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Core percolation is a fundamental structural transition in complex networks related to a wide range of
important problems. Recent advances have provided us an analytical framework of core percolation in
uncorrelated random networks with arbitrary degree distributions. Here we apply the tools in analysis of
network controllability. We confirm analytically that the emergence of the bifurcation in control coincides
with the formation of the core and the structure of the core determines the control mode of the network. We
also derive the analytical expression related to the controllability robustness by extending the deduction in
core percolation. These findings help us better understand the interesting interplay between the structural
and dynamical properties of complex networks.

O
ne fundamental challenge in network science is to understand the impact of the structural property on its
functionality. In the last decade considerable advances have been made, particularly on the structural
transitions that can bring big impacts on numerous dynamical processes on networks. A lot have been

discovered, such as the application of k-core percolation1–4 and giant components5–9 in analysis of epidemic and
information spreading on socio-technical systems10–12, the use of dominating set in disease outbreak detection,
control and social influence propagation13–17 and the fragility in many real networks caused by their multilayer
connections18–20. Nevertheless, a lot remains unknown. Core percolation, as one example, is a structural transition
in complex networks with a long history. The core represents the reminder of the greedy leaf removal (GLR)
procedure in a network21,22. While core percolation has applications in several important problems such as
conductor-insulator transitions, maximum matching and minimum vertex cover problem21,23–26, the physical
importance of the core and how the core structure would affect the dynamics of a network are not entirely
understood.

Recent advances have brought us an analytical framework of core percolation in uncorrelated random net-
works with arbitrary degree distribution27. The tools introduced not only allow us to predict the emergence of the
core but also calculate the expected core size. These findings reveal some interesting interplay between the core
and controllability of complex networks. For example, it is observed that the sudden change in controllability
robustness and the emergence of the two control modes coincide with the formation of the core28,29, suggesting a
strong connection between the two topics. Here we analytically explore this connection. The rest of the paper is
organized as follows. In the first two sub-sessions, we briefly review the analytical framework of the core
percolation and the basic concepts of network controllability. In the third sub-session, we demonstrate the role
of the core in control. The core structure determines not only the control mode but also the stability of the control
mode under structure perturbations. Finally, we study the controllability robustness in the fourth sub-session, the
ability to maintain the control under nodes’ failures. By applying the tools in core percolation, we obtain an
analytical expression of the fraction of nodes playing different roles in sustaining the controllability of the
network.

Results
Analytical Framework of Core Percolation. In core percolation leaf nodes and their neighbors are taken off
iteratively from the network according to GLR procedure21,22. Specifically, a node with degree one is randomly
chosen. This node and its neighbor are removed with all their links. Nodes that becomes isolated are also removed.
This procedure is repeated until no node with degree one is left and a core emerges as a compact cluster of nodes
left. To systematically study the core percolation, two categories of removable nodes are introduced27: a removable
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as nodes that can become isolated without directly removing
themselves (e.g. node 32 and 42 in Fig. 1), b removable as nodes
that can become a neighbor of a leaf (e.g. node 31, 51 and 52 in Fig. 1).
The category of a node i in an arbitrary graph G can be determined by
the categories of the neighbor nodes in the subgraph G\i where node i
and all its links are excluded: node i is a removable in G if all its
neighbor nodes are b removable inG\i and b removable inG if at least
one neighbor is a removable in G\i. Correspondingly the fraction of a
and b nodes can be expressed as

na~
X

k

P kð Þ~bk~G ~b
� �

nb~1{
X

k

P kð Þ 1{~að Þk~1{G 1{~að Þ,
ð1Þ

where P(k) is the network’s degree distribution, G xð Þ~
X

k
P kð Þxk

is the generating function of P(k) and ~a, ~b are respectively the
probability that we find an a and b nodes at the end of a random
chosen link and in the absence of that link (in G\i). These two
parameters have been found as

~a~
X

k

Q kð Þ~bk{1~A 1{~b
� �

~b~1{
X

k

Q kð Þ 1{~að Þk{1
~1{A ~að Þ,

ð2Þ

in which Q(k) 5 kP(k)/Ækæ is the excess degree distribution, Ækæ is the
average degree and A xð Þ:

X
k

Q kz1ð Þ 1{xð Þk. On the basis of

Eq.(2), ~a can be solved as the smallest root of the function f(x) ;
A(A(x)) 2 x, which can be further used to calculate ~b. The
parameters ~a and ~b can then be applied in determining the
fraction of a and b nodes outlined in Eq.(1).

To generalize core percolation to a directed network, different
removal procedures are introduced27,30. Here we adopt the one that
converts the direct network to a bipartite graph, which splits a node i
in directed network into two nodes i1 (upper) and i2 (lower) (Fig. 2a,
b). A directed link from node i to j becomes a connection from node
i1 to node j2 in the bipartite representation. The out- and in-degree
distribution become degree distribution P1(k) and P2(k) in the
bipartite graph, respectively. Correspondingly Eq.(2) becomes

~a+~A+ 1{~b+
� �

~b+~1{A+ ~a+
� �

,

ð3Þ

and ~a+ is the smallest root of function f + xð Þ:A+ A+ xð Þ
� �

{x

where A+ xð Þ:
X

k
Q+ kz1ð Þ 1{xð Þk. The fraction of a and b

nodes in 1 and 2 set is

n+
a ~

X
k

P+ kð Þ ~b+
� �k

~G+ ~b+
� �

n+
b ~1{

X
k

P+ kð Þ 1{~a+� �k
~1{G+ 1{~a+� �

,

ð4Þ

It is noteworthy that in sparse networks without cores, all nodes are
either a or b removable therefore n+

a zn+
b ~1. As the network

becomes denser, a core emerges after the average degree exceeds a
critical value. At the formation of the core, different categories of
removable nodes and the unremovable core nodes appear, making
n+

a zn+
b v1. Nevertheless, parameters ~a+ and ~b+ used to find n+

a

and n+
b can also be used to find the fraction of core nodes in the 1

and 2 set as

n+
core~

X?
k~0

P+ kð Þ
Xk

s~2

k
s

� �
~b+
� �k{s

1{~b+{~a+
� �s

: ð5Þ

Controllability of Complex Networks. The controllability of com-
plex systems is a fundamental challenge of contemporary science that
draws considerable interests in multidisciplinary fields28,29,31–50.
According to control theory51,52, the dynamic process of controlling
a linear time-invariant system can be described by the equation dx(t)/
dt 5 Ax(t) 1 Bu(t), where the state vector x(t) 5 (x1(t), …, xN(t))T

captures the state of a system of N components at time t. The N 3 N
state matrix A corresponds to the internal interactions of the system.
The input matrix B is an N 3 M matrix indicating how the M external
signals u(t) 5 (u1(t), …, uM(t))T are exerted to the system to drive it
from any initial state to any desired final state within finite time.
Recently an efficient methodology has been introduced to identify
the minimum driver node set (MDS), the smallest set of nodes whose
time-dependent control yields the control over the whole system28.
The procedure is to convert a directed network into a bipartite graph
(Fig. 2a, b) and find the maximum matching of bipartite graph53. The
minimum driver nodes are the unmatched nodes in the 2 set. If a
perfect matching exists and all nodes in the 2 set are matched, one
input signal would be sufficient to drive the system. In this case the
number of driver node is one.

The methodology proposed indicates the existence of multiple
MDSs, hence a node does not necessarily participate in all MDSs
(Fig. 2c)32. Accordingly a node can be categorized by its participation
in control: critical if it participates in all MDSs, redundant if it is not
included in any MDSs and intermittent if it is in some MDSs but not
all. The fraction of critical nodes nc is purely determined by the in-
degree distribution as nc 5 Pin(0). However, the fraction of redund-
ant nodes nr displays a bifurcation after some critical average degree
Ækcæ: networks with identical degree distribution and average degree
can have very high or low value of nr (Fig. 3, 4). Such a bimodality
feature leads to the two distinct control modes, with significant dif-
ference in the total number of MDS choices. While the two control
modes coexist with equal probability in dense networks with ident-
ical in- and out-degree distributions, networks with different in- and
out-degree distribution may have one mode dominate or follow only
control mode29.

Core Percolation and the Bimodality in Control. The emergence
and the absence of bimodality can be best explained using the
knowledge of core percolation. Indeed, b nodes, as the neighbor of
a leaf node, are always matched in all possible maximum matching
configurations and a nodes are not. Therefore b nodes in the 2 set
are redundant nodes and a nodes in the 2 set are not redundant.

1+ 2+ 3+ 5+

1- 2- 3- 5-4-

Figure 1 | A bipartite graph with a core (highlighted). Node 11, 21, 12 and

22 are the core nodes. Node 32 and 42 are a removable because they can

become isolated without directly removing themselves (e.g. when node 32

is chosen in the GLR procedure, node 32 and 31 with all their links are

removed and node 42 becomes isolated). Node 31, 51 and 52 are b

removable as they can become a neighbor of a leaf.

www.nature.com/scientificreports
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Before the formation of the core, a node is either a or b node, hence
the fraction of redundant nodes nr~n{

b ~1{n{
a where n{

a and n{
b

can be found by Eqs.(3) and (4).
When core emerges, however, a and b nodes are not the only

nodes in the network n+
a zn+

b v1
� �

and nr depends on the shape

of the core. When there are fewer core nodes in the 1 set than in the
2 set Nz

corevN{
core

� �
, all the core nodes in the 2 set are not always

matched. This corresponds to the lower branch of the bifurcation
with nr~n{

b as only the b nodes in the 2 set are redundant (Fig. 4b,
d). When Nz

core§N{
core, however, all the core nodes in the 2 set are

always matched, giving rise to a large number of always matched
nodes. In this case, the network is on the upper branch of the bifurca-
tion curve and nr~1{n{

a as only a nodes in the 2 set are not
redundant (Fig. 4a, c). In summary, depending on the core structure,
nr can be high or low as

nr~
1{n{

a , if Nz
core§N{

core

n{
b , if Nz

corevN{
core:

(
ð6Þ

Eq.(6) confirms the emergence of bifurcation at the formation of the
core (Fig. 3). More importantly, it explains the condition for the
coexistence of the two control modes. When the in- and out-degree
distribution are the same, the expected nz

core and n{
core are identical,

giving the same probability of Nz
core§N{

core and Nz
corevN{

core (the
probability that Nz

core~N{
core is negligible in large systems). Hence

the network is equally likely to be on either of the control mode.
When the in- and out-degrees are asymmetric, however, Eq.(5) gives
different nz

core and n{
core values27, implying that in sufficiently large

networks where the mean-field equation Eq.(5) applies, only one
type of the core structure is allowed. Consequently any tiny differ-
ences between the in- and out-degree distribution eliminates the

1

2

3 4 5

+

-

1+ 2+ 3+ 4+ 5+

1- 2- 3- 4- 5-

1
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3 4 5

1

2

3 4 5

1

2

3 4 5

2

3 4 5

1

3 4 5

1

2

4 5

driver node:

a b

c

d e f

Figure 2 | (a) An example of a directed network with five nodes. (b) The bipartite representation of the directed network in (a) where a node i in the

directed network is split into two nodes i1 (upper) and i2 (lower). A directed link from node 1 to node 2 in (a) corresponds to a connection between node

11 and node 22. (c) Three different control configurations to control the network in (a), indicating different participations of nodes in control: node 1 is

critical as it is a driver node in all cases, node 2 is redundant because it does not participate in any of the driver node sets and nodes 3, 4 and 5 are

intermittent as they are driver nodes in some situations but not all. (d–f) The control of the network in (a) after removing one node and all its links.

(e) Node 1 is structurally redundant as its removal does not change the number of driver node. (d) Node 2 is structurally critical because more driver nodes

are needed in its absence. (f) The number of driver nodes decreases by 1 without node 3, therefore node 3 is structurally ordinary.

www.nature.com/scientificreports
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bifurcation of nr and forces the large network to follow one or the
other control mode29. Yet, in small systems the mean-field equation
may not hold and the core structure different from the expectation
can emerge due to random fluctuations. As an example, networks
with Pout,in*k{cout,in , cout 5 3 and cin 5 2.85 have very small differ-
ence between nz

core and n{
core (nz

core{n{
core<0:005 Fig. 3c). While

Nz
corewN{

core is expected, networks with size N 5 1000 also generate
cores with Nz

corevN{
core and the two modes coexists with one mode

that dominates in probability (Fig. 3b, d). As the network size
increases (e.g. N 5 5000), the expected difference between Nz

core
and N{

core is more significant and networks that fall into the other

branch become very rare (Fig. 3a, e). Eventually the gap between
Nz

core and N{
core exceeds fluctuations and one branch will vanish as

the system size increases, effectively forcing the system into only one
control mode.

The above results reveal the importance of core as a fundamental
structure that controls the two control modes. This feature allows us
to switch the control modes by changing the core balance. The most
intuitive way to induce such a switch is to reverse the direction of all
links in the network. A network originally with Nz

corewN{
core that is

on the upper branch of the bifurcation will have Nz
corevN{

core in the
transpose network staying on the lower branch and vice versa. While
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Figure 3 | (a–c) Dependency between the core and the control modes for networks with Pout,in*k{cout,in , cout 5 3, cin 5 2.85 and different sizes. The

bifurcation emerges at the formation of the core. The solid lines in (a) and (b) correspond to Eq.(6) with the expected core structure Nz
core§N{

core. The

dashed lines are based on Eq.(6) when Nz
corevN{

core, as the minority of network realizations different from expectation. (c) The expected fraction of

core nodes on the 1 and 2 set (nz
coreand n{

core) based on Eq.(5). The difference between nz
core and n{

core is very small (< 0.005) and the two curves of nz
core

and n{
core almost overlap. (d,e) The distribution of nr of an ensemble of network realizations with Pout,in*k{cout,in , cout 5 3, cin 5 2.85, Ækæ 5 10

and different sizes. As the networks size increases, the core structure is closer to the expectation, eliminating the lower branch of the bifurcation

curve.
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the change of all links’ directions is too drastic, sometimes the switch
of the control mode can be induced by only local changes, occasion-
ally as little as flipping the direction of a single well chosen link29. Our
chance of finding such a link depends on the core structure: if Nz

core
and N{

core is close, the network is sensitive to link changes. Indeed in a
sample of 1000 realizations of Erdős-Rényi networks5, all networks
that are able to switch the control modes via a link’s reversal have
very close core size (Fig. 5a, b). As the core size depends on the
network size and degree distribution, the control mode is more stable
in large networks and networks with asymmetric in- and out-
degrees, in which more structural changes are required to change
the control mode. Small networks with identical in- and out-degree
distribution, however, are more likely to have close Nz

core and N{
core

therefore sensitive to structural perturbations (Fig. 5c, d).

Core Percolation and the Robustness of Control. The control mode
can be sensitive to structural changes, but the network controllability
is relatively robust. Removing a node or link can only change the
number of driver node ND by 141,42,54. To measure the importance of
nodes in sustaining the controllability over the network, a different
set of node category has been introduced28. A node is structurally
critical if the number of driver nodes has to be increased to maintain
full control in its absence (ND increases by 1), a node is structurally
redundant if it can be removed without affecting the current set of
driver nodes (ND does not change) and a node is structurally ordinary
if it is neither structurally critical or structurally redundant (ND

decreases by 1) (Fig. 2d). While the fraction of nodes in each
category can be numerically studied, the analytical approach is
missing.

Here we use the tools in core percolation to derive the analytical
expression of the fraction of nodes in each category. In the controll-
ability problem, a node has dual roles. On one hand, a node’s
dynamics is controlled via internal or external channels pointed to
it. On the other hand, a node serves as means to control other neigh-
boring nodes it points to. Such dual roles can be best seen in a net-
work’s bipartite representation. The nodes in the 1 set can be
considered as ‘‘superiors’’ that influence others internally and the
nodes in the 2 set are ‘‘subordinates’’ that need to be controlled.
Accordingly the consequence of a node’s removal relies on the node’s
role in both 1 and 2 set. If a node in the 2 set is always matched, its
removal will not change the number of unmatched nodes in the 2

set. Otherwise, the number of unmatched nodes in the 2 set will
decrease by 1. Similarly if a node in the 1 set is always matched, it
matches a node in the 2 set in all matchings. Removing this node

increases the number of unmatched nodes in the 2 set by 1.
Otherwise, the number of unmatched nodes in the 2 set will not
change as there exits alternative configurations matching the same
number of nodes. The impact of node i’s removal (node i1 and node
i2 in the bipartite graph) is summarized in Table 1. As the number of
driver nodes equals the number of unmatched nodes in the 2 set, we
readily have the relationship between a node’s structural role in
control and its matching status. A node i in a directed network is
structurally critical if in its bipartite representation both nodes i2 and
i1 are always matched. A node i is structurally ordinary if neither
node i2 nor i1 is always matched. Otherwise node i is structurally
redundant.

The expression of always matched nodes in the 2 set (nr) is
obtained in Eq.(6). With the symmetry between the 1 and 2 sets,
we can find the expression of structurally critical, ordinary and
redundant nodes as

nsc~
nz

b 1{n{
a

� �
, if Nz

core§N{
core,

n{
b 1{nz

a

� �
, if Nz

corevN{
core,

(
ð7Þ

nso~
1{nz

b

� �
n{

a , if Nz
core§N{

core

1{n{
b

� �
nz

a , if Nz
corevN{

core,

8><
>: ð8Þ

and

nsr~1{nsc{nso, ð9Þ

where nsc, nso and nsr are fractions of structurally critical, structurally
ordinary and structurally redundant nodes.

The results of Eqs.(7–9) are numerically tested (Fig. 6a). There is a
sudden change of nsc, nso and nsr on the formation of the core (Ækcæ 5

2e in the Erdős-Rényi network22,30) accompanied by the change of
fraction of a and b nodes. Note that whether a node is a driver node
depends on the matching in the 2 set only. The always matched
nodes in the 2 set can be high or low depending on the two structures
of the core. This generates the bifurcation feature where nodes’ par-
ticipations in control differ dramatically. When a node’s role in
controllability robustness is concerned, however, it depends on
matching in both the 2 and 1 sets. Therefore nsc, nso or nsr do not
show a bifurcation feature. Indeed, when the in- and out-degree
distribution are the same, Nz

core§N{
core and Nz

corevN{
core are equally

likely, but b1 5 b2 and a1 5 a2, giving rise to a single value of nsc, nso

and nsr regardless of the shape of the core. When the in- and

+

-

+

-

critical

redundant

intermittent

a b

c d

Figure 4 | (a), (b) Two networks on different control modes, with high (a) and low (b) fraction of redundant nodes. (c), (d) The core of the directed

network in (a) and (b), respectively. Network with a high fraction of redundant nodes (a) yields a core with Nz
corewN{

core (c), and vice versa.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5379 | DOI: 10.1038/srep05379 5



out-degree distribution are different, only one condition
(Nz

core§N{
core or Nz

corewN{
core) is allowed in infinite networks, gen-

erating only one value of nsc, nso and nsr. Small networks with dif-
ferent in- and out-degree distribution do have cores with
Nz

core§N{
core or Nz

corewN{
core (Fig. 3). But the difference in the

expected value of nsc, nso and nsr in the two cases are typically small
(Fig. 6b). As the result no obvious bifurcation curve can be observed
with the random noise due to the small system size.

Discussion
In summary, we apply the recent advances in core percolation to the
controllability of complex networks. Historically, core percolation
has been discovered to be related to a wide range of important pro-
blems in complex networks. Here we add a new connection to the
network controllability. In particular, we reveal the importance of
core as a fundamental structure that generates the two control
modes. The core structure determines the control mode that is
related to the participation of nodes in control under the minimum
driver nodes. The stability of the control mode under structural
perturbations also relies on the balance of the core. Moreover, we
derive the analytical expression of the fraction of nodes with different
controllability robustness. The expression obtained demonstrates
dependency on the structure of the core.

The results presented raise several intriguing questions awaiting
answers. For example, it is found that switching the balance of the
core is crucial in changing the control modes. However, an efficient

algorithm to identify a series of structure variations needed to change
the core size is still missing. We lack the method to change the control
mode in arbitrary networks. The calculation in controllability
robustness is based on uncorrelated in- and out-degree distribution.
The effects of higher order correlations require further investi-
gations. Finally, the analytical framework of core percolation is lim-
ited to model networks. In many real systems, core is quite different
from the analytical expectations. For example, many real networks
have multiple pieces of cores which is not observed in model net-
works, many real networks containing cores are not dense enough to
yield cores in theory and for those dense networks, the analytical
prediction of the core size can be off. The theoretical work in this
paper can not be simply generalized to real networks without proper
modifications. Such studies are left for future work.
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Figure 5 | (a) Distribution of Nz
core{N{

core in 1000 realizations of Erdős-Rényi networks with size N 5 500 and Ækæ 5 6. (b) Among these samples in (a),

the distribution of Nz
core{N{

core conditioning on the existence of a single link whose reversal causes a switch of control mode. The networks sensitive to

structural perturbations are typically with very close number of core nodes on each set. (c) The chance to switch the control mode by flipping one link’s

direction decreases with network size. The statistics are based on 1000 realizations of Erdős-Rényi networks with Ækæ 5 6 and different size N.

(d) The chance to switch the control mode by flipping one link’s direction decreases with degree asymmetry. The statistics are based on 1000 realizations

of scale-free networks with Pout,in*k{cout,in , Ækæ 5 12 and N 5 500.

Table 1 | Impact of node i’s removal on the number of unmatched
nodes in the – set. Node i in the directed network corresponds to
node i1 and i2 in its bipartite representation. Number 0 means no
change and 61 means the number of unmatched nodes in the –
set increases and decreases by 1 respectively

Node Always Matched Not Always Matched

i2 0 21
i1 11 0
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Methods
Generating a scale free network. The scale-free networks55 analyzed are generated
via the static model56. We start from N disconnected nodes indexed by integer number

i (i 5 1, … N). The weight w+
i ~i{a+ is assigned to each node in the out and the in set,

with a6 a real number in the range [0, 1). Randomly selected two nodes i and j
respectively from the out set and the in set, with probability proportional to wz

i
and w{

j . Connect node i and j if there is no connection between them, corresponding
to a directed link from node i to node j in the digraph. Otherwise randomly
choose another pair. Repeated the procedure until Ækinæ 5 Ækoutæ 5 Ækæ/2
links are created. The degree distribution under this construction is

P+ kð Þ~ kh i 1{a+ð Þ=2½ �1=a+

a+

C k{1=a+, kh i 1{a+ð Þ=2ð Þ
C kz1ð Þ with C(s) the gamma

function and C(s, x) the upper incomplete gamma function. In the large k limit, the

distribution becomes P+ kð Þ*k{ 1z 1
a+ð Þ~k{c+ .

Eliminating correlations between in- and out-degree distribution. The calculation
of controllability robustness is based on the assumption that a node’s role in the 1 set
is independent of its role in the 2 set, which requires independent in- and out-degree
distribution. The scale free network directly generated by static model has degree
correlations. For example, node 1 in both the 1 and 2 set have the largest expected
degree. To eliminate the degree correlation, we randomize the sequence of w6.
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Figure 6 | (a) nsc, nso and nsr in Erdős-Rényi networks with N 5 10000 and

different average degree Ækæ. The solid lines correspond to Eqs.(7–9). There

is a sudden change at Ækæ 5 2e when the core emerges. (b) Analytical results

of nsc, nso and nsr based on Eqs.(7–9) in networks with Pout,in*k{cout,in , cout

5 3, cin 5 2.85 and different Ækæ. The solid lines correspond to the expected

core structures (Nz
core§N{

core) and the dashed lines are the results for core

structures different from the expectation (Nz
corevN{

core). The difference of

the results between the two core structures are small. Therefore even

though in small systems both core structures are possible, there is no

bifurcation observed.
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How to cite this article: Jia, T. & Pósfai, M. Connecting Core Percolation and
Controllability of Complex Networks. Sci. Rep. 4, 5379; DOI:10.1038/srep05379 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International License. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5379 | DOI: 10.1038/srep05379 8

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Title
	Figure 1 A bipartite graph with a core (highlighted).
	Figure 2 
	Figure 3 
	Figure 4 
	Figure 5 
	Table 1 Impact of node i’s removal on the number of unmatched nodes in the - set. Node i in the directed network corresponds to node i+ and i- in its bipartite representation. Number 0 means no change and &plusmn;1 means the number of unmatched nodes in the - set increases and decreases by 1 respectively
	References
	Figure 6 

