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Abstract

Induction of histone acetylation in the nucleus accumbens (NAc), a key brain reward region, 

promotes cocaine-induced alterations in gene expression. Histone deacetylases (HDACs) tightly 

regulate the acetylation of histone tails, but little is known about the functional specificity of 

different HDAC isoforms in the development and maintenance of cocaine-induced plasticity, and 

prior studies of HDAC inhibitors report conflicting effects on cocaine-elicited behavioral 

adaptations. Here, we demonstrate that specific and prolonged blockade of HDAC1 in NAc of 

mice increased global levels of histone acetylation, but also induced repressive histone 

methylation and antagonized cocaine-induced changes in behavior, an effect mediated in part via a 

chromatin-mediated suppression of GABAA receptor subunit expression and inhibitory tone on 

NAc neurons. Our findings suggest a novel mechanism by which prolonged and selective HDAC 

inhibition can alter behavioral and molecular adaptations to cocaine and inform the development 

of novel therapeutics for cocaine addiction.

Drug addiction is a chronic, debilitating psychiatric disorder characterized by high rates of 

relapse. Recent studies suggest that post-translational modifications (PTMs) of histones in 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*To whom correspondence should be addressed. eric.nestler@mssm.edu.
#Authors contributed equally.

Author contributions: P.J.K., I.M. and E.J.N. designed research; P.J.K., J.F., A.J.R., A.B., D.C. and D.D.-W. performed research; 
P.J.K., A.J.R., D.C. and A.B. analyzed data; R.B-D. and E.N.O. contributed mutant mice; S.J.H. provided reagents; P.J.K. and E.J.N. 
wrote the paper.

HHS Public Access
Author manuscript
Nat Neurosci. Author manuscript; available in PMC 2013 October 01.

Published in final edited form as:
Nat Neurosci. 2013 April ; 16(4): 434–440. doi:10.1038/nn.3354.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nucleus accumbens (NAc), an important neural substrate for the addicting actions of drugs 

of abuse, mediate long-lasting transcriptional and behavioral changes in response to cocaine 

or other psychostimulants. For example, repeated psychostimulant administration increases 

global levels of histone acetylation and decreases global levels of histone methylation 

(which are normally associated with gene activation and repression, respectively) in NAc1–8.

Histone deacetylases (HDACs) are a family of enzymes capable of repressing gene 

expression by removing acetyl groups from histone substrates9. Studies investigating the 

effects of pan-HDAC inhibition on psychostimulant-induced behavioral plasticity have 

yielded conflicting results, with some studies reporting that systemic or intra-NAc HDAC 

inhibition enhances the behavioral effects of cocaine or amphetamine, and other studies 

reporting changes in the opposite direction1,3–5,10–15. These discrepant findings suggest 

layers of complexity that have not been adequately considered to date, which might include 

different affinities of various HDAC inhibitors for different HDAC isoforms, highly specific 

biological actions of different HDAC isoforms in regulating psychostimulant responses, and 

time-dependent effects of HDAC inhibition in brain.

We addressed these possibilities in the present study in several ways. While previous work 

has targeted a combination of Class I and II HDACs, Class III HDACs, or specific Class II 

HDAC isoforms1,3–5,10–16, no study to date has systematically examined the role of nuclear-

specific Class I HDAC isoforms in the behavioral effects of drugs of abuse. We thus 

induced local knockouts of HDAC1, 2, or 3 in NAc of adult floxed mice via viral expression 

of Cre recombinase in this brain region, and found that only prolonged knockdown of 

HDAC1 significantly suppressed cocaine-induced behavioral plasticity. While acute HDAC 

inhibition enhances the behavioral effects of cocaine or amphetamine1,3,4,13,14, studies 

suggest that more chronic regimens block psychostimulant-induced plasticity3,5,11,12. We 

found that continuous infusion of the selective pharmacological HDAC inhibitor, N-(2-

aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl) aminomethyl]benzamide (MS-275), 

directly into NAc over a broad time course attenuated cocaine’s behavioral effects and 

triggered other chromatin modifications in the NAc known to oppose cocaine-induced 

plasticity. We show that prolonged HDAC inhibition paired with repeated cocaine 

selectively induced a form of repressive histone methylation, dimethylation of Lys9 of 

histone H3 (H3K9me2), in NAc, which, through the repression of GABAA receptor subunits 

and inhibitory tone on NAc medium spiny neurons, contributed to blockade of cocaine-

induced plasticity. Together, these findings demonstrate cross talk among different types of 

histone modifications in the adult brain and identify a novel molecular mechanism that 

controls an individual’s sensitivity to psychostimulant exposure.

RESULTS

Regulation of Cocaine’s Behavioral Effects by HDAC1 in NAc

Most HDAC activity is catalyzed by Class I HDACs. To investigate the role of each of the 

three main Class I HDACs most highly expressed in brain, HDACs 1-317, in cocaine action, 

we engineered selective knockdowns of these enzymes from NAc by injecting a viral vector 

expressing Cre into this brain region of adult mice homozygous for floxed alleles of each 

enzyme isoform18,19 (Supplementary Fig. 1). We then tested the animals in a cocaine 
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locomotor sensitization paradigm, a widely used model of cocaine-induced behavioral 

plasticity20,21. We found that the local knockdown of HDAC1 significantly reduced cocaine 

locomotor sensitization, but had no effect on responses to initial cocaine doses (Fig. 1a). In 

contrast, local knockdown of HDAC2 or HDAC3 had no effect on cocaine-induced 

behaviors (Fig. 1c and e). Together, these findings establish a specific role for HDAC1, 

compared with HDACs 2 and 3, in NAc in mediating behavioral responses to cocaine. 

Selective knockdown of each of the three HDAC isoforms was confirmed by qPCR (Fig. 1b, 

d, f). Interestingly, these knockdowns influenced the expression of other HDACs in NAc. 

Local knockdown of HDAC1 decreased expression of HDAC2 and SIRT1 (a Class III 

HDAC) and increased expression of HDAC5 (a Class II HDAC); both SIRT1 and HDAC5 

have previously been implicated in cocaine’s behavioral effects5,16. In contrast, knockdown 

of HDACs 2 or 3 led to compensatory increases in other Class I and II HDACs.

We next tested whether direct infusion of the selective HDAC inhibitor, MS-275, had 

similar effects. While MS-275 targets all three major Class I HDACs, HDACs 1-3, it 

exhibits by far the highest in vitro affinity for HDAC1: EC50 (nM) = 181±62 (HDAC1), 

1155±134 (HDAC2), and 2311±803 (HDAC3)22. In vivo selectivity of MS-275 has not been 

examined. Mice were implanted with osmotic minipumps for continuous and direct infusion 

of MS-275 into NAc. Five days after surgery, mice were subjected to our cocaine locomotor 

sensitization paradigm (10 mg/kg). Similar to local knockdown of HDAC1, chronic infusion 

of MS-275 into the NAc blocked cocaine-induced locomotor sensitization with no effect on 

baseline mobility or responses to initial cocaine doses (Fig. 2a).

HDAC Regulation of Repressive Histone Methylation in NAc

Repeated cocaine administration has been shown to induce a global increase in histone 

acetylation and a global decrease in repressive H3K9 methylation in NAc, both of which 

promote transcriptional activation and behavioral responses to cocaine1,2,5,6,23. To validate 

MS-275’s pharmacological activity, and to probe its effects on several types of cocaine-

regulated histone PTMs, we quantified levels of acetylated and methylated forms of H3 in 

the NAc under the site of MS-275 infusion 24 hours after repeated cocaine (12 days of 

continuous MS-275, 7 daily doses of cocaine 20 mg/kg). As shown previously24, intra-NAc 

infusion of MS-275 increased global levels of acetylated H3 at Lys14 (H3K14ac) (Fig. 2b) 

and repeated cocaine increased global levels of acetylated H3 at Lys9 (H3K9ac) (Fig. 2c). 

Neither treatment altered total protein levels of H3 (Fig. 2b). To date, virtually nothing is 

known about the catalytic selectivity of HDAC1 or other HDACs for various H3 acetylation 

sites (e.g., K9 vs. K14); the apparent different effects of cocaine and MS-275 on H3K14 and 

K9 acetylation might relate to the surrounding chromatin landscape, as K14’s neighboring 

amino acids, unlike those of K9, are not modified. While MS-275 treatment alone did not 

alter levels of either the repressive euchromatic mark H3K9me2 or the heterochromatic 

trimethylation of H3 at Lys9 (H3K9me3), both were elevated when MS-275 was paired with 

repeated cocaine (Fig. 2d and Supplementary Fig. 2a). We did not see a global decrease in 

either of these marks following repeated cocaine alone, as we have published previously6,23. 

However, this prior work was performed on non-operated (surgery-naïve) mice, and we 

found that the use of cannulae and intra-NAc infusions alone increased global H3K9me2 

levels in NAc (Supplementary Fig. 2b), which may have complicated our ability to detect 
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cocaine-induced decreases. Given that these measures are taken on a global scale, the 

absence of a cocaine-induced decrease in global H3K9me2 does not preclude altered 

targeting of this mark to specific gene promoters in response to cocaine. The effect of intra-

NAc infusion of MS-275 on histone PTMs in this brain region was specific to modifications 

normally altered by repeated cocaine. Thus, neither repeated cocaine administration nor 

MS-275 treatment produced changes in global levels of a major activating form of histone 

methylation, H3 Lys4 trimethylation (H3K4me3), or of another repressive histone 

methylation, H3 Lys27 trimethylation (H3K27me3) (Supplementary Fig. 2c and d).

In contrast to the effects seen with prolonged and continuous infusion of MS-275 into the 

NAc, acute infusions just prior to daily cocaine treatment had no significant effect on 

locomotor activity or sensitization (Supplementary Fig. 3a), indicating that chronic 

knockdown or blockade of HDAC1 is required for attenuation of cocaine’s behavioral 

effects. Furthermore, while acute MS-275 paired with cocaine treatment increased global 

levels of H3K9ac, global levels of H3K9me2 remained unchanged (Supplementary Fig. 3b 

and c), suggesting that the increase in H3K9me2 following chronic MS-275 treatment is 

important for blocking sensitized locomotor responses to cocaine. Together, these findings 

highlight a striking chromatin signature that occurs only in the combined presence of 

chronic HDAC inhibition by MS-275 plus repeated exposure to cocaine.

To gain insight into the mechanism underlying the selective increase in H3K9me2 and 

H3K9me3 in NAc in response to local infusion of MS-275 plus repeated cocaine, we next 

profiled lysine methyltransferases (KMTs) known to catalyze these repressive histone 

marks: G9a, G9a-like protein (GLP), and suppressor of variegation 3–9 homolog 1 

(SUV39H1). As previously shown6, 24 hours after repeated cocaine exposure, G9a 

expression was significantly downregulated in NAc, with no effect seen on GLP or 

SUV39H1 (Fig 2e). However, in striking contrast, expression of both G9a and SUV39H1 

was significantly elevated in NAc of mice receiving MS-275 plus repeated cocaine (Fig. 2e), 

consistent with the increased global levels of H3K9me2 and H3K9me3 seen uniquely under 

these conditions. Given that MS-275 plus repeated cocaine increased global levels of AcH3, 

we hypothesized that transcriptional activation of G9a and SUV39H1 following MS-275 

treatment with repeated cocaine might be mediated through targeted binding of AcH3 at the 

promoters of these KMTs. Using quantitative chromatin immunoprecipitation (qChIP) with 

an antibody to H3K9ac, as we wanted to examine a promoter-enriched AcH3 mark24, we 

found a significant increase in H3K9ac binding at the promoters of all three H3K9 KMTs, 

G9a, GLP, and SUV39H1, following chronic MS-275 treatment with repeated cocaine (Fig. 

2f). These data thus reveal a novel interplay between activating and repressive chromatin 

remodeling: in the context of MS-275 mediated hyperacetylation, repeated exposure to 

cocaine induces a targeted increase in repressive histone methylation that may serve to 

dampen hyperactive patterns of gene expression.

To understand how HDAC1 might play a unique role in mediating cocaine-induced 

decreases in H3K9 KMT gene expression, we used qChIP to probe the binding of the three 

main Class I HDAC isoforms expressed in NAc, HDACs 1, 2 and 3, to KMT gene 

promoters in NAc 4 hours after repeated cocaine. We found a significant increase in 

HDAC1 binding at the promoters of both G9a and GLP (Fig 3a), but unaltered binding of 
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both HDACs 2 and 3 at these same promoters (Fig 3b and c). A peptide competition assay 

with western blotting revealed that the antibodies used for this qChIP experiment are 

specific for their respective targets (data not shown). These data suggest that repeated 

cocaine induces the selective binding of HDAC1 to the G9a and GLP promoters, associated 

with their repression, and provide one mechanism by which HDAC1 uniquely regulates 

H3K9 KMT gene expression in response to repeated cocaine.

GABAergic Targets For MS-275-Cocaine Action

Since cocaine-induced decreases in repressive H3K9me2 in NAc are an important mediator 

of behavioral responses to cocaine6, we hypothesized that the induction of H3K9me2 

following MS-275 treatment with repeated cocaine observed here might be one key 

mechanism by which chronic MS-275 administration blocks cocaine-regulated behavioral 

sensitization. To identify possible gene targets for MS-275-induced transcriptional 

repression, we profiled gene families known to be upregulated by cocaine and important for 

cocaine-induced behavioral plasticity. Previous genome-wide promoter analyses using ChIP 

coupled to promoter microarrays (ChIP-chip) identify several GABAA receptor subunits as 

targets for increased transcription factor binding following repeated cocaine5. More recent 

studies demonstrate cocaine-induced increases in the frequency of GABAA receptor-

mediated miniature inhibitory post-synaptic currents (mIPSCs) in striatonigral medium 

spiny neurons in whole striatum and a requirement for α2 subunit-containing GABAA 

receptors for the induction of behavioral sensitization to cocaine25,26. We therefore focused 

on regulation of GABAA receptor subunits in our experimental paradigm.

We found that repeated cocaine significantly induced expression of multiple GABAA 

receptor subunit genes in NAc and that cocaine-mediated increases in GABAA-α1, -α3, and 

-β2 subunit genes (GABRA1, GABRA2 and GABRB2) were blocked by chronic intra-NAc 

MS-275 infusion (Fig. 4a). MS-275infusion by itself caused an induction in GABAA 

receptor subunit gene expression similar to that of cocaine alone, again demonstrating a 

unique interaction upon combined exposure to MS-275 plus cocaine. We then probed 

GABAA-α1 to verify whether its altered pattern in gene expression occurred at the protein 

level. Indeed, GABAA-α1 protein levels displayed qualitatively similar patterns of 

expression across treatment conditions (Supplementary Fig. 4a). These data suggest that 

GABAA signaling in NAc may be an important mediator of cocaine-induced locomotor 

activation. We therefore infused bicuculline, a competitive GABAA receptor antagonist, into 

NAc and tested animals in the cocaine locomotor sensitization paradigm. We found that 

daily infusion of bicuculline blocked the locomotor-activating effects of cocaine 

(Supplementary Fig. 4b).

To test whether the transcriptional changes in GABAA receptor subunits correlated with 

altered binding of acetylated and methylated H3 at specific gene promoters, we performed 

qChIP with antibodies to H3K9ac or H3K9me2. We found that, while MS-275 treatment 

with repeated cocaine caused a significant increase in H3K9ac binding at GABAA subunit 

gene promoters, there was a much more prominent increase in repressive H3K9me2 

enrichment, suggesting a reversal of cocaine-induced transcriptional de-repression with 

MS-275 (Fig. 4b and c). We further found that repeated cocaine administration decreased 
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H3K9me2 binding at many GABAA subunit gene promoters in NAc, consistent with 

cocaine’s known suppression of this mark in this brain region and with the cocaine-induced 

patterns of GABAA subunit gene activation reported here (Fig. 4c).

To determine whether the reversal of cocaine-mediated increases in GABAA receptor 

subunit expression by MS-275 is functional, we recorded spontaneous inhibitory 

postsynaptic currents (IPSCs) from medium spiny neurons in the NAc shell of acute brain 

slices prepared 12 days after minipump implantation and 24 hours after repeated cocaine or 

saline. We found no difference in the amplitude of these events between the four conditions 

(vehicle + saline, vehicle + cocaine, MS-275 + saline, and MS-275 + cocaine; Fig. 4d). 

However, spontaneous IPSC frequency was significantly increased in animals receiving 

either cocaine or MS-275 infusions alone, and this increase was completely reversed in 

animals exposed to the two treatments in combination. The lack of change in amplitude 

coupled with an alteration in frequency suggests that cocaine or MS-275 induce an increase 

in the number of functional inhibitory synapses, without affecting individual synaptic 

strength, consistent with previous findings25.

DISCUSSION

Our results provide the first evidence for a selective role of the nuclear specific Class I 

HDAC, HDAC1, in mediating cocaine-induced behavioral plasticity and suggest a novel 

interplay among activating and repressive histone PTMs in the transcriptional regulation of 

cocaine-induced molecular adaptations. We show that local knockout of HDAC1, as well as 

chronic and continuous infusion of MS-275, a pharmacological inhibitor highly selective in 

vitro for HDAC1, in NAc suppressed cocaine-induced locomotor sensitization. This effect 

was not seen with local knockout of other Class I isoforms, HDACs 2 and 3. Knockout of 

these different HDACs resulted in distinct patterns of altered expression of other HDACs, 

but only knockdown of HDAC1 affected expression of isoforms previously implicated in 

behavioral responses to cocaine. We further show that both repeated cocaine and chronic 

HDAC inhibition alone increased global levels of activating histone acetylation in the NAc 

but that, in combination, these treatments induced repressive histone methylation through 

H3K9ac binding at the promoters of specific KMTs and the subsequent induction of these 

enzymes. Analysis of promoter occupancy 4 hours after repeated cocaine revealed the 

selective association of HDAC1 with the G9a and GLP promoters in NAc, suggesting a 

mechanism for HDAC1’s unique effects on repressive histone methylation and cocaine 

action. Further studies are needed to understand the molecular steps by which HDAC1, but 

not other Class I HDACs, is recruited to these KMT promoters. Finally, we identify GABAA 

receptor subunits as functional targets for both cocaine-induced decreases in H3K9me2 and 

cocaine plus MS-275 increases in this repressive methyl mark. Together, our findings 

suggest a dynamic interplay among different types of histone modifications in the adult 

brain, identify HDAC1 as a novel target for drug-induced plasticity, and reveal a role for, 

and mechanism by which, GABAA receptors in NAc are altered to mediate physiological 

changes important for the behavioral effects of cocaine.

Several studies to date have identified altered patterns of histone acetylation in NAc as 

important mediators of psychostimulant-induced behavioral and molecular plasticity. 
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HDACs tightly regulate histone acetylation and both non-selective HDAC inhibition and 

manipulations of specific Class II or III isoforms can alter psychostimulant-induced 

adaptations1,3–5,10–16. Class I HDACs differ from other classes of HDACs in that they are 

nuclear specific, demonstrating very little nuclear-cytoplasmic shuttling, and evidence 

suggests highly specific biological actions of the different isoforms within this class27,28. 

Recent reports have revealed that Class I HDAC isoforms 1–3 regulate memory and mediate 

responses to antipsychotic drugs29–32, suggesting a potentially distinct role, as yet 

unexplored, for such enzymes in drug addiction as well. The selective role for HDAC1 

reported here may seem surprising given evidence of regulatory cross talk between HDACs 

1-3, such that loss of HDAC1 in embryonic stem cells causes a compensatory upregulation 

of HDACs 2 and 333. However, such a compensatory mechanism is thought to be 

incomplete33. Moreover, we show a very different pattern of compensation in adult NAc. 

Local knockdown of HDAC1 led to decreased HDAC2 and SIRT1 expression, which is in 

agreement with previous findings that loss of HDAC1 leads to an overall reduction in total 

HDAC activity in non-nervous tissues33. Interestingly, HDAC1 knockdown also caused an 

upregulation in HDAC5 expression. Previous findings have implicated both SIRT1 and 

HDAC5 in mediating behavioral responses to cocaine. SIRT1 is upregulated in NAc 

following repeated exposure to cocaine and SIRT inhibition decreases behavioral responses 

to the drug5. Conversely, nuclear levels of HDAC5 are downregulated in NAc by repeated 

cocaine and loss of HDAC5 results in cocaine hypersensitivity16. While further work is 

required to determine the extent to which such compensatory regulation of SIRT1 and 

HDAC5 might contribute to the behavioral effects of HDAC1 knockdown, our observation 

of selective HDAC1 binding to H3K9 KMTs suggests an important direct role for HDAC1. 

As noted, evidence for distinct functions of Class I HDAC isoforms in the adult mouse brain 

has been reported recently in a study comparing HDAC1 and 2 contributions to cognitive 

processes. Although HDACs 1 and 2 form functional heterodimers and are often found in 

the same protein complexes14, memory formation was impaired with overexpression of 

HDAC2 but not HDAC1 in the hippocampus29. Our findings show an opposite dissociation 

of function and implicate HDAC1 in NAc in cocaine-induced plasticity. These results 

thereby provide new insight into the selective roles of Class I HDACs in the adult mouse 

brain.

The effects of pharmacological inhibition of HDACs on psychostimulant-induced plasticity 

appear to depend on the timecourse of HDAC inhibition. Studies employing co-

administration procedures in which inhibitors are given acutely, just prior to 

psychostimulant administration, report heightened behavioral responses to the drug1,3,4,13,14. 

In contrast, experimental paradigms like the one employed here, in which HDAC inhibitors 

are administered more chronically, for several days prior to psychostimulant exposure, show 

inhibited expression3 or decreased acquisition of behavioral adaptations to drug5,11,12. The 

clustering of seemingly discrepant results based on experimental methodologies is 

interesting in light of our present findings. Both HDAC inhibitors and psychostimulants 

increase global levels of histone acetylation in NAc. Thus, when co-administered acutely, 

these drugs may have synergistic effects, leading to heightened transcriptional activation of 

psychostimulant-regulated target genes. In contrast, when a psychostimulant is given in the 

context of prolonged, HDAC inhibitor-induced hyperacetylation, homeostatic processes may 
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direct AcH3 binding to the promoters of genes (e.g., G9a) responsible for inducing 

chromatin condensation and gene repression (e.g., via H3K9me2) in order to dampen 

already heightened transcriptional activation. Our present findings thus demonstrate clear 

cross talk among histone PTMs and suggest that decreased behavioral sensitivity to 

psychostimulants following prolonged HDAC inhibition might be mediated through 

decreased activity of HDAC1 at H3K9 KMT promoters and subsequent increases in 

H3K9me2 and gene repression. The same complexity has been reported previously with 

local knockdown of HDAC5 in the NAc16. While many genes were induced, just as many 

were repressed, and among the induced genes were transcriptional repressors such as 

SUV39H1.

Previous studies examining chromatin remodeling in NAc underlying drug-induced 

behavioral plasticity have focused solely on histone PTMs known to occur on active, 

euchromatic regions of the genome (e.g. H3K14ac, H3K9ac, H3K9me2, H3K4me3). More 

recent evidence suggests that cocaine exposure additionally causes a de-repression of 

previously silenced chromatin (heterochromatin) in NAc: repeated cocaine reduced global 

levels of H3K9me3, a histone PTM that is associated specifically with silenced, non-coding 

regions of the genome, which mediated a decrease in total heterochromatin levels in NAc23. 

Our present findings, that chronic MS-275 plus repeated cocaine increase H3K9me3 and 

expression of SUV39H1, the enzyme that catalyzes this modification, suggest that regulation 

of non-coding regions of the genome may also be important for MS-275’s suppression of 

cocaine-induced behavioral activation.

Numerous studies to date have implicated glutamatergic plasticity in the brain’s reward 

circuitry in the development and maintenance of addictive-like behaviors. Studies have 

shown that altered glutamate receptor subunit levels and altered glutamate transmission in 

NAc are important molecular and physiological changes underlying the development of 

cocaine-induced behavioral sensitization34–39. Further evidence suggests that glutamate 

receptor subunits are targets for the transcription factors ΔFosB and phospho-CREB, and 

that their genes display promoter hyperacetylation, providing one mechanism for the 

sustained changes in glutamatergic transmission in NAc in response to repeated 

cocaine5,14,39,40. More recent studies have begun to reveal a role for GABAA receptor 

subunits in NAc in mediating cocaine-induced behavioral adaptations. Repeated cocaine 

increases the frequency of GABAA receptor-mediated mIPSCs in striatonigral medium 

spiny neurons, and α2 subunit-containing GABAA receptors are required for the induction 

of cocaine behavioral sensitization25,26. Furthermore, ChIP-chip analyses have identified 

several GABAA receptor subunits as direct, physiological targets for increased ΔFosB and 

phospho-CREB binding following repeated cocaine5. Here, we provide further evidence for 

GABAergic plasticity in NAc as a potential mediator of cocaine behavioral plasticity and 

identify chromatin remodeling as a regulator of cocaine’s effect on GABAA receptor subunit 

expression. Although GABAA receptor subunit expression, as well as inhibitory tone on 

NAc medium spiny neurons, was increased by either cocaine or MS-275 alone, only the 

cocaine-induced increase was associated with a behavioral phenotype. The absence of 

enhanced locomotor activity following MS-275 treatment alone suggests that, although 

increases in GABAA subunit expression and functional synaptic changes are necessary for 
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the expression of cocaine-induced locomotor activation, they are not sufficient. Several 

studies to date have identified putative target genes for cocaine-induced promoter 

hyperacetylation and transcriptional upregulation1,5,14. Only recently has cocaine-induced 

decreases in repressive H3K9me2 promoter binding been linked to the transcriptional 

upregulation of genes important in mediating behavioral adaptations to cocaine6,41. Our data 

provide evidence linking cocaine-induced increases in GABAA receptor subunit expression 

to decreased binding of H3K9me2 at these gene promoters. Although combined treatment of 

MS-275 and repeated cocaine did cause a significant increase in H3K9ac binding at GABAA 

subunit gene promoters, we found a much more prominent increase in repressive H3K9me2 

enrichment, suggesting that the normalization of GABAA subunit expression and inhibitory 

tone on NAc medium spiny neurons under these conditions was mainly driven by a reversal 

of cocaine-induced transcriptional de-repression.

The finding that MS-275 with repeated cocaine increased both H3ac and H3me2 on Lys9 

residues at GABAA subunit gene promoters deserves further comment. The NAc is 

composed primarily of two distinct subpopulations of medium spiny projection neurons, 

those expressing dopamine D1- and those expressing dopamine D2-receptors, and these 

different neuronal populations exhibit different molecular adaptations in response to 

repeated cocaine42–44. In the present study, we did not distinguish between these different 

neuronal subtypes, thus it is possible that the increases in H3ac and H3me2 at the same Lys 

residue reported here are occurring in different neuronal populations. Future experiments are 

required to address this and alternative possibilities.

The interaction between cocaine and MS-275 reported here is noteworthy. Either cocaine or 

MS-275 treatment alone caused global increases in H3 acetylation and increases in GABAA 

subunit gene expression, but when combined, these treatments caused increases in global 

repressive H3K9me2, most likely driven by a loss of HDAC1 and a subsequent gain in H3ac 

at H3K9 KMT promoters, that prevented cocaine-induced increases in GABAA subunit gene 

expression and inhibitory tone in NAc (Supplementary Fig. 5). The results highlight a 

unique mode of biological regulation that provides further insight into mechanisms of 

chromatin regulation in the adult brain. Results of the present study also specifically inform 

the mechanisms underlying the prolonged actions of HDAC inhibitors in NAc and broaden 

current knowledge of molecular and chromatin endpoints for novel addiction treatments.

METHODS

Animals and treatments

Animals were housed in a colony room maintained at a constant temperature (23°C) on a 12 

hour light/dark cycle (lights on from 0700 to 1900 hour) with ad libitum access to food and 

water. Eight- to 10-week-old male C57BL6/J mice (Jackson Laboratory, Bar Harbor, ME, 

USA) were used in all experiments unless stated otherwise. Animals were housed 5 per cage 

and habituated in our facility 1 week before experimentation. Members of the same cage 

were randomly assigned to different experimental groups for behavioral studies. All mouse 

procedures were approved and performed in accordance with guidelines stipulated by the 

Institutional Animal Care and Use Committee at Mount Sinai.
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To induce focal deletion of specific Class I HDACs in NAc neurons, we used mutant mice 

homozygous for a floxed HDAC1, 2 or 3 allele (backcrossed to C57BL/6J mice) which have 

been described elsewhere18,19. Mice were sterotaxically-injected with herpes simplex virus 

(HSV) vectors expressing GFP or Cre-GFP (HDAC1fl/fl and HDAC2fl/fl) or adeno-associated 

virus (AAV) vectors expressing GFP or Cre-GFP (HDAC3fl/fl) in the NAc between the age 

of 8 and 10 weeks. AAV vectors were used for HDAC3, as they were required to obtain a 

degree of knockdown equivalent to that seen for HDACs 1 and 2. Both vectors target 

neurons only and infect ~1 mm3 of brain6 (see Supplemental Fig. 1). The efficiency of Cre-

mediated recombination was quantified by quantitative PCR (qPCR) at the end of behavioral 

testing. For experiments administering the pharmacological inhibitor N-(2-aminophenyl)-4-

[N-(pyridin-3-yl-methoxycarbonyl) aminomethyl]benzamide (MS-275, 100 μM; provided by 

Dr. Stephen Haggarty, the Broad Institute), mice were stereotaxically implanted with 

subcutaneous Alzet mini-pumps (model 1002; Durect) fastened to bilateral guide cannulae 

targeting the NAc. Twelve hours prior to implantation, mini-pumps were activated to initiate 

continuous delivery (0.25 μl/hour over 14 days) of either vehicle (5 hydroxypropyl β-

cyclodextrin; Trappsol, CTD) or drug. All mice were singly housed post-surgery.

For Western blotting, qPCR, chromatin immunoprecipitation (ChIP), and electrophysiology, 

mice receiving continuous delivery of either vehicle or MS-275 for 5 days were started on 

daily injections of either saline (7 treatments saline, i.p.) or cocaine (7 treatments 20 mg/kg 

cocaine-HCl, i.p.). Mice were used 24 hours after the final drug treatment and 12 days of 

continuous vehicle or MS-275 infusion. For HDAC ChIPs, non-surgery mice received daily 

injections of either saline (7 treatments saline, i.p.) or cocaine (7 treatments 20 mg/kg, i.p.) 

and were used 4 hours after the final drug treatment. Note that we used a higher dose of 

cocaine for these molecular studies compared with our behavioral testing, based on 

established precedents in the literature where such higher doses are often required to detect 

statistically significant findings.

Stereotaxic surgery

Mice anesthetized with a combination of ketamine (100 mg/kg) and xylazine (10 mg/kg) 

were positioned in a small-animal stereotax and the cranial surface was exposed. Bilateral 

infusions of virus (0.5 μl HSV or AAV) into the NAc were administered at a rate of 0.1 

μl/min using 33 gauge syringe needles positioned at a 10° angle (AP + 1.6; ML + 1.5; DV − 

4.4 relative to Bregma). Mice receiving HSV or AAV infusions were given 6 and 20 days of 

recovery following surgery, respectively. These timepoints were selected based on the onset 

of maximal viral-mediated transgene expression for the two vectors and to mimic the 

timecourse of MS-275 treatment prior to behavioral testing. For MS-275 infusions, two 

mini-pumps were positioned subcutaneously on the mouse’s back. Two small cranial holes 

were made above the NAc and bilateral cannulae (28 gauge stainless steel) were lowered at 

a position of AP + 1.4; ML + 1.0; DV −4.0 from bregma. Mice were given 5 days recovery, 

with continuous MS-275 or vehicle infusion, before beginning the cocaine locomotor assay 

described below. All cannulae placements were verified at the time animals were killed 

through visualization of the cannulae tracks; only animals with tracks terminating in the 

NAc were included in the study (>90% of all animals tested).
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For bicuculline (Tocris, Ellisville, MO) and acute MS-275 infusions, bilateral guide 

cannulae (26-gauge, 5.0 mm length) were introduced 2.5 mm above the NAc at a position of 

AP +1.6; ML + 1.0; DV − 3.4 from bregma. To prevent obstruction of the cannulae, at the 

end of surgery, dummy cannulae were inserted into the guide cannulae. Mice were given 1 

week recovery before beginning the cocaine locomotor assay described below. After 

behavioral testing, injection sites were confirmed by direct visualization as noted above. In 

the case of the acute MS-275 experiment 15-gauge NAc punches were collected for Western 

blot analysis 30 minutes following the end behavioral testing.

Locomotor activity assay

Mice were injected with saline or cocaine (i.p.) at the same time each day and placed in 

standard rat cages located inside a Photobeam Activity System (San Diego Instruments, San 

Diego, CA). On day 0, mice were acclimated to the novel environment for 30 minutes and 

then given a saline injection for baseline activity measures. On days 1–5 mice were given 

injections of cocaine (10 mg/kg). Horizontal ambulations in the x and y plane were 

measured for 30 minutes following all injections.

For bicuculline and acute MS-275 experiments, daily drug (bicuculline dissolved in 0.9% 

saline or MS-275, 100μM, dissolved in 5 hydroxypropyl β-cyclodextrin) or vehicle infusions 

(10 ng/0.5 μl/side over 2.5 minutes) into the NAc were made through an inner cannula (33-

gauge) attached to a Hamilton syringe 15 minutes prior to behavioral testing. The 

experimenter was not blinded for these experiments. Instances of faulty behavioral tracking 

were removed from the analyses.

RNA isolation and qPCR

Bilateral 15-gauge NAc punches were homogenized in Trizol and processed according to 

the manufacturer’s instructions. RNA was purified with RNAesy Micro columns (QIAGEN) 

and spectroscopy confirmed that the RNA had 260/280 and 260/230 ratios >1.8. RNA was 

reversed transcribed into cDNA using iScript cDNA synthesis (Bio-Rad). qPCR was 

performed using ~2.5 ng of cDNA for each reaction plus primers and SYBR Green. Each 

reaction was run in duplicate and analyzed following the ΔΔCt method as previously 

described using glyceraldehyde- 3-phosphate dehydrogenase (GAPDH) as a normalization 

control16. See Supplemental Table S1 for mRNA primer sequences. The experimenter was 

not blinded for these experiments.

Western blot analysis

15-gauge NAc punches were homogenized in 30 μl of 1 M HEPES lysis buffer (1% SDS) 

containing protease and phosphatase inhibitors using an ultrasonic processor. Protein 

concentrations were determined using a DC protein assay and 10–20 μg samples of total 

protein were electrophoresed on 18% Tris-HCl polyacrylamide gels. Proteins were 

transferred to a nitrocellulose membrane, blocked for 1 hour in 5% BSA, and incubated 

overnight at 4°C with either anti-AcH3K14 (Millipore, 1:1,000), anti-AcH3K9 (Abcam, 

1:1,000), anti-H3K9me2 (Abcam, 1:500), anti-H3K9me3 (Millipore, 1:500), anti-H3K4me3 

(Millipore, 1:500), anti-H3K27me3 (Millipore, 1:500), anti-GAPDH (Cell Signaling, 

1:60,000) or anti-total histone H3 (Abcam, 1:5,000). Membranes were then incubated with 
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peroxidase-labeled secondary antibodies (1:15,000-1:60,000 depending on the primary 

antibody used) and bands were visualized using SuperSignal West Dura substrate. Bands 

were quantified with NIH Image J Software and normalized to GAPDH to control for equal 

loading. The experimenter was not blinded for these experiments.

Chromatin immunoprecipitation (ChIP)

Fresh NAc punches were prepared for ChIP as previously described5,45 with minor 

modifications. Briefly, 2 15-gauge NAc punches per animal (4 animals pooled per sample) 

were collected, cross-linked with 1% formaldehyde and quenched with 2 M glycine before 

freezing at −80°C. Prior to sample sonication, IgG magnetic beads (Invitrogen; sheep anti-

rabbit/mouse) were incubated with either anti-AcH3K9 (rabbit polyclonal ChIP grade, 

Abcam), anti-H3K9me2 (mouse monoclonal ChIP grade, Abcam), anti-HDAC1 (mouse 

monoclonal ChIP grade, Abcam), anti-HDAC2 (mouse monoclonal ChIP grade, Abcam) or 

anti-HDAC3 (mouse monoclonal ChIP grade, Abcam) antibodies overnight at 4°C under 

constant rotation in block solution. Tissue sonication and chromatin shearing were carried 

out as previously described5. Average DNA fragment size in the range of 200–1,000 bps 

was confirmed using Agilent 2100 Bioanalyzer. Following sonication, equal concentrations 

of chromatin were transferred to new tubes and ~5% of the final products were saved to 

serve as input controls. Following washing and resuspension of the antibody/bead 

conjugates, antibody/bead mixtures (~7.0 μg antibody/sample) were added to each 

chromatin sample and incubated for ~16 hours under constant rotation at 4°C. Samples were 

further washed and reverse cross-linked at 65°C overnight and DNA purified using a PCR 

purification kit (QIAGEN). Following DNA purification, samples were used for qPCR 

analysis and normalized to their appropriate input controls as previously described5. Normal 

mouse IgG immunoprecipitations were performed to control for appropriate enrichment of 

signal amplification. See Supplemental Table S1 for promoter primer sequences. The 

experimenter was not blinded for these experiments. The anti-HDAC1, -2, and -3 antibodies 

used here for ChIP have been utilized in prior studies30,32,33. While we demonstrated the 

specificity of each antibody with peptide blocking experiments and western blotting (see 

main text), another important control lacking in the field is demonstrating selective 

immunoprecipitation of each HDAC isoform by its respective antibody. Until such controls 

become feasible technically, data for HDAC ChIPs must be viewed with some caution.

Electrophysiology

Coronal NAc slices (250 μm thick) were cut in ice-cold sucrose artificial CSF (ACSF) (in 

mM): 254 sucrose, 3 KCl, 1.25 NaH2PO4, 10 D-glucose, 24 NaHCO3, 2 CaCl2, and 2 

MgSO4, pH 7.35 (oxygenated with 95% O2 and 5% CO2, 295–305 mOsm). After a 1 h 

recovery at 37°C in ACSF (254 mM sucrose replaced by 128 mM NaCl), 

electrophysiological recordings were performed at 30–32°C in ACSF containing 1 mM 

kynurenic acid to block EPSPs and 1.5 μM tetrodotoxin to block action potentials. Patch 

pipettes (3–5 MΩ resistance) for whole-cell recordings were filled with an internal solution 

containing the following (in mM): 130 cesium chloride, 10 HEPES, 10 phosphocreatine, 10 

EGTA, 2 ATP-Mg, 0.5 GTP, and 1 QX-314 [2(triethylamino)-N-(2,6-dimethylphenyl) 

acetamine] (a Na+ channel blocker), pH 7.4 (280–290 mOsm). The shell of the NAc was 

identified under visual guidance using infrared differential interference contrast video 
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microscopy with a 40× water-immersion objective (Olympus BX51-WI). Whole-cell 

voltage-clamp recordings were performed with a computer-controlled amplifier 

(MultiClamp 700B), digitized (Digidata 1440), and acquired with Axoscope 10.1 (Molecular 

Devices) at a sampling rate of 10 kHz. Only cells with resting membrane potential of −72 to 

−82 mV and that displayed inward rectification were included for analysis. The frequency 

and amplitude of spontaneous IPSCs were analyzed using Minianalysis software 

(Synaptosoft). These experiments employed a blinding procedure.

Statistical analysis

Three-way ANOVAs were used to calculate statistics for locomotor activity of HDAC1fl/fl, 

HDAC2fl/fl, HDAC3fl/fl, and MS-275 treated mice and their controls. Behavioral data for 

these experiments were transformed to square root as in all of these datasets the means were 

proportional to the variance as opposed to the standard deviation. One- and two-way 

ANOVAs were performed to determine significance for all comparisons involving MS-275 

and treatment, including Western blotting, qPCR, ChIP, and electrophysiology experiments. 

Student’s t tests were performed to determine significance for all comparisons involving 

HDAC chromatin immunoprecipitation with corrections for multiple comparisons. The 

Grubbs’ test was employed when appropriate to identify outliers. All experiments were 

carried out 1–3 times and in instances of repeated experiments data replication was 

observed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
HDAC1 in NAc regulates locomotor responses to cocaine. (a, c, e) Cocaine (coc, 10 mg/kg) 

locomotor sensitization in floxed- (a) HDAC1 and (c) HDAC2 mice injected with HSV-

CreGFP or HSV-GFP, and (e) HDAC3 mice injected with AAV-CreGFP or AAV-GFP. All 

data are presented as mean ± s.e.m. (a, c, e) A significant main effect (three-way ANOVA 

on square-root transformed data) of day (a, F3,90 = 11.257, P < 0.0005; c, F3,36 = 26.040, P 

< 0.0001; e, F3,57 = 19.479, P < 0.001) and drug (c, F1,12 = 24.238, P < 0.0001) and 

significant interactions between day and virus (a, F3,90 = 3.007, P = 0.034) and day and drug 

(a, F3,90 = 11.741, P < 0.0005; e, F3,57 = 11.976, P < 0.001) as well as a trend towards a day 

by drug by virus interaction (a, F3,90 = 2.173, P = 0.097) were observed. *P < 0.04 and **P 

< 0.001, Bonferroni post hoc tests. (b, d, f) qPCR validation of (b) HDAC1, (d) HDAC2, 

and (f) HDAC3 knockdown and mRNA expression of other HDACs in the NAc of 

HDAC1fl/fl, HDAC2fl/fl and HDAC3fl/fl mice. *P < 0.05, **P < 0.01 and ***P < 0.0001, 

student’s t test. (For behavioral experiments: N = 4–6/group (saline condition); N = 6–11/

group (cocaine condition). For qPCR validation: N = 6–8/group).
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Figure 2. 
Chronic MS-275 infusion into NAc blocks locomotor responses to cocaine and alters 

repressive histone methylation. (a) Cocaine (10 mg/kg) locomotor sensitization in animals 

receiving continuous intra-NAc infusion of MS-275 or vehicle (Veh) (100 μM). A 

significant main effect (three-way ANOVA on square-root transformed data followed by 

Bonferroni post hoc tests) of day (F3,54 = 3.004, P = 0.037) and significant interactions 

between day and drug (F3,54 = 4.578, P = 0.006) and day and treatment (F3,54 = 3.101, P = 

0.034) were observed. Day by drug by treatment interaction (F3,54= 1.607, P = 0.19). (N = 5 

or 6/group (vehicle treatment); N = 6 or 7/group (MS-275 treatment). (b–d) Global levels of 

H3 acetylation and methylation in NAc after 12 days of continuous treatment with MS-275 

(100 μM) and 24 hour after repeated cocaine (20 mg/kg, seven daily doses). All data 

represented as normalized values to GAPDH (b) A significant main effect (two-way 

ANOVA followed by Bonferroni post hoc tests) of treatment (H3K14ac, F1,22 = 23.20, 

***P < 0.001), (c) a main effect of drug (H3K9ac, F1,24 = 6.252, **P < 0.02), and (d) a 

significant interaction between drug and treatment (H3K9me2, F1,18 = 15.23, P = 0.001) 

were observed (N = 5–8/group). Full-length blots are presented in Supplemental Figure 6. (e 
and f) mRNA expression of H3K9 KMTs and quantitative H3K9ac ChIP in NAc after 12 

days of continuous treatment with MS-275 (100 μM) and 24 hour after repeated cocaine (20 

mg/kg). (e) A significant interaction (two-way ANOVA followed by Bonferroni post hoc 

and planned student’s t tests) between treatment and drug (G9a, F1,27 = 11.11, P = 0.0025; 

SUV39H1- F1,27 = 12.82, P = 0.0013) was observed (N = 7 or 8/group). (f) A significant 

effect (one-way ANOVA followed by Bonferroni post hoc tests) of MS-275 with repeated 
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cocaine on H3K9ac binding to H3K9 KMT promoters (G9a, F2,16 = 8.749, P = 0.0034; 

GLP, F2,16 = 21.01, P < 0.0001; SUV39H1, F2,16 = 9.108, P = 0.0029 was observed (N = 5 

or 6/group). #P = 0.14 (trend), *P < 0.05 and **P < 0.02, ***P < 0.001. All data are 

represented as mean ± s.e.m.
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Figure 3. 
HDAC binding to KMT gene promoters after repeated cocaine. (a–c) Quantitative ChIP for 

HDAC1, 2, and 3 in NAc from animals treated with repeated cocaine at 4 hours after the last 

injection. Significance determined using Student’s t tests. (a) HDAC1 (GAPDH, t13 = 1.520, 

P = 0.1524; G9a, t14 = 2.227, *P≤ 0.05; GLP, t14 = 2.090, *P≤ 0.05; SUV39H1, t12 = 1.735, 

P = 0.108) (N = 7 or 8/group). (b) HDAC2 (GAPDH, t14 = 0.9857, P = 0.341), (G9a, t12 

=0.2604, P = 0.799), (GLP, t11 = 0.3611, P = 0.7249), (SUV39H1, t14 = 1.343, P = 0.2006) 

(N = 5–8/group). (c) HDAC3 (GAPDH, t12 = 1.061, P = 0.3098), (G9a, t12 = 1.624, P = 

0.1303), (GLP, t12 = 0.4761, P = 0.6245), (SUV39H1, t12 = .1775, P = 0.8621) (N = 7/

group). All data are presented as percent input enrichment.
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Figure 4. 
Chronic MS-275 infusion prevents cocaine-induced changes in GABAA receptor subunit 

expression and GABAergic tone in NAc. (a) mRNA expression of GABAA receptor 

subunits (N = 5–8/group) in NAc after 12 days of continuous treatment with MS-275 (100 

μM) and 24 hours after repeated cocaine (20 mg/kg). A significant interaction (two-way 

ANOVA followed by Bonferonni post hoc tests) between treatment and drug for many 

subunits was observed (GABRA1, F1,27 = 16.62, P = 0.004; GABRA2, F1,27 = 8.658, P = 

0.0066; GABRA3, F1,26 = 21.83, P < 0.0001; GABRB2, F1,22 = 21.84, P < 0.0001; GABRG2, 

F1,20 = 6.458, P = 0.0194). (b, c) Quantitative H3K9ac and H3K9me2 ChIP in NAc from 

mice treated with repeated cocaine or chronic MS-275 infusion into NAc with repeated 

cocaine at 24 hours. Data are presented as percent input enrichment (N = 5 or 6/group). (b) 

A significant effect (one-way ANOVA followed by Bonferonni post hoc tests) of MS-275 

with repeated cocaine on H3K9ac binding at GABAA receptor subunit promoters (GABRA1, 

F2,16 = 26.02, P < 0.0001; GABRA2, F2,16 = 11.37, P = 0.0012; GABRA3, F2,14 = 5.841, P = 

0.0169; GABRB3, F2,16 = 14.39, P = 0.0004; Oct-4, F2,12 = 3.038, P = 0.0932) was 

observed. (c) A significant difference (one-way ANOVA followed by Bonferonni post hoc 

tests) in H3K9me2 binding at GABAA receptor subunit promoters (GABRA1, F2,16 = 4.902, 

P = 0.0243; GABRA2, F2,15 = 3.910, P = 0.0468; GABRA3, F2,16 = 10.77, P = 0.0015; 

GABRB3, F2,15 = 14.83, P = 0.0004; Oct-4, F2,13 = 1.365, P = 0.2954) was observed. (d) 
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IPSCs from NAc medium spiny neurons from mice treated with chronic saline or cocaine, 

and exposed to intra-NAc infusion of vehicle or MS-275 (N = 5–8/group). A significant 

interaction (two-way ANOVA followed by Bonferonni post hoc tests) between treatment 

and drug was observed for the frequency of spontaneous IPSCs (F1,23 = 14.43, P = 0.0009). 

*P < 0.05 and **P < 0.01. All data presented as mean ± s.e.m.
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