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Granger causality analysis is becoming central for the analysis of interactions between neural populations and oscillatory networks.
However, it is currently unclear whether single-trial estimates of Granger causality spectra can be used reliably to assess directional
influence. We addressed this issue by combining single-trial Granger causality spectra with statistical inference based on general
linear models. The approach was assessed on synthetic and neurophysiological data. Synthetic bivariate data was generated
using two autoregressive processes with unidirectional coupling. We simulated two hypothetical experimental conditions: the
first mimicked a constant and unidirectional coupling, whereas the second modelled a linear increase in coupling across trials.
The statistical analysis of single-trial Granger causality spectra, based on t-tests and linear regression, successfully recovered the
underlying pattern of directional influence. In addition, we characterised the minimum number of trials and coupling strengths
required for significant detection of directionality. Finally, we demonstrated the relevance for neurophysiology by analysing two
local field potentials (LFPs) simultaneously recorded from the prefrontal and premotor cortices of a macaque monkey performing
a conditional visuomotor task. Our results suggest that the combination of single-trial Granger causality spectra and statistical
inference provides a valuable tool for the analysis of large-scale cortical networks and brain connectivity.

1. Introduction

The study of linear dependence between time series is central
in many fields of science inferring causal relations among
components of complex systems. The notion of causality
between two time series was introduced by Wiener [1] and
was later formalised by Granger within the framework of
multivariate autoregressive (MVAR) linear models [2]. The
definition of Granger-Wiener causality is based on statistical
prediction: a time series has causal influence on another if the
variance of the autoregressive prediction error of the later is
reduced by including the past measurements of the former.
Geweke demonstrated that pairwise time-domain Granger
causality can be additively decomposed by frequencies [3]
and introduced measures of directional linear dependence
between two time series conditioned on a third [4]. Recently,
Dhamala et al. [5] showed that Granger causality spectra can
be estimated from Fourier and wavelet transforms of time
series data, in addition to parametric spectral estimation
methods.

In neuroscience, pairwise and conditional Granger caus-
ality spectra, based on parametric and nonparametric spec-
tral methods, are becoming central for the analysis of in-
teractions between neural populations within oscillatory
brain networks [6–9]. In fact, current literature suggests that
oscillations in neural populations activity, such as the local
field potentials (LFPs), play a key role in modulating, filter-
ing, and redirecting information in the nervous system [10–
12]. Within this framework, Granger causality analysis is em-
ployed to reveal directional influences within oscillatory net-
works, such as during motor maintenance behaviours [13],
and, more generally, it represents a crucial tool for the in-
vestigation of the neurophysiological substrate of cognitive
functions [14].

Conventional research in neuroscience employs single-
trial-experimental designs and performs statistical inference
on single-trial dependent variables. The study of large-scale
neural interactions and oscillatory activity, as measured
with electroencephalography or magnetoencephalography
(EEG/MEG) data and local field potentials (LFPs), is no
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Figure 1: Simulations. Spectral analysis of synthetic data generated using a two-node network model with two autoregressive processes X1

and X2 and unidirectional coupling from X2 to X1. (a) shows the power spectra for X1 and X2, (b) shows their phase synchrony spectrum,
and (c) depicts the Granger causality spectra.

exception. In fact, neural correlates of cognitive functions are
classically searched in modulations of signal power and
phase synchrony between channels. Current tools allow the
estimation of spectral measures using Fourier and wavelet
transforms on a single trial basis [15, 16]. Statistical inference
can then be performed within the framework of general
linear models (GLM) [17]. Non-parametric (or distribution-
free) inferential statistical methods are also used when no
assumption about the probability distributions of the depen-
dent variables can be made. However, it is currently unclear
whether single-trial estimates of Granger causality spectra, as
can be computed using non-parametric methods [4, 5], can
be used reliably to assess directional influences among neur-
al oscillations. In the current paper, we addressed this issue
by combining single-trial Granger causality spectra with sta-
tistical inference based on the GLM approach. We assessed
the suitability of the approach through the analysis of syn-
thetic data consisting of a two-node network model with two
autoregressive processes. In addition, we tested the tools on
one exemplar neurophysiological recording session consist-
ing of a pair of LFPs recorded simultaneously from the dorsal
premotor and lateral prefrontal cortex of a macaque monkey
performing a conditional visuomotor task. Overall, the re-
sults suggest that the combination of single-trial Granger
causality spectra and statistical inference provides a useful
tool for the investigation of brain connectivity.

2. Materials and Methods

2.1. Synthetic and Neurophysiological Data. To investigate
whether directional coupling between bivariate signals can be

inferred by combing single-trial Granger causality measures
with parametric statistical tests, we analysed synthetic and
neurophysiological data. Here is a description of the models
used to generate synthetic data and the experimental meth-
ods of the neurophysiological recordings.

2.1.1. Synthetic Data. We considered a two-node network
model with two autoregressive processes X1 and X2 and uni-
directional coupling from X2 to X1:

X1(t) = 0.35 X1(t − 1)− 0.5 X1(t − 2) + CX2(t − 1) +∈t ,

X2(t) = 0.55 X2(t − 1)− 0.8 X2(t − 2) + ξt ,
(1)

where ∈t and ξt are Gaussian white noise processes with zero
means and unit variances, C is the coupling strength. The
sampling frequency was considered to be 200 Hz (similar to
[5]). The signals display a peak at 40 Hz in power and phase
synchrony spectra (Figures 1(a) and 1(b), the left and central
panel, resp.). From the construction of the model, we can
see that X2 has a causal influence on X1 (Equation (1) and
Figure 1(c)). We performed three sets of simulations. In all
simulations, each trial comprised 100 points (500 msec of
simulated data for a sampling rate of 200 Hz). In the first
set of simulations, we mimicked a hypothetical experimental
condition with a constant and unidirectional (i.e., from X2

to X1) coupling strength C = 0.3. We generated a data set
containing 100 sessions, each composed of 50 trials. This data
set was then used to characterise the sensitivity of the sta-
tistical analysis with respect to trial number in each session.
In other words, we studied the statistical power of the tests
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Figure 2: Neurophysiological experiments. (a) Conditional visuomotor task design. At each trial, the stimulus was presented at the centre
of the screen (i.e., the warning stimulus) for a delay ranging from 0.75 to 2.25 seconds, in steps of 0.25 seconds (i.e., variable foreperiod
paradigm). After stimulus offset (the instructive stimulus), the monkey had to execute the associated joystick movement to obtain reward.
(b) Location of the two microelectrodes used to record the LFP analysed in the current paper. The electrodes were placed in the lateral
prefrontal (lPFC) and dorsal premotor cortices (PMd).

by analysing data sets containing sessions with fewer trials
(from 2 to 50 trials). In the second set of simulations, we gen-
erated synthetic data to investigate the range of coupling
strengths that can be detected using the current approach.
We generated 30 data sets (each containing 100 sessions and
50 trials) using coupling strengths C ranging from 0.01 to
0.3, in steps of 0.01 (30 possible values). In a third set of
simulations, we modelled a linear increase in coupling across
trials, as could be expected in experimental tasks exploring
dynamic behaviours, such as during learning. We generated
100 sessions, each containing 150 trials, using coupling
strength varying linearly across trials from 0 to 0.3 in steps of
0.3/m, where m was the number of trials in each session.
For example, in the simulations with 150 trials, the coupling
strength C at trial 1 was equal to 0, it increased linearly at a
rate of 0.002 every trial (i.e., 0.3/150), and it was 0.3 at tri-
al number 150. This dataset was also used to investigate sta-
tistical sensitivity as the number of trials in each session de-
creased from 150 to 4.

2.1.2. Neurophysiological Data. Neurophysiological record-
ings were conducted on a rhesus monkey at the Institut de
Neurosciences Cognitives de la Méditerranée in the labo-
ratory of Driss Boussaoud. Animal care and surgical proc-
edures were in accordance with the European Communi-
ties Council Directive (86/609) for the use and care of lab-
oratory animals in research. Results from literature suggest
that the lateral prefrontal and dorsal premotor cortices play
a key role in the acquisition and execution of arbitrary vis-
uomotor associations (e.g., [18–20]). The aim of the elec-
trophysiological study was to understand how these cortical
areas coordinate during the acquisition and execution of
arbitrary visuomotor associations. The entire neurophysiol-
ogical database contains 93 recording sessions. In each ses-
sion, the spiking activity of single neurons and the local

field potentials (LFPs) were recorded from up to 4 tungsten
micro-electrodes simultaneously placed in the lateral pre-
frontal (ventrolateral and dorsolateral prefrontal cortex,
vlPFC and dlPFC, resp.) and dorsal premotor cortex (PMd).
The analysis of the full dataset is beyond the scope of the
current paper. However, the dataset represents an optimal
benchmark to test our method on realistic neurophysiologi-
cal bivariate data. Therefore, we analysed a pair of LFPs from
one exemplar neurophysiological session.

The behavioural task required the monkey to perform a
conditional visuomotor task associating three abstract ima-
ges to three joystick movements (Figure 2(a)). The task de-
sign conforms a variable foreperiod (FP) paradigm. Stimulus
onset can be defined as the warning stimulus (WS), and its
stimulus disappearance represents the imperative stimulus
(IS) instructing the monkey to perform the action. The fore-
period duration (FP) is the time interval between the warn-
ing and imperative stimuli. A trial started when the animal
held a joystick at a central position for 0.25 seconds. There-
after, the stimulus was presented at the centre of the screen
for a delay ranging from 0.75 to 2.25 seconds (the foreperiod
duration), in steps of 0.25 seconds (7 possible delays). Delay
durations were randomised across trials, and their offset
instructed the monkey to execute the associated joystick
movement, either to the right, up, or left. If movement di-
rection was correct, a reward (fruit juice) was delivered after
a fixed delay of 0.8 seconds; if incorrect, a purple circle ap-
peared for 1.5 seconds as an error signal. The animal had
1 second to move the joystick in one of the three possible
directions. If the response occurred late, the trial was
aborted.

Local field potentials (LFPs) were simultaneously record-
ed from two electrodes (the sampling rate was 1000 Hz, and
the raw signals were band-pass filtered from 1 to 250 Hz)
placed in the lateral prefrontal cortex (lPFC) and dorsal
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premotor area (PMd), respectively (Figure 2(b)). We anal-
ysed 259 epochs of 0.5 seconds in duration preceding the
go cue (the imperative stimulus, IS) to present a single-case
analysis illustrating how the neural oscillatory correlates of
motor planning and/or expectation processes can be sear-
ched in the brain. To do so, we searched for trial-by-trial
linear correlations between LFP spectral measures, such as
power, phase synchrony, and Granger causality, and the IS
expectancy. Imperative stimulus expectancy was estimated
at each trial from the cumulative probability of IS occur-
rence, PIS. Since the foreperiod delays ranged from 0.75
to 2.25 seconds (in steps of 0.25 seconds), the cumulative
probability of IS occurrence (PIS) was 1/7 for the shortest
delay (0.75 seconds) and 1 for the longest (2.25 seconds).
We then defined Sfp = −log(PIS) as the surprisal, or self-
information, measuring the information content associated
with IS occurrence. The surprisal in foreperiod duration Sfp

is zero when the probability of occurrence of the go-signal
PIS is 1, that is, when the foreperiod duration is 2.25 seconds.
In the analysis of the LFP, we correlated signal power, phase
synchrony, and Granger causality at different frequencies
using linear regression with the surprisal measure Sfp (more
details in Section 2.3.3).

2.2. Single-Trial Granger Causality Spectra. To perform sta-
tistical inference based on parametric tests, we estimated
Granger causality spectra on a single-trial basis. To do so,
we computed the spectral density matrix for each trial using
discrete fast Fourier transform (FFT) and Hanning window
tapering of both synthetic and LFP time series data. The
length of the FFT was 250 msec, stepped every 5 msec and
zero-padded to 1 s to produce a frequency resolution of 1 Hz.
Since each trial lasted 500 msec, the analysis produced 50 dis-
crete FFTs for each trial. The spectra density matrix S(n)lm at
trial n at channels l and m (l, m = 1, 2 in our case) was then
given by

S(n)lm =
〈
X(τ,n)l,n · X(τ,n)∗m,n

〉
τ
, (2)

where X(τ,n)l,n is the FFT of a 250 msec epoch of signal
centred at time lag τ within trial n, the expectation (denoted
by 〈· · · 〉τ) is taken over all FFTs at different time lags τ
within a trial and ∗ denotes the complex conjugate. In
other words, the “proper” ensemble averaging required to
estimate the spectral matrix (e.g., equation 17.15 in [6]) is
not performed over trials, but over time epochs within each
trial. Note that we dropped the frequency suffix from the
spectral measures for simplicity.

The single-trial spectra matrix S(n)lm was then factori-
sed using Wilson’s algorithm to obtain the transfer function
H and noise covariance matrix Σ [5, 8, 21, 22]. This step
is critical in the estimation of Granger causality using non-
parametric spectral analysis methods. The pairwise single-
trial Granger causality spectra are then given by

I(n)l→m = S(n)ll
S(n)ll −

(
Σmm − Σ2

lm/Σll

)∣∣H(n)lm
∣∣2 . (3)

2.3. Statistical Analysis of Single-Trial Granger

Causality Spectra

2.3.1. General Linear Model Approach to Single-Trial Granger
Causality Spectra. We adopted a general linear model (GLM)
approach to analyse the single-trial Granger causality spectra.
Granger causality measures issued from the synthetic and
neurophysiological data are not normally distributed. Non-
parametric statistical tests should be preferred. However,
since that the GLM approach plays a key role in classical
inference in neuroimaging and neurophysiology, we log-
transformed Granger causality spectra to render the data ap-
proximately Gaussian (Figure 3) (refer also to [17]). The
general linear model is normally expressed in matrix formu-
lation,

Y = Xβ + e, (4)

where Y is the dependent variable and is a column vector
containing the data observations; e is a column vector of
error terms; β is the column vector of model parameters (β =
[β1, . . . ,βp]T , where p is the number of model parameters);
X is j× p design matrix, whose column vectors represent the
independent variables. Model parameters β were estimated
using an ordinary least square method. In the current stud-
y, hypothesis testing and statistical inference were then per-
formed using “contrast” vectors.

2.3.2. Analysis of Synthetic Data. We performed statistical
analysis of single-trial Granger causality spectra computed
from three simulations. The first data set was generated to
simulate a constant and unidirectional coupling from X2

to X1. Our goal was to assess whether the underlying pat-
tern of directional influence could be recovered from the
statistical analysis of the data, in particular through the use
of paired two-sample t-tests. The t-test assessed whether the
mean values of log-transformed Granger causality spectra
from X2 to X1 at a given frequency were significantly great-
er than from X1 to X2. Given that the synthetic data is
generated using a unidirectional coupling from X2 to X1,
there is justification for testing for significant difference
specifically in one direction only (one-sided t-test). Accord-
ing to the nomenclature used above, we let Y( j) =
[log10I(n)2→ 1, log10I(n)1→ 2]T be a 2n×1 column vector con-
taining the two concatenated log-transformed single-trial
Granger causality values at a given frequency and session (for
simplicity, the suffices for frequency and session were drop-
ped), where j = 1, . . . , 2n and n is the number of trials. The
two-sample t-test is built using a design matrix X with two
columns and j rows with variables indicating group mem-
bership (ones and zeros). We tested the hull hypothesis
H0log10I(n)2→ 1 = log10I(n)1→ 2 against the alternative hypo-
thesis H1log10I(n)2→ 1 > log10I(n)1→ 2 using the contrast c =
[1− 1]T . The t-test was performed at each frequency from
2 to 80 Hz and for each session. This procedure leads to 100
t-values and associated P-values at each frequency. To char-
acterise the sensitivity of the statistical analysis with respect
to the number of trials analysed in each simulated session, we
performed t-tests on the log-transformed Granger causality
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Figure 3: Distribution of log-transformed Granger causality data. Distribution of the log-transformation Granger causality values for
synthetic (a) and LFP data (b). Histograms were computed using a number of bins equal to the square root of the number of elements
in data.

values at 40 Hz (i.e., the peak frequency) and reduced the
number of trials used in the statistical analysis, from 50 to
2 (i.e., 49 values). This produced 49 sets of 100 t- and
P-values. Finally, we analysed the 49 sets of P-values to
quantify the minimum number of trials required to detect
unidirectional coupling from synthetic data. Assuming that
the null hypothesis H0log10I(n)2→ 1 = log10I(n)1→ 2 is false
(i.e., the synthetic data was generated using a unidirectional
coupling strength C = 0.3 from X2 to X1); we estimated the
probability to perform type II errors for each trial number
(from 2 to 50 trials) at three significance levels α = 0.01, 0.001
and 0.0001. As a reminder, type II errors occur when a false
null hypothesis is accepted. The probability of committing
this kind of errors is defined as β, and the power of the
statistical test is 1−β. By convention, we used a minimum
required power of 0.8 as a cutoff for the determination of the
minimum number of trials required to obtain a significant
discrimination of the directional coupling in the data. In
our analysis, type II error, occurred if the estimated P-
value exceeded the significance level α. The probability β
to perform Type II errors was estimated as the number of
sessions displaying type II errors divided by the total number
of sessions (100). The associated power was then given by 1–
β. This procedure was repeated for all trial numbers (from 2
to 50) so to give three curves of statistical power associated to
three significance levels.

The second set of simulations was generated to assess
the ability to detect smaller coupling strengths. We analysed
30 data sets (each containing 100 sessions and 50 trials)

each generated using different coupling strengths C vary-
ing from 0.01 to 0.3. We performed t-tests of the log-
transformed Granger causality values at 40 Hz to test the
hull hypothesis H0log10I(n)2→ 1 = log10I(n)1→ 2 against the
alternative hypothesis H1log10I(n)2→ 1 > log10I(n)1→ 2 us-
ing the contrast c = [1− 1]T . The t-test was repeated at all
coupling strengths values to produce 30 sets of 100 t-va-
lues and associated P-values. To estimate the minimum
coupling strength C detectable with the current approach, we
performed power analysis (described in the previous para-
graph) as a function of coupling strength at three levels of sig-
nificance α = 0.01, 0.001, and 0.0001.

In the third set simulations, we modelled a linear in-
crease in coupling strength C across trials. The simulations
generated 100 sessions, each containing 150 trials. To retrieve
the correct pattern of directional influence, we performed
linear regression analysis. We let Y(n) = [log10I(n)2→ 1]T be
a n×1 column vector containing the log-transformed single-
trial Granger causality values at 40 Hz, where n is the number
of trials. The design matrix X contained two columns and n
rows. The first column modelled baseline and contained only
ones, whereas the second column contained the values of the
actual coupling strengths C as they varied across trials. The
linear regression was then tested using a contrast c = [01]T .
To assess the sensitivity of the statistical analysis with respect
to the number of trials analysed in each session, we reduced
the number of trials used in the statistical analysis, from 150
to 3 stepped every trial (i.e., 148 values). This produced 148
sets of 100 t and P-values. The minimum number of trials
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required to detect significant effects was estimated using the
power analysis at three significance levels α = 0.01, 0.001, and
0.0001.

2.3.3. Analysis of Neurophysiological Data. We studied the
relevance for neurophysiology by analysing two local field
potentials (LFPs) simultaneously recorded from the prefron-
tal and premotor cortices of a macaque monkey performing a
conditional visuomotor task. As mentioned in Section 2.1.2,
the monkey performed a conditional visuomotor task based
on a variable foreperiod (FP) paradigm. We searched for
linear correlations between the surprisal in foreperiod dur-
ation Sfp (i.e., −log(PIS)) and modulations in signal power,
phase synchrony, and Granger causality at each frequency.
Spectral analysis of LFP data was performed using the same
parameters used for synthetic data. Briefly, the LFP power,
phase synchrony, and Granger causality spectra were com-
puted at single trials in a time window of 500 msec preceding
the imperative stimulus (IS), using FFT sliding windows
of 250 msec, stepped every 5 msec and zero-padded to 1 s.
We performed linear regression analysis at each frequency
between the trial-by-trial modulations in LFP spectral esti-
mates (i.e., power, phase synchrony, and Granger causality)
and the surprisal in foreperiod duration Sfp using the GLM
approach described above. In other words, we let Y(n) be an
n × 1 column vector containing the spectral measures (the
log-transformed power, phase synchrony, Granger causality
values), where n is the number of trials. The design matrix
X contained two columns and n rows. The first column
modelled baseline and contained only ones whereas the
second column contained the values of the surprisal in
foreperiod duration Sfp as they varied across trials. Since
Sfp scales negatively with respect to the expectancy of IS
occurrence, we tested a negative linear regression using a
contrast c = [0− 1]T . At each frequency, we obtained a t-
value and associated P-value.

2.3.4. Software Implementation. All simulations and analyses
were performed on MATLAB software (The MathWorks,
Inc.). Spectral analysis was performed using functions from
EEGlab software (http://sccn.ucsd.edu/eeglab/), whereas
spectral matrix decomposition was performed using func-
tions implemented in FieldTrip software (http://fieldtrip
.fcdonders.nl/). Statistical analyses were performed using
Matlab Statistical Toolbox.

3. Results and Discussion

3.1. Synthetic Data. We simulated a two-node network mod-
el with two autoregressive processes X1 and X2, and uni-
directional coupling from X2 to X1 (1). The sampling fre-
quency was considered to be 200 Hz, leading to signals with
a peak at 40 Hz in the power and phase synchrony spec-
tra (Figure 1(a) and 1(b), resp.). From the construction
of the model, X2 had a linear causal influence on X1

(Equation (1) and Figure 1(c)). To investigate whether dir-
ectional influence between bivariate signals could be infer-
red by combining single-trial Granger causality measures

with statistical inference methods, we performed three sim-
ulations. In the first set of simulations, we mimicked a hypo-
thetical experimental condition with a constant coupling
across trials (i.e., C = 0.3). We then performed paired
two-sample t-tests between the log-transformed Granger
causality spectra to assess whether the mean values of log-
transformed Granger causality spectra from X2 to X1 at
a given frequency were significantly greater than from X1

to X2. The t-test was performed at each frequency from
2 to 80 Hz and for each session (100 in total). This leads
to 100 t-values and associated P-values at each frequency (see
Section 2.3.2). Figure 4(a) depicts the boxplot representation
of the distribution of the 100 P-values at each frequency. The
results show that the statistical analysis is able to correctly
infer the directional influence from X2 to X1. In fact, the
boxplots peak at 40 Hz and the P-values at 40 Hz are less than
10−6 (i.e., highly significant). To characterise the sensitivity
of the statistical analysis with respect to the number of
trials analysed in each session, we performed t-tests on the
log-transformed Granger causality values at 40 Hz (i.e., the
peak frequency) and reduced the number of trials used in
the statistical analysis, from 50 to 2. Figure 4(b) shows the
boxplot of the P-values over the number of trials simulated
in each session. As expected, the mean P-values increase as
the number of trials is reduced. To determine the minimum
number of trials required to detect unidirectional coupling
from synthetic data, we performed statistical power analysis
(see Section 2.3.2). Briefly, statistical power is defined as
1−β, where β is the probability to perform type II errors
(i.e., acceptance of a false null hypothesis) for three signif-
icance levels α = 0.01, 0.001, and 0.0001. The minimum
number of trials required is defined as the first trial number
whose statistical power exceeds 0.8. Figure 4(c) shows the
statistical power for three significance levels. The minimum
number of trials required for a statistical significance of 0.01,
0.001, and 0.0001 was 8, 13 and 18, respectively. To con-
clude, the results from the first simulation suggest that the
combination of statistical inference based on parametric
tests, such as t test, with single-trial Granger causality spectra
successfully recovers the underlying pattern of directional
influence with a limited number of trials.

In the second simulations, we investigated the range of
coupling strengths that can be detected using the current ap-
proach. We generated synthetic data using coupling strengths
varying from 0.01 to 0.3. Figure 5(a) shows the boxplot of the
P-values as a function of coupling strength C. The P-values
increase as the coupling strengths are decreased. To estimate
the minimum coupling strength C detectable from synthetic
data, we performed statistical power analysis (as described
in the methods section) for three levels of significance α
= 0.01, 0.001, and 0.0001. Figure 5(b) shows the statistical
power curves, and it shows that the minimum coupling
strengths detectable at statistical significances of 0.01, 0.001,
and 0.0001 were 0.09, 0.11, and 0.14, respectively. The re-
sults therefore pointed out the limitation of the current
approach to relatively high values of coupling strengths for
a limited number of trials (i.e., 50 as in this case). However,
for coupling strength greater than 0.14, the results suggest
that directionality can be estimated with high significance.

http://sccn.ucsd.edu/eeglab/
http://fieldtrip.fcdonders.nl/
http://fieldtrip.fcdonders.nl/
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Figure 4: Simulation 1. (a) Granger causality p-spectra. Boxplot representation of the distribution of the P-values associated with each
t-test. At each frequency, the circle in the box is the median value, the edges of the box are the 25th and 75th percentiles, and the whiskers
extend to the most extreme data points. The P-values in each boxplot are associated with H1log10I(n)2→ 1 > log10I(n)1→ 2. (b) Boxplot of the
P-values plotted over the number of trials simulated in each session. (c) Statistical power curves at three levels of significance α = 0.01, 0.001
and 0.0001. By convention, the minimum required power of 0.8 was set as a cutoff for the determination of the minimum number of trials
required to obtain a significant discrimination of the directional coupling in the data.
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Figure 5: Simulation 2. (a) Granger causality p-spectra. Boxplot representation of the distribution of the P-values associated with each
t-test as a function of the coupling strength C. (b) Statistical power curves at three levels of significance α = 0.01, 0.001, and 0.0001 over the
coupling strength C.

In the third simulations, we modelled a linear increase
in directional influence from X2 to X1 varying from 0 to 0.3
across 150 trials (as could be expected in dynamic experi-
mental tasks, such as during learning tasks). We performed
linear regressions on a trial-by-trial basis between the

log-transformed Granger causality spectra from X2 to X1

and the coupling strengths. Figure 6(a) shows the Granger p-
spectra displaying the boxplot representation of the P-values
associated with the linear regressions performed at each freq-
uency. The boxplots show that the statistical analysis based
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Figure 6: Simulation 3. (a) Granger causality p-spectra. Boxplot
of the P-values associated with the linear regressions performed
at each frequency between the log-transformed Granger causality
spectra and the coupling strengths varying across trials. (b) Boxplot
of the P-values plotted over the number of trials simulated in each
dataset. (c) Statistical power curves at three levels of significance α
= 0.01, 0.001, and 0.0001 as a function of the number of trials used
in each session.

on linear regression recovers the expected pattern of direc-
tional influence from X2 to X1. Statistical P-value less than
0.01 are observed at the peak frequency of 40 Hz. To better
quantify the minimum number of trials in each session
required to significantly detect directional influence from the
data, we performed linear regressions on the log-transform-
ed Granger causality measures at 40 Hz (i.e., the peak fre-
quency) on datasets containing fewer and fewer trials (from
150 to 4 trials). Figure 6(b) shows the boxplot of the P-va-
lues over the number of trials simulated in each dataset.
Statistical power analysis showed that the minimum number
of trials required for a statistical significance of 0.01, 0.001,
and 0.0001 were approximately 70, 110 and 145, respectively
(Figure 6(c)). Therefore, the results suggest that to detect

linear increases in coupling strengths across trials using lin-
ear regression, the minimum number of trials is larger than
the number of trials required to detect constant directionality
(Figure 4(c)).

The results of the simulations showed that single-trial
estimates of Granger causality spectra can be used to quantify
directional influence between bivariate synthetic data when
combined with statistical inferences based on the GLM ap-
proach, such as t-tests (Figures 4(a) and 5(a)) and linear
regression (Figure 6(a)). As expected, the method show
sensitivity with respect to the number of trials used for
statistical analysis (Figures 4(b) and 6(b)) and the coup-
ling strength C (Figure 5(b)). The lower the number of
trials and coupling strength, the less significant is the statisti-
cal analysis. The simulations quantified the minimum
number of trials (Figure 4(c) and Figure 6(c)) and the range
of coupling strengths (Figure 4(c)) required to detect
directionality at different significance levels. To conclude,
the simulation studies indicate that statistical inference
based on general linear models (GLM) in combination with
single-trial Granger causality spectra is a valuable tool to
infer directional coupling among bivariate signals. Most
importantly, the results suggest that the full range of
statistical methods based on parametric (e.g., analysis of
variance (ANOVA)) and non-parametric tests, general and
generalized linear models, can be used to analyse single-trial
Granger causality spectra issued from neurophysiological
experiments. Even though the current work focused on
Granger causality measures, we should stress that alternative
methods can be used to quantify directional interactions,
such as partial directed coherence (PDC), directed transfer
function (DTF), directed transfer function (DTF), and
transfer entropy (TE). While a detailed evaluation of the
reliability of these measures was beyond the scope of the
current paper (e.g., [23, 24]), we suggest that our simple
statistical approach may be applied to alternative measures
of directional coupling.

3.2. Neurophysiological Data. To investigate the feasibility of
the current approach on realistic data, we analysed an exem-
plar neurophysiological session. Given that the monkey per-
formed a conditional visuomotor task based on a variable
foreperiod (FP) paradigm, we searched for linear correla-
tions between the surprisal in foreperiod duration Sfp (i.e.,
−log(PIS)) and modulations in signal power, phase syn-
chrony, and Granger causality in a time window of 500 msec
preceding the imperative stimulus (IS). At each frequency,
we performed linear regression analysis between the trial-by-
trial modulations in power, phase synchrony, and Granger
causality with Sfp. Given that Sfp scales negatively with the
probability of occurrence of the go cue (i.e., IS expectancy),
we searched for negative linear correlations. Figure 7 shows
the p-spectra associated with the linear regressions. Signal
power in the lateral prefrontal cortex (blue curve Figure 7(a))
shows linear negative correlation with respect to Sfp, mainly
in the beta range (from 15 to 30 Hz). A similar tendency is
observed for the LFP in the PMd cortex, although not sig-
nificant (green curve in Figure 7(a)). Phase synchrony
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Figure 7: Neurophysiological results. Spectral analysis of neurophysiological data displaying p-spectra for (a) LFP power, (b) phase
synchrony, and (c) Granger causality.

between the LFPs in the two cortical areas displays significant
effects in the same frequency band, peaking around 25 Hz
(Figure 7(b)). This indicates that the two areas oscillated sy-
nchronously in the beta range, and the degree of coherence
scaled with the probability of occurrence of the go-cue.
We then correlated the Granger causality measures with the
values of Sfp, and we found that the coherence between the
LFPs recorded in the two cortical areas can be explained
by a unidirectional Granger causality influence from the la-
teral prefrontal cortex to the dorsal premotor area. The
amount of Granger causality scales negatively with Sfp. This
shows that the directional influence among the two areas
increases with time as the probability of occurrence of the go
cue increases. The prefrontal and premotor cortices, in ad-
dition to the basal ganglia, supplementary motor area, and
cerebellum, have all been linked to the explicit estimation
of duration [25]. Even though no conclusion can be drawn
from the analysis of a single neurophysiological session, the
current single-case analysis suggests a top-down effect of
the lateral prefrontal cortex onto the dorsal premotor area.
Further analyses of the full neurophysiological dataset are
required to better understand the dynamic interplay between
the prefrontal and premotor cortices in the prediction and
update of temporal expectations as foreperiod unfolds. Over-
all, as an approach to large-scale cortical network analysis,
our results suggest that statistical analyses of single-trial
Granger causality spectra provides a valuable tool for in-
depth investigation of the functional coupling of distributed
neuronal assemblies.

4. Conclusions

The analysis of the synthetic data showed that directional
coupling between bivariate signals can be inferred by comb-
ing single-trial Granger causality measures with parametric
statistical tests based on a GLM approach. The statistical an-
alysis of single-trial Granger causality spectra, based on
t-tests and linear regression, successfully recovered the un-
derlying pattern of directional influence. In addition, we
characterised the minimum number of trials and coupling
strengths required for significant detection of directionality.
In fact, the number of trials required to obtain significant
corresponds to conventional experimental situations. Finally,
we demonstrated the relevance for neurophysiology by an-
alysing two local field potentials (LFPs) simultaneously re-
corded from the prefrontal and premotor cortices of a maca-
que monkey performing a conditional visuomotor task. Our
results suggest that the combination of single-trial Granger
causality spectra and statistical inference provides a valuable
tool for the analysis of large-scale cortical networks and brain
connectivity. We suggest that the current approach may re-
present a simple statistical tool useful for the analysis of neu-
rophysiological recordings issued from electroencephalo-
graphic (EEG), magnetoencephalographic (MEG), and in-
tracranial EEG experiments. The approach may be extended
to the full range of statistical methods based on parametric
(e.g., analysis of variance (ANOVA)) and non-parametric
tests, general and generalized linear models. Finally, we
suggest that the same approach may be applied to alternative
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measures of directional coupling based on the Granger cau-
sality principle.
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