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a b s t r a c t

As sorafenib is a first-line drug for treating advanced hepatocellular carcinoma, sorafenib resistance has 
historically attracted attention. However, most of this attention has been focused on a series of mechanisms 
related to drug resistance arising after sorafenib treatment. In this study, we used proteomic techniques to 
explore the potential mechanisms by which pretreatment factors affect sorafenib resistance. The degree of 
redundant pathway PI3K/AKT activation, biotransformation capacity, and autophagy level in hepatocellular 
carcinoma patients prior to sorafenib treatment might affect their sensitivity to sorafenib, in which ADH1A 
and STING1 are key molecules. These three factors could interact mechanistically to promote tumor cell 
survival, might be malignant features of tumor cells, and are associated with hepatocellular carcinoma 
prognosis. Our study suggests possible avenues of therapeutic intervention for patients with sorafenib- 
resistance and the potential application of immunotherapy with the aim of improving the survival of such 
patients.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

Computational and Structural Biotechnology Journal 21 (2023) 3564–3574

https://doi.org/10.1016/j.csbj.2023.07.005 
2001-0370/© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

Abbreviations: HCC, Hepatocellular carcinoma; ACLY, Adenosine triphosphate citrate lyase; SIRT6, Sirtuins 6; EGFR, Epidermal growth factor receptor; HGF, Hepatocyte 
growth factor; IGF, Insulin like growth factor; STING1, Stimulator of interferon response cGAMP interactor 1; ADH1A, Alcohol dehydrogenase 1 A; MTOR, Mechanistic target of 
rapamycin kinase; HLA-DR, Human leukocyte antigen-DR; CGAS, Cyclic GMP-AMP synthase; HDAC1, Histone deacetylase 1; ADCD, Autophagy-dependent cell death; NLRP3, 
NOD-like receptor thermal protein domain associated protein 3; TAMs, Tumor-associated macrophages; APCs, Antigen-presenting cells

]]]] 
]]]]]]

⁎ Corresponding author at: State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, 
Beijing 102206, China.

⁎⁎ Corresponding authors.
E-mail addresses: yingwantao@ncpsb.org.cn (W. Ying), dr_rongweiqi@163.com (W. Rong), xiaot@cicams.ac.cn (T. Xiao).

1 Equal contributors.

http://www.sciencedirect.com/science/journal/20010370
www.elsevier.com/locate/csbj
https://doi.org/10.1016/j.csbj.2023.07.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2023.07.005
https://doi.org/10.1016/j.csbj.2023.07.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.07.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2023.07.005&domain=pdf
mailto:yingwantao@ncpsb.org.cn
mailto:dr_rongweiqi@163.com
mailto:xiaot@cicams.ac.cn


1. Introduction

According to Global Cancer Statistics 2020, primary liver cancer is 
the sixth most common cancer and the third leading cause of cancer 
death worldwide, with a particularly high incidence in East Asia, 
where 75–85% of the pathological types are Hepatocellular carci-
noma (HCC) [1]. HCC has an insidious onset and low rate of early 
diagnosis and is usually seen in patients with chronic hepatitis as-
sociated with viral infections, alcohol abuse, or metabolic syndrome. 
Advanced HCC is not sensitive to radiotherapy or chemotherapy 
[2,3]. Sorafenib, a first-line drug for treating advanced HCC, is an oral 
multikinase inhibitor. It targets RAF, c-Kit, Flt-3, and RET in tumor 
cells as well as the vascular endothelial growth factor receptor 
(VEGFR) and platelet-derived growth factor receptor (PDGFR) in 
vascular endothelial cells [4–6]. However, pathways such as the 
epidermal growth factor receptor (EGFR), PI3K/AKT/mTOR, hepato-
cyte growth factor (HGF)/c-Met, and insulin-like growth factor (IGF)/ 
IGFR pathways are associated with the development of HCC [7].

Due to the more limited target of sorafenib, only approximately 
30% of patients benefit from sorafenib, and individuals in these po-
pulations usually acquire resistance within 6 months of treatment 
initiation [3]. The mechanisms associated with resistance following 
sorafenib administration have received sufficient attention. Sor-
afenib treatment is currently thought to activate resistance me-
chanisms such as those mediated by noncoding RNAs, upregulation 
of proangiogenic signaling pathways, activation of the PI3K/AKT/ 
mTOR pathway, abnormal intracellular pharmacokinetics and the 
hypoxic tumor microenvironment [5,8]. However, considering the 
low patient benefit rate of sorafenib, there is also clinical value in 
predicting patients’ sensitivity to sorafenib through evaluation of 
pretreatment factors to adjust treatment regimens. In addition, 
sorafenib resistance is considered to be reversible [5]: in a mouse 
model study, sorafenib-resistant HCC tumor cells from one mice 
were isolated and transplanted into another mice, and the trans-
planted tumors were not found to be resistant to sorafenib in the 
new host, i.e., the sorafenib-resistant phenotype is not propagated 
[9]; another study found that inhibition of adenosine triphosphate 
citrate lyase (ACLY), a key enzyme in lipid metabolism, reversed the 
resistance phenotype in sorafenib-resistant hepatocellular carci-
noma cell lines HepG2 and Huh7 [10]; in renal cell carcinoma, 
Ubenimex was found to inhibit Akt expression and enhance autop-
hagy, promote apoptosis in 786-O-R cell line and reverse resistance 
to sorafenib, silencing of the apoptosis-inhibiting mucin MUC13 also 
had this effect [11,12]; in gastric cancer studies, sorafenib resistance 
in cell lines was overcome by silencing Sirtuins 6 (SIRT6) to promote 
ferroptosis [13]. Alterations in the sorafenib resistance phenotype 
have been observed in many of the above tumor types in many as-
pects of modulation, and we therefore believe that modulating the 
relevant influences prior to treatment may improve patient out-
comes.

Among the pretreatment factors, autophagy helps cells main-
tain homeostasis by recycling aged or damaged organelles and is 
an essential means for cells to cope with survival stress in a harsh 
environment [14]. Biotransformation is a vital function of the liver, 
and although biotransformation is not equivalent to detoxification, 
it can reduce the toxicity of most substrates and render them 
readily excreted. The phase II reactions in biotransformation in-
clude glucuronidation, sulfation, methylation, acetylation, glu-
tathione binding, and amino acid binding [15]. Autophagy and 
biotransformation may profoundly affect patient sensitivity to 
sorafenib. In this study, we performed proteomic analysis of the 
tissues of 16 Chinese HCC patients after postoperative relapse prior 
to sorafenib treatment and partially explained how some of the 
pretreatment factors, represented by autophagy and bio-
transformation, interact and thus influence the efficacy of sub-
sequent sorafenib treatment.

2. Materials and methods

2.1. Sample collection

We obtained surgical resection samples from 16 HCC patients 
before sorafenib treatment for proteomic analysis. These patients 
were started on sorafenib because of recurrence after radical hepa-
tectomy. According to the American Joint Committee on Cancer 
(AJCC) 8th, the starting dose of sorafenib is 400 mg bid, and the 
dosage is adjusted during the course of treatment according to the 
patient’s side effects, until the course of treatment is stopped when 
the patient becomes resistant to sorafenib. Seven patients (X1–7) 
were deemed to respond to sorafenib treatment, and the remaining 
nine were deemed nonresponding (X8–16) by more than two clinical 
internists. The criteria for response classification were as follows: 
patients with disease progression within 6 months of sorafenib ad-
ministration were classified as nonresponders, while those without 
disease progression and those with tumor shrinkage were classified 
as responders. All biological specimens were obtained from the 
Cancer Institute/Hospital, Peking Union Medical College, with the 
approval of the Research Ethics Committee. None of the patients 
received any preoperative targeted therapy. The resected specimens 
were fixed with formalin and preserved by paraffin embedding. 
Histological diagnosis of HCC was performed by pathologists. 
Hematoxylin and eosin (HE)-stained slides were used to assess 
tumor purity, and 16 HCC tissues with tumor purity >  50% were 
selected for proteomic profiling. The clinical information is shown in 
Table S1.

2.2. Processing of LC-MS/MS

2.2.1. Protein extraction
Samples were sequentially soaked in fresh xylene, absolute 

ethanol, 85% ethanol, 70% ethanol, and 50% ethanol with shaking at a 
constant speed. Tissues were removed from the dried glass slides by 
scraping with 1 ml of precooled PBS, left at room temperature for 
5 min, and then centrifuged at 14000g for 15 min to separate and 
remove the supernatant. Then, 150 µl of freshly prepared lysis buffer 
(1% sodium dodecyl sulfate and 2 mM dithiothreitol (DTT) in 0.1 M 
Tris-HCl; 10 µl protease inhibitor per 1 ml (Roche, REF 
04693116001)) was added to the pellet and incubated at 99 °C for 
30 min. The lysate was naturally cooled to room temperature, and 
subjected to 99 cycles of sonication (power 180 W, 1- s on and 2- s 
off). The lysate was again incubated at 99 °C for 30 min and naturally 
cooled to room temperature. Then, the lysate was centrifuged at 
14000g for 15 min, and the supernatant was collected and stored at 
−80 °C before use.

2.2.2. Protein digestion
Proteins were digested by filter-assisted sample preparation 

(FASP) [16,17]. In brief, each sample was diluted to 1.5 ml with UA 
solution (8 M urea in 0.1 M Tris-HCl), and the supernatant was se-
quentially added to a 30 kD filter for centrifugation. Next, 200 µl of 
UA solution was added, and the sample was washed once by cen-
trifugation. Then, 100 µl of DTT solution (20 mM DTT in UA solution) 
was added, and the sample was incubated at 37 °C for 4 h. After the 
DTT solution was removed by centrifugation, 100 µl of IAA solution 
(50 mM iodoacetamide dissolved in UA solution) was added, and the 
reaction was allowed to proceed at room temperature for 30 min in 
the dark. The ultrafractionation tube was washed twice with 200 µl 
of UA and three times with 200 µl of ABC solution (50 mM ammo-
nium bicarbonate in water, pH 8.5) by centrifugation. Next, 100 µl of 
ABC solution containing 1 µg of trypsin was added to each filter tube, 
and the tubes were sealed and incubated at 37 °C for 16 h. Peptides 
were collected by centrifugation at 14000g and dried at 45 °C. The 
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peptide mixture was resolved with buffer A (0.1% formic acid) and 
quantified using a Nano-drop OneC spectrophotometer.

2.2.3. Liquid chromatography tandem mass spectrometry analysis
The liquid chromatography-tandem mass spectrometry (LCeMS/ 

MS) detection system consisted of a nanoflow high-performance 
liquid chromatography (HPLC) instrument (Easy nLC1200, Thermo 
Fisher) coupled to an Orbitrap Q-Exactive HF mass spectrometer 
(Thermo Fisher). For acquisition of mass spectra, the optimal data- 
independent acquisition (DIA) parameters described in the article by 
Shuang Weng et al. [18] were used. In brief, 2 µg of the peptide 
mixture resolved with buffer A was loaded on a 30-cm self-packing 
column (150-μm inner diameter, ReproSil-Pur C18-AQ, 1.9 µm; Dr. 
Maisch) with a 120-min LC gradient time (Table S2) at a flow rate of 
600 nl/min. The chromatograph peak width was 18 s. A standard 
amount of iRT spike-in was added to ensure calibration. The MS1 
survey scan range was 400–1200 m/z, and the MS1 scan was fol-
lowed by 32 MS2 scans with overlapping sequential precursor iso-
lation windows (25 m/z isolation width, 1 m/z overlap). For the MS2 
survey scan, the automatic gain control (AGC) target was set to 3e6, 
and the maximum injection time (IT) was set to 45 ms.

2.2.4. Protein identification by Spectronaut-based database searching
The raw data files obtained from the mass spectrometry analysis 

were imported into SpectronautTM software for processing, and the 
spectral library was selected from the human liver cancer proteome 
spectral library established in the article by Shuang Weng et al. [18]. 
The false discovery rate (FDR) threshold at the protein and peptide 
levels was set to 0.01. Peak areas at the MS2 level were selected for 
protein and peptide quantitation. Subsequent in-depth processing 
was performed using data packages in R software.

2.3. Proteomic data analysis

2.3.1. Sample quality control and data normalization
Boxplots were used to visualize the numbers of identified compo-

nents at three levels: protein group, peptide, and precursor. No sample 
exhibited an extremely high or low number of identified components 
(Fig. S1), and all samples were included in subsequent analysis. Protein 
expression matrices were quantile normalized using the limma package 
(v 3.42.2) in R/Bioconductor. We further processed the expression matrix 
using the removeBatchEffect() function of limma (v 3.52.4), and sub-
sequent analysis was limited to the 5209 genes expressed in at least 50% 
of the samples (Table S3). For algorithms that could not handle missing 
values, we used mice (v 3.15.0) [19] to fill in the missing values by a 
multiple interpolation method.

2.3.2. Bioinformatics analysis of proteome data
Analysis of differential protein expression between nonresponders 

and responders was performed using limma (v 3.52.4) [20], with the 
following criteria: p ≤ 0.05 and |logFC|≥ 1. We then used clusterProfiler (v 
4.4.4) [21] to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis and gene set enrichment analysis (GSEA) 
on the differentially expressed protein, GSVA (v 1.44.5) to perform 
single-sample gene set enrichment analysis (ssGSEA) [22], Xcell (v 1.1.0) 
for immune infiltration analysis [23], ConsensusClusterPlus (v 1.60.0) for 
consensus clustering [24], and surv (v 3.4–0) and survminer (v 0.4.9) for 
survival analysis. We also obtained data from related studies by Jia Fan 
et al. and Fuchu He et al. for further validation [17,25]. Statistical analyses 
were performed on R version 4.2.1. For analysis of paired group data, the 
Wilcoxon signed-rank test was used. Statistical significance was ac-
cepted at p  <  0.05 or a Benjamini–Hochberg adjusted p value <  0.05.

2.4. Immunohistochemistry (IHC) and Scoring

Sections were baked at 65 °C for 4 h, deparaffinized with xylene 
and ethanol, and then incubated with 3% H2O2 for 10 min in the dark 
to quench endogenous peroxidase activity. After antigen retrieval by 
heating in citrate repair solution (pH= 6.0) or EDTA buffer (pH= 9.0) 
in a microwave oven for 10 min, the sections were blocked with goat 
nonimmune serum and incubated with primary antibodies against 
ADH1A (1:1000, Abcam), STING1 (1:10000, Proteintech), CD163 
(1:400, Cell Signaling), CD8 (1:200, Cell Signaling) and HLA_DRB 
(1:2000, Abcam) overnight at 4 °C. After incubation with secondary 
antibodies, a chromogenic reaction was performed using the DAB kit. 
The sections were then counterstained with hematoxylin. Staining 
was analyzed and scored by two experienced pathologists. Samples 
were scored on a scale from 0 to 3 (0, negative; 1, weakly positive; 2, 
moderately positive; 3, strongly positive) based on the intensity of 
staining and the percentage of positive staining. The staining in-
tensity score was multiplied by the percentage of the slices ex-
hibiting staining for the object of interest to calculate the “Hscore” of 
the object of interest. The details of the reagents used are shown in 
Table S4.

3. Results

3.1. Global proteomic profiling of sorafenib-nonresponding and 
sorafenib-responding HCC patients

To study the characteristics of patients with HCC exhibiting dif-
ferent treatment effects of sorafenib, we performed proteomic mass 
spectrometry on formalin-fixed paraffin-embedded HCC tissue 
samples from 16 patients before sorafenib treatment (Fig. S2A). 
Among the patients, 7 responded to sorafenib treatment, and the 
other 9 who did not. By using Spectronaut software for database 
searching, only the proteins that were reliably quantified (Q 
value < 0.01) were output; a total of 7177 proteins were quantified, 
with an average of 5139 proteins quantified per sample (Fig. S2B). 
Across the samples, 3063 proteins were quantified in all samples. We 
examined the distribution of all protein abundances, and found that 
it was unimodal for all 16 samples (Fig. S2C). After data normal-
ization, each sample was clustered with the same distribution 
(Fig. S2D).

3.2. Differential proteomic analysis of the sorafenib-nonresponding and 
sorafenib-responding groups of HCC patients

A standard spartial least squares regression analysis approach 
(PLS_DA) was used to classify samples from the sorafenib-related 
proteomic profile data and the drug-nonresponding and drug-re-
sponding groups were found to be distinguishable (Fig. 1A), with a 
significant difference in protein expression characteristics between 
the two groups. Differential analysis identified a total of 29 differ-
entially expressed proteins, 14 of which were upregulated in the 
drug-nonresponding group and 15 in the responding group (Fig. 1D). 
Among these proteins, stimulator of interferon response cGAMP 
interactor 1 (STING1) (Fig. 1B, P = 0.0310), which was upregulated in 
the nonresponding group, and alcohol dehydrogenase 1A (ADH1A) 
(Fig. 1C, P = 0.1700), which was upregulated in the responding group 
were the core proteins selected for our exploration of pretreatment 
factors affecting sorafenib resistance. The STING1 protein is an es-
sential regulator of autophagy [26,27], while the ADH1A protein is 
an important member of an enzyme family involved in bio-
transformation [25].
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3.3. Autophagy-related and biotransformation-related pathways differ 
between the responding and nonresponding groups

KEGG enrichment analysis of the screened identified expressed 
proteins revealed that the ascorbate and aldarate metabolism, re-
tinol metabolism, pentose and glucuronate interconversions, and 
glutathione metabolism pathways which are associated with bio-
transformation [28] were enriched in the responding group, while 
the lysosome and cytosolic DNA sensing pathway, which are asso-
ciated with autophagy, were enriched in the drug-nonresponding 
group (Fig. 2A, Table S5-6) [29]. The protein expression profile data 
were converted to single-sample pathway enrichment scores using 
ssGSEA, and the Wilcoxon signed-rank test was used to evaluate the 
significance of differences between the two groups. Annotation via 
c2.cp.kegg.v2022.1. Hs.symbols.gmt revealed that the glycolysis 
gluconeogenesis and nicotinate and nicotinamide metabolism 
pathways were enriched in the responding group. In contrast, the 
cytosolic DNA sensing, VEGF signaling, and mTOR signaling path-
ways were enriched in the nonresponding group, and there was no 
difference in MAPK signaling pathway enrichment between the two 
groups (Table S7). Further annotation by c2.cp.reactome.v2022.1. 

Hs.symbols.gmt and c2.cp.wikipathways.v2022.1. Hs.symbols.gmt 
revealed that the PI3K/AKT/mTOR pathway was significantly en-
riched in the nonresponding group (Fig. 2B, Table S8-9). It has been 
reported that mTOR inhibits the transcription of ADH1A by phos-
phorylating histone deacetylase 1 (HDAC1) [30], and our analysis in 
mass spectrometry data revealed a trend of upregulation of HDAC1 
in the drug- nonresponding group (Fig. S4A, P = 0.3000). GSEA of the 
pentose and glucuronate interconversions pathway, representing 
biotransformation, and the lysosome pathway, representing autop-
hagy, also demonstrated significant differences between the two 
groups in these two aspects (Fig. 2C).

3.4. Immune infiltration analysis suggests immune potential in the 
nonresponding group

Analysis of differences in the infiltration of each cell type in the 
drug-nonresponding and drug-responding groups using Xcell re-
vealed that CD8 + T cells (Fig. 3A, P = 0.0638), natural killer T (NKT) 
cells (Fig. 3A, P = 0.0128), M2 macrophages (Fig. 3A, P = 0.0108), 
gamma delta T (Tgd) cells (Fig. 3A, P = 0.0258), B cells (Fig. 3A, 
P = 0.0164), endothelial cells (Fig. 3A, P = 0.0311) and pericytes 

Fig. 1. Differential analysis of sorafenib protein profile data. (A) PLS-DA can distinguish between the drug-nonresponding and drug-responding groups. (B) and (C) Expression of 
STING1 and ADH1A, as measured by mass spectrometry, in the two groups. (D) Volcano plot showing the differentially expressed proteins identified.
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Fig. 2. Pathway enrichment analysis. (A) KEGG enrichment analysis revealed the upregulation of autophagy-related pathways in the nonresponding group and the upregulation of 
biotransformation-related pathways in the responding group. (B) ssGSEA was performed to convert expression profiles into pathway enrichment scores, and the Wilcoxon signed- 
rank test was performed to identify differential pathways between the two groups. (C) GSEA of representative pathways for biotransformation and autophagy. The heatmap on the 
right shows the differentially expressed proteins in the two groups.
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(Fig. 3A, P = 0.0164) were highly infiltrated in the nonresponders, 
and that CD4 + T cells (Fig. 3A, P = 0.0195) were highly infiltrated in 
the responders (Table S10). The same is true for the content and 
proportional structure of the above cells in the heatmap and 
stacking plot between the two groups (Fig. 3B-C). Innate im-
munocytes were exhibited significantly high infiltration in the 
nonresponding group. Interestingly, both immunosuppressive and 
immunoreactive cells were also highly infiltrated in the non-
responding group.

3.5. Immunohistochemical analysis shows a trend consistent with the 
immune infiltration analysis

The Hscore was defined as the staining intensity multiplied by 
the percentage of the section exhibiting staining for the object of 
interest to obtain the Hscore of each molecule in each sample. 
Intergroup comparisons between the responding and 

nonresponding groups were performed by the Wilcoxon signed-rank 
test. There were three different expression patterns for im-
munihistochemical markers in enrolled 16 samples in our study. 
Firstly, high stainging rario and intensity of ADH1A in HCC tumor 
cells in the responders but not the nonresponders (Fig. 4A, P = 0.13). 
Secondly, there is a marker with insignificant difference of expres-
sion levels in the two groups, CD163 (Fig. 4C, P = 0.62). And thirdly, 
relatively high expression level of STING (Fig. 4B, P = 0.11), human 
leukocyte antigen-DRB (HLA_DRB, on both lymphocytes and tumor 
cells) (Fig. 4E, P = 0.22; Fig. 4F, P = 0.19) and CD8 (Fig. 4D, P = 0.15), 
were detected in the nonresponders, the first two molecules exhibit 
diffuse and strong positive signals.

HLA_DRB is a crucial component of MHC-II proteins [31,32], and 
its expression level represents, to some extent, the degree of im-
mune activation [33]. In the mass spectrometry data, we also found 
that HLA_DRB1 showed an upregulation trend in the nonresponders 
(P = 0.1700, Fig. S4A). Unfortunately, the sample size was limited, and 

Fig. 3. Immune infiltration analysis. (A) Box plot showing the differences between the drug-nonresponding and drug-responding groups for each infiltrating cell type. (B) and (C) 
The heatmap and stacked plot show the abundance of each infiltrated cell type in each sample.
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Fig. 4. IHC staining images and differences in the Hscore between the two groups. (A)-(F) Schematic representation of IHC staining results and the difference in the Hscore 
between the two groups, with positive staining shown by the tan color located in cell cytoplasm (ADH1A in the responding group, STING1), cell membrane and cytoplasm (CD163 
and HLA_DRB), and cell membrane (CD8). The negative results of the above immunohistochemical detection were the only blue signals in cell nuclei stained by hematoxylin (eg. 
ADH1A in the nonresponding group).
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the p-values for the intergroup comparisons of each molecule in-
dicated that the differences were not significant. However, the trend 
was consistent with that found in the previous analysis. The Hscore 
for each molecule can be found in Table S11.

3.6. Molecules and pathways associated with sorafenib resistance 
correlate with the malignant features of HCC

We obtained the dataset for hepatitis B virus (HBV)- associated 
HCC published by Jia Fan et al. [25] and the dataset for early-stage 
HCC published by Fuchu He et al. [17] to increase the clinical ap-
plications values of molecules and pathways screened based on the 
sorafenib response/nonresponse status. In the HBV-associated HCC 
dataset, we transformed the proteomic expression profile data into 
pathway enrichment scores by ssGSEA and selected the pathways 
that were consistent with the specific differential pathways screened 
based on sorafenib response/nonresponse as the criteria for con-
sensus clustering. Visually, the consensus matrix with a k value of 2 
seemed to show the cleanest separation between clusters (Fig. S3A). 
The consensus cumulative distribution function (CDF) and delta area 
plots show that the area under the consensus CDF does not increase 
significantly as k increases from a value of 2 (Fig. S3B). The enrich-
ment score of each pathway in each sample is shown on a heatmap. 
The tumor samples were generally classified as cluster 1, and the 
normal paracancer samples were generally classified as cluster 2. In 
addition, the pathways related to the drug nonresponse were en-
riched in the tumor samples and cluster 1, while the pathways re-
lated to the drug response were enriched in the normal samples and 
cluster 2 (Fig. 5A, Table S12). To determine cutoff values for survival 
analysis, clinical data from the early-stage HCC dataset were ana-
lyzed separately for STING1 protein expression and lysosome and 
cytosolic DNA sensing pathways, which represent autophagy, and for 
ADH1A protein expression and the pentose and glucuronate inter-
conversions and ascorbate and aldarate metabolism pathways, 
which represent biotransformation (Fig. 5B-G). According to ADH1A 
(Fig. 5B, P = 0.014), pentose and glucuronate interconversions, as-
corbate and aldarate metabolism and cytosolic DNA sensing path-
ways (Fig. 5D. Fig. 5D, P = 0.039; Fig. 5F, P = 0.037; Fig. 5G, P = 0.0037) 
showed significant differences in overall survival (OS) in patients 
with early-stage HCC between the high and low expression groups. 
After grouping according to the expression levels of STING1 (Fig. 5C, 
P = 0.075) and lysosome pathway (Fig. 5E, P = 0.059), the OS between 
the two groups also approached significant differences. High ex-
pression levels of the STING1 protein and activation levels of the 
lysosome and cytosolic DNA sensing pathways, which represent 
autophagy, were associated with poor prognosis. High expression 
levels of the ADH1A protein and activation levels of the pentose and 
glucuronate interconversions and ascorbate and aldarate metabo-
lism pathways, which represent biotransformation, were associated 
with good prognosis.

4. Discussion and conclusions

As a first-line treatment for advanced HCC, sorafenib has a worse 
than expected patient benefit rate [34]. We explored how pretreat-
ment protein expression patterns and activation of signaling 
pathways affect sorafenib resistance by proteomic characterization 
of pretreatment samples from sorafenib responders and non-
responders.

Among the differentially expressed proteins, we identified two 
key molecules, ADH1A and STING1. In the pathway enrichment 
analysis, autophagy-related pathways were enriched in the non-
responding group, while biotransformation-related pathways were 
enriched in the responding group. STING1, a core molecule med-
iating autophagy, is activated by the cell membrane DNA sensor 
cyclic GMP-AMP synthase (CGAS), and its acute activation facilitates 

antitumor therapeutic efficacy, while its chronic activation may 
mediate inflammation and promote tumor survival [27]. On the 
other hand, lysosomes are the central organelles of autophagy, 
meeting the energy needs of cells by degrading damaged organelles 
and long-lived proteins and attenuating cell death caused by en-
doplasmic reticulum (ER) stress [14].

The pathways enriched in the responding group are mainly re-
lated to the phase II reactions of biotransformation. Glucuronide in 
the pentose and glucuronate interconversions pathway plays an 
important role in conjugates detoxification of containing toxic sub-
stances [35]; L-ascorbic acid, in the ascorbate and aldarate metabo-
lism pathway, is a potent antioxidant [36]. Both pathways were 
found to be significantly abnormal in a study of oxidative damage in 
the pancreas, suggesting that both pathways play a crucial role in 
resistance to oxidative stress [28,36]. Downregulation of specific 
biotransformation pathways can cause substrates to be shunted into 
the remaining pathways and result in damage. For example, ADH1A, 
a key enzyme in the metabolism of alcohol and retinol, is coupled to 
dehydrogenation of the cofactor NAD when it metabolizes its sub-
strate and therefore does not produce oxygen radicals [37]. This 
observation explains the enrichment of nicotinate and nicotinamide 
metabolism in the responding group (Fig. 2B). When ADH1A is 
downregulated retinol becomes a substrate for P450s and generates 
oxygen radicals, as confirmed by a study that constructed an 
ADH1A-/- mouse model after feeding vitamin A found increased 
liver damage [37,38]; ethanol induces lipid peroxidation through the 
microsomal pathway, and its metabolic end products interfere with 
normal cellular metabolism, for example, Ciuclan L et al. found that 
lipid deposition, increased oxidative stress, and enhanced alcohol 
toxicity in cells treated with alcohol after knockdown of ADH1A in 
hepatocytes [39,40]. Therefore, the reduced biotransformation ca-
pacity increases hepatic oxidative damage to some extent, and oxi-
datively damaged DNA (e.g., 8-OHG-modified DNA) is a potent 
autophagy activator [29]. Therefore, we suggest that the reduced 
biotransformation capacity in the drug-nonresponding group par-
tially promotes active autophagy in this group.

Pathway enrichment analysis also revealed activation of the re-
dundant PI3K/AKT/mTOR pathway in the nonresponding group, with 
similar degrees of Ras/Raf/MAPK pathway activation in both groups. 
Therefore, we believe that in the nonresponding group, sorafenib’s 
target in the pathway is successfully bypassed via promotion of 
angiogenesis through alternative pathways prior to treatment, a 
hypothesis consistent with the enrichment of VEGF signaling in the 
nonresponding group (Fig. 2B), may partially explain the abundance 
of endothelial and pericytes in the drug-nonresponding group ob-
served by immuno-infiltration analysis. Thus, poor efficacy is to be 
expected. As previously described, mTOR represses ADH1A tran-
scription by phosphorylating histone deacetylase 1 (HDAC1) (Fig. 
S4B) [30] and that mTOR inhibits autophagy [27]. Interestingly, it has 
been reported in cell line studies of both hepatocellular carcinoma 
and renal cell carcinoma that after inhibition of AKT and thus mTOR, 
autophagy was strongly activated and caused autophagy-dependent 
cell death (ADCD) in sorafenib-resistant cells [11,41]. Combining the 
results of redundant activation of the PI3K/AKT/mTOR pathway and 
downregulation of ADH1A in the nonresponding group and related 
mechanisms reported by other researchers, we propose a hypothe-
tical model: a balance between STING1-mediated autophagy acti-
vation and PI3K/AKT/mTOR activation-induced autophagy inhibition 
is maintained in the nonresponding group to maintain the intensity 
of autophagic activity at a level that reduces ER stress and meets the 
energy requirements to promote tumor survival. Besides, activation 
of the redundant PI3K/AKT/mTOR pathway not only bypasses the 
target of sorafenib but also interferes with the decrease in the bio-
transformation capacity and the activation of autophagy in the 
nonresponding group. Collectively, the results of the immune in-
filtration analysis and immunohistochemical staining, indicated that 
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Fig. 5. Additional datasets were obtained for further validation. (A) Consensus clustering of data for HBV-associated HCC using differential pathways identified from our sorafenib 
data, the heatmap of the enrichment scores for each pathway in each sample, and annotation of clustering information, tissue origin, and corresponding pathways in the 
nonresponding/responding groups. (B)-(G) Survival analysis of differential molecules and pathways between the sorafenib nonresponding/responding groups in the data for early- 
stage HCC.
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innate immunocytes, immunosuppressive cells, and immunore- 
active cells were abundant in the nonresponding group. Interest-
ingly, the IHC staining intensity of CD163, a marker of M2 macro-
phages, was particularly nonsignificantly different between the two 
groups, suggesting that the difference in the abundance of in-
filtrating immunosuppressive M2 macrophages between the two 
groups may have been exaggerated in the immune infiltration ana-
lysis. STING signaling can regulate the NOD-like receptor signaling 
pathway through NOD-like receptor thermal protein domain asso-
ciated protein 3 (NLRP3) to activate innate immunity [27,42]. Si-
multaneously, the resulting induction of chronic inflammation along 
with oxidative damage following the decrease in biotransformation 
capacity results in recruitment of tumor-associated macrophages 
(TAMs) [27,43]. However, in addition, the products of autophagy may 
contact antigen-presenting cells (APCs) as antigens or even be pre-
sented on the surface of tumor cells as endogenous proteins by MHC 
Ⅱ molecules to activate adaptive immunity [32,44] as partially con-
firmed by immunohistochemical staining of HLA_DRB in lympho-
cytes and tumor cells (Fig. 4E-F). Combining the results of immune 
infiltration analysis and immunohistochemistry and the reported 
mechanisms related to autophagy affecting tumor immunity, we 
suggests that the benefit of immunotherapy in sorafenib-non-
responding patients with autophagy activation is worth exploring. 
Analysis of the extended dataset demonstrated that sorafenib re-
sponse/nonresponse-related autophagy and biotransformation are 
also malignant features that distinguish HCC cells from normal he-
patocytes and that the STING1 protein, the lysosome pathway, and 
the cytosolic DNA sensing pathway representing autophagy and the 
ADH1A protein, the pentose and glucuronate interconversions 
pathway, and the ascorbate and aldarate metabolism pathway re-
presenting biotransformation, have some prognostic value in HCC.

In summary, the degree of redundant PI3K/AKT/mTOR pathway 
activation, the biotransformation capacity, and the autophagy level 
in HCC patients prior to sorafenib treatment are likely to affect their 

sensitivity to sorafenib. These three aspects might interact me-
chanistically to promote tumor cell survival (Fig. 6). Patients with 
autophagy activation may benefit from immunotherapy in the set-
ting of sorafenib resistance, while approaches that interfere with 
autophagic homeostasis, such as modulation of redundant path-
ways, may reverse resistance via multiple mechanisms, and enhan-
cing biotransformation in HCC patients may contribute to prolonged 
survival. These molecules and pathways are also potential markers 
for predicting sorafenib efficacy.
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