of the Gut Microbiota on Human Health: An Integrative View.
Cell 2012, 148, 1258. [CrossRef]

51. Wang, H.; Lv, X.; Zhao, S.; Yuan, W.; Zhou, Q.; Sadiq, F.A.; Zhao, J.; Lu, W.; Wu, W. Weight Loss Promotion in Individuals with
Obesity through Gut Microbiota Alterations with a Multiphase Modified Ketogenic Diet. Nutrients 2023, 15, 4163. [CrossRef]

52. Hur, H.J.; Wu, X.; Yang, H.J.; Kim, M.J.; Lee, K.-H.; Hong, M.; Park, S.; Kim, M.-S. Beneficial Effects of a Low-Glycemic Diet on
Serum Metabolites and Gut Microbiota in Obese Women with Prevotella and Bacteriodes Enterotypes: A Randomized Clinical
Trial. Front. Nutr. 2022, 9, 861880. [CrossRef]

53. Bolte, L.A.; Vich Vila, A.; Imhann, F.; Collij, V.; Gacesa, R.; Peters, V.; Wijmenga, C.; Kurilshikov, A.; Campmans-Kuijpers, M.J.E.;
Fu, J.; et al. Long-Term Dietary Patterns Are Associated with Pro-Inflammatory and Anti-Inflammatory Features of the Gut
Microbiome. Gut 2021, 70, 1287–1298. [CrossRef]

54. Cui, J.; Ramesh, G.; Wu, M.; Jensen, E.T.; Crago, O.; Bertoni, A.G.; Gao, C.; Hoffman, K.L.; Sheridan, P.A.; Wong, K.E.; et al.
Butyrate-Producing Bacteria and Insulin Homeostasis: The Microbiome and Insulin Longitudinal Evaluation Study (MILES).
Diabetes 2022, 71, 2438–2446. [CrossRef]

55. Caputo, M.; Pigni, S.; Antoniotti, V.; Agosti, E.; Caramaschi, A.; Antonioli, A.; Aimaretti, G.; Manfredi, M.; Bona, E.; Prodam, F.
Targeting Microbiota in Dietary Obesity Management: A Systematic Review on Randomized Control Trials in Adults. Crit. Rev.
Food Sci. Nutr. 2023, 63, 11449–11481. [CrossRef]

56. Lakshmanan, A.P.; Al Zaidan, S.; Bangarusamy, D.K.; Al-Shamari, S.; Elhag, W.; Terranegra, A. Increased Relative Abundance of
Ruminoccocus Is Associated with Reduced Cardiovascular Risk in an Obese Population. Front. Nutr. 2022, 9, 849005. [CrossRef]

57. Cai, Y.; Kang, Y. Gut Microbiota and Metabolites in Diabetic Retinopathy: Insights into Pathogenesis for Novel Therapeutic
Strategies. Biomed. Pharmacother. 2023, 164, 114994. [CrossRef]

58. Naqvi, S.; Asar, T.O.; Kumar, V.; Al-Abbasi, F.A.; Alhayyani, S.; Kamal, M.A.; Anwar, F. A Cross-Talk between Gut Microbiome,
Salt and Hypertension—ScienceDirect. Biomed. Pharmacother. 2021, 134, 111156. [CrossRef]

59. Gong, H.; Gao, H.; Ren, Q.; He, J. The Abundance of Bifidobacterium in Relation to Visceral Obesity and Serum Uric Acid. Sci.
Rep. 2022, 12, 13073. [CrossRef]

60. Yu, D.; Nguyen, S.M.; Yang, Y.; Xu, W.; Cai, H.; Wu, J.; Cai, Q.; Long, J.; Zheng, W.; Shu, X.-O. Long-Term Diet Quality Is
Associated with Gut Microbiome Diversity and Composition among Urban Chinese Adults. Am. J. Clin. Nutr. 2021, 113, 684–694.
[CrossRef]

61. Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles,
L.; et al. Akkermansia Muciniphila and Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with
Gut Microbiome Richness and Ecology. Gut 2016, 65, 426–436. [CrossRef]

62. Chen, Y.; Lin, H.; Cole, M.; Morris, A.; Martinson, J.; Mckay, H.; Mimiaga, M.; Margolick, J.; Fitch, A.; Methe, B.; et al. Signature
Changes in Gut Microbiome Are Associated with Increased Susceptibility to HIV-1 Infection in MSM. Microbiome 2021, 9, 237.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s12916-022-02376-3
https://doi.org/10.1038/s41467-021-23782-w
https://doi.org/10.3390/ijms241512232
https://doi.org/10.1080/19490976.2017.1406584
https://doi.org/10.1016/j.cell.2012.01.035
https://doi.org/10.3390/nu15194163
https://doi.org/10.3389/fnut.2022.861880
https://doi.org/10.1136/gutjnl-2020-322670
https://doi.org/10.2337/db22-0168
https://doi.org/10.1080/10408398.2022.2087593
https://doi.org/10.3389/fnut.2022.849005
https://doi.org/10.1016/j.biopha.2023.114994
https://doi.org/10.1016/j.biopha.2020.111156
https://doi.org/10.1038/s41598-022-17417-3
https://doi.org/10.1093/ajcn/nqaa350
https://doi.org/10.1136/gutjnl-2014-308778
https://doi.org/10.1186/s40168-021-01168-w
https://www.ncbi.nlm.nih.gov/pubmed/34879869

	Introduction 
	Materials and Methods 
	Subjects and Study Design 
	Diet Assessment 
	Anthropometry, Body Composition and Biochemical Indicators 
	Fecal Sample Collection 
	DNA Extraction, Library Construction and Sequencing 
	Gut Microbiota Composition Profiling 
	Statistical Analysis 

	Results 
	Characteristics of Carbohydrate and Lipid Metabolism 
	Diet 
	Association of Gut Microbiota Composition and Dietary Variation with Clinical Parameters and Metabolism 

	Discussion 
	Conclusions 
	References

