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Mechanism of error-free replication across benzo
[a]pyrene stereoisomers by Rev1 DNA polymerase
Olga Rechkoblit 1, Alexander Kolbanovskiy2, Hannah Landes1, Nicholas E. Geacintov2 & Aneel K. Aggarwal1

Benzo[a]pyrene (BP) is a carcinogen in cigarette smoke which, after metabolic activation,

can react with the exocyclic N2 amino group of guanine to generate four stereoisomeric

BP-N2-dG adducts. Rev1 is unique among translesion synthesis DNA polymerases in

employing a protein-template-directed mechanism of DNA synthesis opposite undamaged

and damaged guanine. Here we report high-resolution structures of yeast Rev1 with three BP-

N2-dG adducts, namely the 10S (+)-trans-BP-N2-dG, 10R (+)-cis-BP-N2-dG, and 10S ( − )-cis-

BP-N2-dG. Surprisingly, in all three structures, the bulky and hydrophobic BP pyrenyl residue

is entirely solvent-exposed in the major groove of the DNA. This is very different from the

adduct alignments hitherto observed in free or protein-bound DNA. All complexes are well

poised for dCTP insertion. Our structures provide a view of cis-BP-N2-dG adducts in a

DNA polymerase active site, and offer a basis for understanding error-free replication of the

BP-derived stereoisomeric guanine adducts.
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Tobacco smoking is directly associated with a majority of
lung cancer cases in the United States and is among the few
firmly established links between the etiology and the

manifestation of this disease1–4. Benzo[a]pyrene (BP) is one of
the most potent and extensively studied carcinogens in cigarette
smoke5. It is also ubiquitous in the human environment since BP
is generated as a result of incomplete combustion of organic
matter, such as fossil fuels and wood, and is present in automobile
exhaust fumes and charcoal-grilled foods6–8. Exposure of ani-
mals9, 10 and human cells11 to BP gives rise to G to T transversion
mutations, which are also observed with high frequencies in
smoking-related lung cancers2, 3 and other malignancies4.

The carcinogenicity of BP derives from its metabolic activation
by the cytochrome P450 pathway that generates reactive diol
epoxide intermediates that react covalently with DNA12. More
specifically, the metabolic activation of BP in human cells gives
rise to a pair of mirror image BP diol epoxides, the (+)-anti-
BPDE and (−)-anti-BPDE enantiomers (Fig. 1a), each of which
reacts predominantly with the exocyclic N2 amino group of
guanine by trans- and cis- epoxide ring opening. This leads to
four possible stereoisomeric BP-N2-dG adducts (Fig. 1b). A
minor fraction of adducts are formed by reactions of the diol
epoxides with the N6-amino groups of adenine13. The highly
mutagenic and carcinogenic 10S (+)-trans-BP-N2-dG adduct is
the predominant steroisomer found in human cells treated with
BP (~ 90%)13, and is more resistant to removal by the nucleotide
excision repair (NER) pathway than the (+)-cis-adducts and
(−)-cis-adducts14, 15.

Unrepaired BP-N2-dG adducts severely impede high-fidelity
DNA polymerases that replicate genomic DNA16, 17. Never-
theless, experiments in mammalian cells with site-specifically
modified (+)-trans-BP-N2-dG oligonucleotides embedded in
gapped plasmid vectors demonstrate that the adduct is bypassed
with ~ 50% efficiency18, 19. Such replication obstacles can be
handled by specialized, lower fidelity translesion DNA synthesis
(TLS) polymerases in the S phase of the cell cycle to ensure
continuous progression of the replisome20. Alternatively, the

damaged DNA site can be skipped to leave a single-stranded
DNA gap to be filled in later in the G2 phase of the cell cycle.

Humans possess four Y-family TLS polymerases (Pol η, Pol ι,
Pol k, and Rev1) while yeast has two (Pol η and Rev1)21. Pol κ
and Rev1, can efficiently and preferentially insert the correct
cytosine base opposite the BP-N2-dG adducts in vitro22–26, while
Pol η is proficient in incorporating mutation-inducing adenine
base23, 27, and Pol ι is blocked by the adducts23. In addition, the
B-family TLS Pol ζ, a “universal extender”, is able to elongate
from either the correct or incorrect bases inserted by other
polymerases (including Rev1) across the lesion site28–30.

In cellular studies, mouse cells deficient in Pol κ have reduced
cell survival and accumulate more mutations after exposure to
BPDE31. In addition, Pol κ was required for recovery from BPDE-
induced S-phase checkpoints32. Rev1 was found to accumulate in
nuclear foci upon exposure to BPDE In human cells33, while Pol
ζ’s importance was documented in human Nalm-6-MSH +
cells34. Quantitative assessments of the impact of TLS poly-
merases on the bypass of ( + )-trans-BP-N2-dG-containing gap-
ped plasmids were studied by siRNA-induced knockdown of both
Pol κ and Pol ζ in human U2OS cells. These experiments revealed
that 42% of the TLS bypass events were error-free29, suggesting
that another TLS polymerase with the ability to insert the correct
cytosine base opposite the BP-N2-dG adducts was most likely
involved.

From in vitro biochemical and structural studies Rev1 is a
plausible candidate. The structures of yeast and human Rev1
catalytic cores revealed a novel protein-template-directed
mechanism of DNA synthesis35, 36, wherein the template dG or
an N2-dG adduct is evicted from the DNA helix and an arginine
makes specific hydrogen bonds with the Watson–Crick (W–C)
edge of the incoming dCTP. Rev1 is thus unique among TLS
polymerases in its protein-template-directed mechanism of DNA
synthesis and its specificity in incorporating C opposite template
dG. The Rev1 catalytic activity was shown to be required in vivo
for TLS opposite N2-dG-derived lesions such as those generated
by 4-nitroquinoline-1-oxide (4-NQO)37, as well as 1,N6-
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Fig. 1 Metabolic activation of benzo[a]pyrene (BP) and conformations of stereoisomeric BP-N2-dG adducts. a Metabolic activation of BP by the
cytochrome P450 pathway to (+)-anti-BPDE ((+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene), and its mirror image enantiomer
(−)-anti-BPDE ((−)-7S,8R-dihydroxy-9R,10S-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). b Stereoisomeric BP-N2-dG adducts. These are covalent products
derived from the binding of (+)-anti-BPDE or (−)-anti-BPDE at its C10 position to the N2-2′-deoxyguanosine residues in DNA by trans- and cis- opening of
the epoxide ring of BPDE. The (+) and (−) designations denote the mirror image relationships between the absolute configurations of the hydroxyl -OH
groups at the C7, C8, and C9 chiral carbon centers. The absolute configuration of the adducts at the C10 carbon atom is 10S for the (+)-trans-adducts and
(−)-cis-adducts, and 10R for the (−)-trans-lesions and (+)-cis-lesions. The linkage geometry between the BP and the N2 amino group of guanine is defined
by the torsion angles α′ and β′ as follows: α′, N1(dG)-C2(dG)-N2(dG)-C10(BP), and β′, C2(dG)-N2(dG)-C10(BP)-C9(BP). The relative percentage of each
adduct formed in human cells is (+)-trans, 89%; (−)-trans, 7%; (+)-cis, 3%, and (−)-cis, 1%13
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ethenoadenine adducts38 and abasic sites39–41. In addition, the
misincorporation frequencies of Rev1 opposite the 10S (+)-trans-
and 10R (−)-trans-BP-dG adducts are low and similar to those
observed with unmodified template dG (~ 10−2 to 10−4)24.

Detailed NMR studies have revealed dramatically different
alignments of the covalently attached carcinogen moieties in the
different stereoisomeric BP-N2-dG adducts in free DNA duplexes
in aqueous solution. In case of the trans-BP-N2-dG adducts, W–C
pairing of the modified guanine with the partner cytosine base is
maintained42, 43, and the BP moiety is situated within the minor
groove of the DNA duplex. In the case of the 10S (+)-trans-
adduct42, the BP moiety points toward the 5′-end of the modified
template strand42, while in the case of the 10R (−)-trans-adduct it
points toward the 3′-end43. In the case of the 10R (+)-cis-adducts
and 10S (−)-cis-adducts, the guanine and partner cytosine bases
are extruded from the helix, with the hydrophobic BP moiety
intercalating within the duplex DNA in place of the displaced G:C
base pair44, 45. The BP moieties of the two cis-adducts are again
oriented differently, toward the major and minor grooves of
DNA, respectively. Altogether, the stereochemistry of each BPDE
adduct determines how it is accommodated in a DNA polymerase
active site.

Crystal structures of DNA polymerases with BP-N2-dG
adducts are limited to the 10S (+)-trans-stereoisomeric adduct.
For example, structures of both A-family Pol I from Bacillus
stearothermophilus (BF Pol I)46 and Y-family human Pol κ47, 48
with 10S (+)-trans-BP-N2-dG show that the BP moiety is aligned
in the minor groove of the bound DNA, in a manner similar to
that anticipated from the NMR structure of the same (+)-trans-
BP-N2-dG in free DNA42. By contrast, in structures of Y-family
archeal Dpo4 with 10S (+)-trans-BP-N2-dG, the adduct is flipped
out the DNA helix, resulting in a non-instructional gap in the
template strand49.

We present here high-resolution structures of yeast Rev1 with
not only the 10S (+)-trans-BP-N2-dG, but also the 10R (+)-cis-
BP-N2-dG and 10S (−)-cis-BP-N2-dG adducts as the template
bases. Together, these structures provide detailed comparisons of
the accommodations of the different BP-N2-dG stereoisomeric
adducts within the confines of a DNA polymerase active site.
Surprisingly, the bulky and hydrophobic BP pyrenyl moiety is
entirely solvent-exposed in the major groove of the
template–primer DNA helix. This structural alignment is fun-
damentally different from the ones observed in free DNA as well
as previous polymerase-DNA complexes. Furthermore, the
structures reveal an opposite orientation of the BP moiety in the
10S (+)-trans- and 10R (+)-cis-adducts, imposed by the opposite
absolute configurations of the C10 carcinogen-DNA linkage site.
We also find that the 10S (−)-cis- adduct does not mirror the
alignment of its 10R (+)-cis-enantiomer, and thus breaking the
“rule” of opposite orientations of the 10S and 10R stereoisomeric
BP-N2-dG adducts. Notably, all three complexes are reaction-
ready and well poised for dCTP insertion.

Results
Preparation of BP-N2-dG-modified DNA oligonucleotides.
Site- and stereo-specifically modified 17-mer DNA oligonucleo-
tides with single (+)-trans-BP-N2-dG, (−)-trans-BP-N2-dG,
(+)-cis-BP-N2-dG, or (−)-cis-BP-N2-dG adducts (Fig. 1b) were
generated by the direct synthesis method50 using racemic
(±)-anti-BPDE. Briefly, a 17-mer DNA oligonucleotide with a
single G base at the 5th position from the 5′-end (5′-CATCGC-
TACCACACCCC-3′) was incubated with BPDE. The BP-DNA
adducts were separated from the unreacted oligonucleotide and
fully hydrolyzed to BP tetraols by HPLC methods (Supplemen-
tary Fig. 1a). The mixture of adducted oligonucleotides was than

subjected to further separation of components by HPLC methods
(Supplementary Fig. 1b and c). To characterize the stereo-
chemistry of the covalently bound BP-N2-dG adducts in the
different modified oligonucleotides, ~ 34 μg of each purified
sample was subjected to enzymatic hydrolysis to the BP-N2-dG
nucleoside levels and the circular dichroism (CD) spectra of the
hydrolyzed adducts (Supplementary Fig. 1d and e) was compared
to the previously described standards50.

Structure determination. We originally sought to co-crystallize
the yeast Rev1 polymerase catalytic core with DNA templates
containing each of the four stereoisomeric BP-N2-dG adducts.
We succeeded in co-crystallizing the enzyme with three of the
four stereoisomeric adducts, namely the 10S (+)-trans-BP-N2-dG,
10R (+)-cis-BP-N2-dG, and 10S (−)-cis-BP-N2-dG adducts
(Fig. 1b; Supplementary Fig. 1). The 17-mer templates containing
the adducts were paired with a 12-mer primer terminated with
2′,3′-dideoxyguanine (5′-GGGGTGTGGTAGdd-3′), and with
dCTP as the incoming nucleotide. The complex containing the
10R (−)-trans-BP-N2-dG adduct failed to produce crystals despite
the fact that Rev1 has similar dCTP incorporation efficiency
opposite both the 10S (+)-trans-BP-N2-dG and 10R (−)-trans-BP-
N2-dG adducts24. The structure of the 10R (+)-cis-BP-containing
complex was solved by the molecular replacement method using
the Rev1 complex with an unmodified DNA and dCTP (PDB ID:
2AQ4)35 as a search model and refined at 1.92 Å resolution and
Rwork/free 17.6%/21.4%, respectively. The structure of the 10S
(+)-trans-BP-dG-containing ternary complex was obtained by
molecular replacement using the 10R (+)-cis-BP complex as a
search model and refined to 1.85 Å resolution and Rwork/free

17.0%/20.8%, respectively. The complex containing the 10S
(−)-cis-BP-N2-dG was refined to 2.25 Å resolution and Rwork/free

17.0%/21.6%. The crystal data, together with the data collection
and refinement statistics, are summarized in Table 1.

Table 1 X-ray data collection and refinement statistics

10S (+)-trans-BP-
dG

10R (+)-cis-BP-dG 10S (−)-cis-BP-dG

Data collection
Space group P212121 P21212 P212121
Cell dimensions:
a, b, c (Å) 64.0, 64.9, 130.7 62.5, 180.4, 54.6 63.3, 65.5, 131.7
α, β, γ (°) 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0
Resolution range (Å)a 45–1.85 (1.88–1.85) 50–1.92 (1.95–1.92) 45–2.25 (2.29–2.25)
Rmerge (%) 6.6 (45.2) 6.3 (65.0) 10.3 (72.9)
I/σI 26.3 (2.2) 20.2 (1.4) 18.6 (2.2)
Completeness (%) 99.7 (95.5) 95.3 (92.9) 100 (100)
Redundancy 7.2 (4.2) 5.8 (4.4) 7.4 (6.9)

Refinement
Resolution range (Å) 45–1.85 45–1.92 45–2.25
No. reflections 44,991 43,093 25,424
Rwork/Rfree 17.0/20.8 17.6/21.4 17.0/21.6
No. atoms
Protein 3,490 3,481 3,488
DNA 610 615 527
Ligand (dCTP) 28 28 28
Ligand (other) 75 72 59
Ion (Mg2+) 4 4 4
Water 340 311 161
B-factors
Protein 24.0 31.5 37.4
DNA 32.0 38.3 51.6
Ligand (dCTP) 16.8 20.0 28.5
Ligand (other) 39.5 47.9 58.7
Ion (Mg2+) 22.8 25.0 31.9
Water 35.4 40.9 41.4
R.m.s. deviations
Bond length (Å) 0.009 0.010 0.011
Bond angles (°) 1.39 1.39 1.47

aValues in parentheses are for highest-resolution shell
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Structure of the 10S (+)-trans-BP-dG ternary complex. Rev1
adopts a very similar conformation to that when it binds
unmodified G (Fig. 2a; r.m.s. deviation of 0.76 Å for 433 Cαs).
That is, the enzyme embraces the template–primer DNA with its
palm (residues 356–365, 438–536), fingers (residues 366–437),
and thumb (537–603) domains as well as the PAD (polymerase
associated domain; residues 621–738), which is unique to Y-
family polymerases (Fig. 2a)35. An α-helical substructure at the N
terminus, an N-digit (residues 305–355) augments this embrace
and makes critical interactions with the incoming dCTP and the
templating base. The active site residues (Asp362, Asp467, and
Glu468) are located on the palm domain to catalyze the

nucleotidyl transfer reaction (Fig. 2b). The fingers domain
interacts with the incoming dCTP and the 5′-template overhang,
while an extra long loop of the PAD, a G loop, interacts with the
base of the modified guanine. The thumb and the PAD are
positioned on opposite sides of the DNA duplex and are con-
nected by a long helical linker (Fig. 2a). The incoming dCTP does
not pair with templating 10S (+)-trans-BP-dG; instead, Arg324
(from the N-digit) acts as a “surrogate” residue and makes a set of
complementary hydrogen bonds with the cytosine base of the
incoming dCTP (Fig. 2b) as observed previously in the unmo-
dified structure35.

The modified dG is evicted from the DNA helix by Leu325
from the N-digit (Fig. 2b). The base rotates ~ 90° away from the
minor groove so that the N2 amino group now faces the major
groove of the DNA duplex (instead of its usual placement in the
minor groove). Consequently, the BP moiety is located in the
major groove of the DNA. The stereochemistry of the BP moiety
is well defined in the 1.85 Å electron density map and reveals an
orientation that is almost perpendicular to the plane of the
guanine base (torsion angle β′ C2(dG)-N2(dG)-C10(BP)-C9(BP)
is −75.9°) (Fig. 2c and Supplementary Fig. 2a). The low average
B-factors for atoms of the BP and the modified dG moieties (32.6
and 20.8 Å2, respectively) are close in value to the B-factors of the
atoms of protein-bound portion of the DNA duplex (24.5 Å2) and
indicate the well-ordered alignment of the adduct. Interestingly,
the BP pyrenyl ring system points towards the
5′-direction of the modified strand (Fig. 2b and Supplementary
Fig. 2a). This is made possible by the modified dG base tilting by
~ 44° in the 3′-direction to create room for the BP moiety to
extend in the opposite direction, as shown in Fig. 3a, b.
Furthermore, the BP moiety is rotated away from the W–C edge
of dG, wherein the benzylic ring torsion angle α′ (N1(dG)-C2
(dG)-N2(dG)-C10(BP) is 163.8° (Figs. 2b, c). The hydroxyl groups
at the C9 (C9-OH) and C8 (C8-OH) of the BP face away from the
W–C edge of dG. The overall conformation of the BP-base
linkage is in the most energetically favorable region (α′= 180±
40° and β′= -90± 40°) as calculated for an isolated (+)-trans-BP-
dG nucleoside51.

Despite the tilt in the dG base to make room for the BP moiety,
it maintains (as in the unmodified Rev1 complex structure)
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Fig. 2 The 10S (+)-trans-BP-dG-modified Rev1 ternary complex. a Overall
structure of the complex; the palm, fingers, thumb and PAD domains are
shown in cartoon representation in cyan, yellow, light orange, and green,
respectively. The linker joining the thumb and the PAD is shown in pink.
The α-helical N-digit of Rev1 is shown in dark blue. The DNA
template–primer duplex is shown in gray sticks with the template (+)-trans-
BP-N2-dG in orange and incoming dCTP residue in red. The Mg2+ ions are
represented as magenta spheres. b Alignment of the 10S (+)-trans-BP-N2-
dG adduct in the Rev1 active site. The 10S (+)-trans-BP moiety is placed in
the solvent-filled space between the PAD and the template–primer DNA
helix. Asp362, Asp467, and Glu468 are the catalytic residues. Modified
template dG and incoming dCTP partner with segments of Rev1 and not
with each other. Arg324 makes hydrogen bonds with the base of dCTP,
Leu325 pushes modified template dG out of the DNA helix and Leu328 is
partially stacked on top of the 3′-terminal primer base. G-loop residues
Met685, Gly686 and Lys681 as well as Trp417, Asp399, and Gly415
interact with the extrahelical template dG. The 3′-terminal and the adjacent
residue of the primer strand have double conformations of their phosphate
backbone reflecting the mobility of the 3′ terminus in the Rev1 complex. c A
simulated annealing Fo − Fc omit map (contoured at 3.0σ-level at 1.85 Å
resolution and colored in blue) showing the clear electron density for the BP
moiety and the modified dG. The dG and the BP C7-OH hydroxyl group are
positioned above the BP benzylic ring, while the C9-OH and C8-OH
hydroxyl groups are below, thus defining the conformation and the
expected stereochemistry of the 10S (+)-trans BP benzylic ring
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hydrogen bonds between the N7 and O6 atoms at its “Hoogsteen
edge” and the main-chain amides of Met685 and Gly686 of the G
loop (Fig. 3a, b). However, a number of water-mediated contacts
are lost, including a water-mediated interaction between the N3
atom and the side chains of Asp399, Trp417, and Lys681, a water
bridge between the O6 atom and the backbone NH of the Lys681,
as well as a two-water molecule bridge between the N2 group and
the backbone carbonyl of Gly415. Interestingly, a molecule of
glycerol (shown in gray on Fig. 3b) appears to take place of some
of the water molecule observed in the unmodified structure
(Fig. 3a).

Structure of the 10R (+)-cis-BP-dG ternary complex. In contrast
to the 10S (+)-trans-BP-dG ternary structure, the BP moiety is
directed towards the 3′-end of the template strand (Figs. 4a, b).
This likely reflects the fact that the absolute configuration of the
C10 DNA linkage of the 10R (+)-cis-BP-dG adduct is a mirror of
the 10S (+)-trans-BG-dG adduct (Fig. 1b). The conformations of
the 10R (+)-cis-BP and modified dG moieties are well ordered as
indicated by the 1.92 Å electron density map (Fig. 4c and Sup-
plementary Fig. 2b) and low B-factors (39.9 and 24.9 Å2,
respectively) that are close in value observed for the Rev1-bound
portion of the DNA (33.0 Å2). The torsion angle β′ (C2(dG)-N2

(dG)-C10(BP)-C9(BP)) is 111.8° (Fig. 4c), as compared to −75.9°
in the 10S (+)-trans-BP-dG ternary structure (Fig. 2c). Conse-
quently, the benzylic ring of the 10R (+)-cis-BP residue is now
above the guanine base in close proximity to the fingers domain
of Rev1 (Fig. 4b). Moreover, the base of the modified dG remains
untilted, and many of the direct and water-mediated hydrogen
bonds observed in the structure with unmodified dG are present
(Figs. 3a and 5a). This includes hydrogen bonds between the N7
and O6 atoms at the Hoogsteen edge of the base and the main-
chain amides of Met685 and Gly686 (Fig. 5a), and water-
mediated bonds between the O6 of the base and Lys681. Notably,
the C9-OH displaces the highly coordinated water molecule and
forms direct hydrogen bonds with the Rev1 side chains of Asp399
and Trp417 (Fig. 5a). There is also a water-mediated inter-
molecular bridge between the N1 of dG and the C8-OH hydroxyl
of the BP moiety.

Although, the pyrenyl ring system points in opposite directions
in the 10S (+)-trans- and 10R (+)-cis-BP-dG adducts, they occupy

relatively the same physical space in the Rev1 active site, between
the PAD and the fingers domain (Fig. 5b). Also, in both cases the
pyrenyl ring system is directed away from the W–C edge of the
dG (torsion angle α′= 175.3°). However, the C9-OH and C8-OH
hydroxyl groups are oriented toward the W–C edge of the dG
residue due to the intrinsic stereochemistry of the cis-adducts that
places the C9 and C8 hydroxyls on the same side of the benzylic
ring as the guanine base (Fig. 4c). This conformation of the 10R
(+)-cisadduct is within the most energetically favorable region
calculated for this nucleoside (α′= 185± 35° and β′= 100± 30°)51.
Otherwise, the overall structures of the 10R (+)-cis-BP-dG-
modified and 10S (+)-trans-BP-dG-modified complexes are
similar (r.m.s. deviation= 0.97 Å for 433Cαs) (Figs. 2a and 4a).

Structure of the 10S (−)-cis-BP-dG ternary complex. In contrast
to the 10S (+)-trans-BP-dG and 10R (+)-cis-BP-dG structures
described above, the electron density for the BP moiety is not well
defined in the 10S (−)-cis-BP-dG structure (Fig. 5c). However, the
electron density for the dG base is well defined and shows it in an
untilted orientation, similar to the one observed in the 10R
(+)-cis-BP complex. Consequently, there is no room for the bulky
BP pyrenyl ring system to reside above the guanine base to mirror
the 10R (+)-cis-BP adduct alignment. Thus, the 10S (−)-cis-BP
pyrenyl ring system most likely points toward the 3′-direction of
the modified strand, where there is enough space for an align-
ment similar to the one acquired by the 10R (+)-cis-BP moiety
(Fig. 5a). This assumption is consistent with the residual electron
density observed below the guanine base. Such an orientation
would place the 10S (−)-cis-BP-dG into a less energetically
favorable conformational region (α′= −10± 40° and β′= −100±
30°)51 with the dG N1 edge and benzylic BP edge closer to each
other. The higher energetic cost of such orientation stems from
the stereo crowding between the N1 edge of guanine and the bay
region of the aromatic BP pyrenyl moiety. While computationally
feasible, BP-dG conformations in this region of the potential
energy surface have hitherto not been detected experimentally.
Thus, this structure provides experimental evidence that the BP
moieties of the 10R (+)-cis-BP-dG and 10S (−)-cis-BP-dG adduct
pair can be oriented the same way and not in an approximate
mirror arrangement. The observed disorder in the electron den-
sity map in the case of the 10S (−)-cis-BP moiety is, probably, due

PAD

Trp417

Lys681

Met685

Gly686 10S (+)-trans-BP

dG

Asp399Fingers

Gly415

PAD

Trp417

Lys681

Met685

Gly686

Unmodified dG

Asp399Fingers

Gly415

Glycerol

G-loop
G-loop 10

9

8 7

a b
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to the BP residue sampling the large number of possible con-
formations in a search for a more favorable alignment within the
Rev1 complex crystal.

Metal ions in the active site. In all three structures, there are
three Mg2+ ions (Mg2+A, Mg2+B, and Mg2+C) in the active site
(Fig. 6). Mg2+A, Mg2+B are analogous to the two metal ions
present in high fidelity and TLS polymerases52. Mg2+C has an
octahedral geometry with short ligation distances and is coordi-
nated by the two non-bridging oxygen atoms of the α- and
γ-phosphates of dCTP, a carboxylate oxygen of Asp362 and three
waters. A similar Mg2+C ion has been observed in the active site
of high-fidelity Pol δ53, and may facilitate dCTP binding to the
active site and assist in the leaving of the pyrophosphate. This
Mg2+C ion differs from the transient product-associated ion that
binds between the α- and β-phosphates of dNTP during phos-
phodiester bond formation in Pol η54 and Pol β55 complexes. A
fourth Mg2+ ion (Fig. 2a) is observed bridging the phosphate
group of the primer base next to the primer terminus and the
loop of the thumb domain. An analogous entity has been pre-
viously assigned as a water molecule in the yeast
Rev1 structures35, 56 and as a Mg2+ ion in the human Rev1
complex36.

Discussion
We show here that Rev1 is remarkably well-adapted for the error-
free bypass of 10S (+)-trans-BP-N2-dG, 10R (+)-cis-BP-N2-dG,
and 10S (−)-cis-BP-N2-dG stereoisomeric adducts. The ability of
Rev1 to evict these bulky adducts from the DNA helix and to
position Arg324 as the surrogate protein template residue allows
for the incorporation of a correct C opposite these stereoisomers,
consistent with the previous in vitro studies24. Strikingly, the BP
moiety in each case is pushed into the more capacious major
groove side of the DNA, where it is solvent-exposed. This posi-
tioning of the BP moiety in the DNA major groove differs fun-
damentally from the configuration in free DNA. From solution
NMR studies of BP lesions within B-DNA57, the 10S (+)-trans-
adducts and 10R (−)-trans-adducts reside in the minor groove,
while the 10R (+)-cis-adducts and 10S (−)-cis-adducts adopt an
intercalative conformation where the pyrenyl ring system dis-
places the dG:dC base pair and assumes an intercalated con-
formation44, 45. Moreover, in free DNA, one face of the
hydrophobic pyrenyl ring system is shielded from solvent by van
der Waals interactions with the DNA backbone (10S (+)-trans-
adducts and 10R (−)-trans-adducts), while both faces are shielded
by stacking between adjacent bases within the DNA helix ((+)-cis-
adducts and 10S (−)-cis-adducts). By contrast, in the Rev1 active
site, both faces of the hydrophobic pyrenyl ring system are
solvent-exposed (Fig. 2b). The Rev1 PAD and fingers domain, as
well the DNA sugar-phosphate backbone, are too far away to
interact directly with the pyrenyl ring system in all three
structures.

Although the 10S (+)-trans-BP-N2-dG adduct differs in how it
is accommodated in the Rev1 active site versus free DNA, the
torsion angles α′ and β′ defining the local conformation of the
carcinogen-DNA linkage site (Fig. 1b) are similar in both cases
and are in the most favorable range for a 10S (+)-trans-BP-dG-
modified nucleoside, namely α′= 180± 40°, β′= -90± 40°51.
This similarity in α′ and β′ torsion angles partly underlies the fact
that the BP pyrenyl ring system points towards the 5′ end of the
modified strand in both the Rev1 active site and in free DNA
(Fig. 2b). The 10S ( + )-trans-BP-N2-dG adduct in this favorable
energy region has also been captured in the active sites of several
other DNA polymerases, including BF Pol I46, archeal Dpo449,
and human Pol κ47, 48. However, the overall adduct alignments in
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Fig. 4 The 10R (+)-cis-BP-N2-dG–modified Rev1 ternary complex. a Overall
structure of the complex. The coloring scheme and the details shown are as
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10R (+)-cis-BP-N2-dG adduct in the Rev1 active site. The 10S (+)-trans-BP
moiety is positioned in the solvent-filled space between the PAD and the
template–primer DNA helix. c A simulated annealing Fo−Fc omit map
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stereochemistry of the 10R (+)-cis BP benzylic ring
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these complexes are strikingly distinct from the one in the Rev1
complex. In BF Pol I and Pol κ, the BP moiety lies in the minor
groove and is directed toward the 5′ of the template strand,
adopting the conformations similar to the ones observed in the
free DNA in solution44, 57. In these structures, the BP moiety is
protected from the solvent with one face of the pyrenyl ring
system packed against the protein and the other against the DNA
backbone. Whereas, in Dpo4, the BP-dG adduct is flipped out the
DNA helix toward the minor groove and inserted into a solvent-
protecting cleft between the fingers and the PAD domains,
resulting in a non-instructional gap in the template strand.
Interestingly, the structure of a base excision repair polymerase β
in complex with the N2-dG adduct of the benzo[c]phenanthrene
(BPh) diol epoxide also shows the adduct in a similar con-
formation as in free DNA58.

The 10R (+)-cis-BP-dG and 10S (−)-cis-BP-dG ternary com-
plex structures presented here show the cis-adducts in the con-
fines of a DNA polymerase active site. The intercalative
conformation of these adducts in free DNA has been ascribed to
the C9-OH and C8-OH hydroxyl groups pointing inward toward
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the BP moiety below the dG base
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the DNA backbone, which lends to an already crowded situation
in the minor groove of DNA51. We show here that the cis-adducts
can occupy the major groove when bound to Rev1 (Fig. 5a, c) so
that the C9-OH and C8-OH hydroxyl groups are far-removed
from the neighboring bases. The torsion angles α′ and β′ for the
10R (+)-cis-BP-dG carcinogen-base linkage in the Rev1 active site
are 175° and 112°, respectively, as compared to 160° and 136° in
the free DNA44. Thus, despite very different conformations, the
torsion angles are in a similar range, as well as within the most
stable potential energy surfaces of the 10R (+)-cis-BP-modified
nucleoside51. This supports the idea that the intercalative
conformation in free DNA is dictated less by the BP-dG linkage
site α′ and β′ torsion angles and more by changes in DNA
backbone torsion angles in the nucleotides adjacent to the adduct
residues. Curiously, the BP moiety appears to adopt multiple
conformations in our 10S (−)-cis-BP-dG ternary complex struc-
ture. These multiple conformations may stem from the fact that
they appear to be centered on less favorable portion of the
potential energy surface, namely α′= −10± 40°51. Indeed, this
allows for the BP pyrenyl aromatic ring system of the 10S (−)-cis
adduct to point away from the finger domain of Rev1 and toward
the 3′-end of the template as observed in the case of the 10R
(+)-cis-BP stereoisomeric adduct. By contrast, when the 10S
(−)-cis-BP-dG adduct structure is modeled with the more favor-
able torsion angles of 185± 35° and −100± 30°, the pyrenyl rings
point into opposite directions resulting in severe steric clashes
with the protein backbone of Ser398 and Asp399 and side chains
of Asp399 and Trp417.

Despite strong biochemical and structural data demonstrating
the ability of Rev1 to accommodate and bypass BP-dG adducts
in vitro, the role of Rev1 in BP-dG bypass in vivo remains to be
fully realized. In addition to its catalytic function, Rev1 also has a
scaffolding function whereby its C-terminus can coordinate TLS
via interactions with other TLS polymerases59–62. In budding
yeast, the Rev1 catalytic activity has been shown to be required
in vivo for TLS across N2-dG-derived lesions such as 4-
nitroquinoline-1-oxide (4-NQO)37, as well as 1,N6-ethenoade-
nine adducts38, but in human cells the scaffolding function of
Rev1 appears to play an important role63, 64. The structures of the
catalytic cores of human and yeast Rev1 are very similar36.
The main difference is the presence of a hydrophobic “flap” on
the pocket that holds the template G base, which if anything,
appears to facilitate BP-N2-dG lesion bypass in vitro24 (Supple-
mentary Fig. 3). Taken together, the structures we present here
provide a basis for further studies to dissect the relative con-
tributions of the Rev1 catalytic and scaffolding functions in BP-
N2-dG lesion bypass.

Methods
Preparation of the BP-N2-dG-modified 17-mer DNA templates. Site- and
stereo-specifically modified 17-mer DNA oligonucleotides with single (+)-trans-
anti-BP-N2-dG, (−)-trans-anti-BP-N2-dG, (+)-cis-anti-BP-N2-dG, or (−)-cis-anti-
BP-N2-dG lesions were generated by a direct synthesis method65 using racemic
(± )-anti-BPDE obtained from the National Cancer Institute Carcinogen Refer-
ence Standard Repository (currently available from MRIGlobal Chemical Carci-
nogen Repository). The procedures used for the synthesis and adduct purification
and the methods of verification of adduct stereochemistry were similar to those
described previously for an 11-mer sequence50. Briefly, ~ 83.8 mg (~ 2500 OD260

units) of the 17-mer oligonucleotide 5′-CATCGCTACCACACCCC-3′ (Integrated
DNA Technologies) were dissolved in 10 ml of triethylamine acetate (TEAA)-
sodium acetate pH 11 buffer. Racemic BPDE dissolved in 2 ml of tetrahydrofuran
was added to a DNA solution in the molar ratio of BPDE to DNA 2:1. The mixture
was allowed to react in darkness at + 4 °C temperature with gentle mixing for one
week to ensure complete reaction. The products in the reaction mixture were
separated by HPLC using a PRP-1 polymeric HPLC preparative column (Hamil-
ton). The HPLC conditions employed were a linear 10–30% acetonitrile/50 mM
TEAA pH 7.0 buffer gradient in 60 min. A UV detector (wavelength set at 254 nm)
and a fluorescence detector (emission wavelength= 400 nm, excitation wavelength
= 343 nm) were used to monitor the elution profiles. A typical elution profile is

shown in Supplementary Fig. 1a. The unmodified oligonucleotide elutes first
(at ~ 16–24 min), followed by the crude mixture of BP-DNA adducts dominated
by BP-N2-dG adducts (collected at ~ 26–35 min) and by a mixture of minor
BP-N6-dA adducts (at ~ 35–45 min), which are characterized by higher fluores-
cence intensities than the BP-N2-dG adducts. Fully hydrolyzed BP tetrol (BPT) was
washed from the column with 80% acetonitrile (at ~ 50 min). After collection, the
BP-N2-dG adduct mixture was vacuum dried, re-dissolved in water and further
purified by HPLC in several injection steps with 10–20% acetonitrile/50 mM TEAA
pH 7.0 buffer gradient in 60 min on C18 (ACE) column Supplementary Fig. 1b.
Each elution peak was collected separately, combined with the corresponding peak
from the other injection steps and vacuum dried. The purity check of Peak1 is
shown in Supplementary Fig. 1c. Furthermore, the BP-N2-dG adducts were
desalted with SlideSlide-A-Lyzer Dialysis Cassettes (ThermoFisher). To char-
acterize the stereochemistry of the BPDE linkage, ~ 34 μg of each purified adducted
17-mer was subjected to enzymatic hydrolysis to the BP-N2-dG-nucleoside levels.
The stereochemistry was assigned based on the circular dichroism (CD) spectra of
the hydrolyzed adducts (Supplementary Fig. 1d, e) and the previously described
standards50. The BP-N2-dG 17-mer yields were ~ 1.0 mg in the case of the
(+)-trans-BP-modified, ~ 0.23 mg of the (−)-trans-BP-modified, ~ 0.84 mg of the
(+)-cis-BP-modified, and ~ 0.77 mg of the (−)-cis-BP-modified oligonucleotides.

Expression and purification of yeast Rev1 protein. The Saccharomyces cerevisiae
catalytic core Rev1 protein (residues 297–746) was expressed in Escherichia coli
BL21 (DE3) codon Plus RIL (Stratagene) cells as an N-terminally tagged glu-
tathione S-transferase (GST) fusion protein. The cells were grown in Luria-Bertani
(LB) medium at 37 °C and expression of the fusion protein induced by the addition
of 0.1 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) followed by overnight
incubation at 18 °C. The GST-Rev1 fusion protein was purified from bacterial
lysate by affinity chromatography using a glutathione-Sepharose column. The GST
tag was next cleaved on the resin with PreScission protease and Rev1 (297–746)
was eluted from the column as described previously35. The protein was further
purified by chromatography on HiTrap Heparin column, following by passage
through a Superdex 75 column (GE Healthcare). The protein was concentrated to
~ 12 mgml−1 in 25 mM tris (pH 8.0), 250 mM NaCl, and 2 mM tris(2-carbox-
yethyl) phosphate (TCEP) and stored in aliquots at −80 °C.

Crystallization. The crystals of the yeast Rev1 ternary complexes containing 10S
(+)-trans-BP-N2-dG, 10R (+)-cis-BP-N2-dG, or 10R (−)-trans-BP-N2-dG 17-mer
templates and 12-mer complementary primer terminated with 2′,3′-dideox-
yguanine (5′-GGGGTGTGGTAG-3′) in the presence of dCTP were obtained by a
hanging drop method against a reservoir solution containing 0.25 M sodium citrate
pH 6.0 buffer and 15–20% PEG3350. Briefly, the template–primer DNAs were
annealed and mixed with Rev1 protein in a 1.2:1 molar ratio to a final complex
concentration of 0.11 mM in 22 mM tris (pH 8.0), 160 mM NaCl, 1.5 mM TCEP,
10 mM MgCl2, and 10 mM dCTP. The complexes were incubated at room tem-
perature for 10 min and then centrifuged at 10,000 r.p.m. for 7 min at 4 °C.
Crystallization drop was formed by mixing 1 μL of the complex with 1 μL of the
reservoir solution and the crystals were grown at 20 °C. The complex containing
10R (−)-trans-BP-N2-dG adducted oligonucleotide failed to produce crystals. The
crystals were cryoprotected in the reservoir solution supplemented with 24%
PEG3350 and 20% glycerol and flash frozen in liquid nitrogen for X-ray data
collection. Several rounds of microseeding were necessary to produce the large
diffraction-quality crystals.

Structure determination and refinement. The X-ray diffraction data were col-
lected at the NSLSX25 beam line at the Brookhaven National Laboratory. The data
were processed and scaled using the HKL2000 suite66. The structure of the 10R
( + )-cis-BP-dG complex was solved by the molecular replacement method (Phaser)67

in the CCP4 program package68, using a previously published structure with an
unmodified dG and incoming dCTP, PDB ID 2AQ435 (with a different DNA
sequence) as search model. The model building, including substitution of the DNA
sequence, was finished manually in Coot69 based on the electron density maps
calculated in REFMAC70 in the CCP4 suite. The resulting model was refined in
REFMAC in space group P 21212 with a= 63 Å, b = 180 Å, c= 55 Å unit cell to
1.92 Å and Rwork/free 18.3%/21.8%, correspondently. The placement of the BP and
modified dG moieties was verified using the simulated annealing omit maps cal-
culated in Phenix71 with the (+)-cis-BP-N2-dG omitted from the models before
heating them to 2000 K and then slowly cooling them. The refined 10R (+)-cis-BP-
dG structure includes Rev1 residues 307–738, nucleotides 2–17 for the template
strand, nucleotides 1–12 for the primer strand, incoming dCTP, 4 Mg2+ ions, and
311 water molecules. The 3′-terminal and the adjacent residue of the primer strand
have double conformations of their phosphate backbone reflecting the mobility of
the 3′ terminus in Rev1 complex. The structure of 10S (+)-trans-BP-dG ternary
complex was obtained by molecular replacement using the 10R (+)-cis-BP complex
as a search model. The placement of the 10S (+)-trans-BP-N2-dG adduct was
verified using the simulated annealing omit maps as described above. The model
was refined to 1.85 Å in space group P 212121; a= 64 Å, b= 65 Å, c= 131 Å and
Rwork/free 17.7%/21.7%, respectively.
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Data availability. Atomic coordinates and structure factors have been deposited in
the Protein Data Bank under accession codes 5WM1, 5WM8 and 5WMB for the
10S (+)-trans-, 10R (+)-cis- and 10S (−)-cis-BP-dG-containing Rev1 ternary
complexes, respectively. Other data are available from the corresponding author
upon reasonable request.
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