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Abstract: The incessant developments in the pharmaceutical and biomedical fields, particularly,
customised solutions for specific diseases with targeted therapeutic treatments, require the design of
multicomponent materials with multifunctional capabilities. Biodegradable polymers offer a variety
of tailored physicochemical properties minimising health adverse side effects at a low price and
weight, which are ideal to design matrices for hybrid materials. PLAs emerge as an ideal candidate
to develop novel materials as are endowed withcombined ambivalent performance parameters. The
state-of-the-art of use of PLA-based materials aimed at pharmaceutical and biomedical applications
is reviewed, with an emphasis on the correlation between the synthesis and the processing conditions
that define the nanostructure generated, with the final performance studies typically conducted with
either therapeutic agents by in vitro and/or in vivo experiments or biomedical devices.

Keywords: polylactide; stereocomplex; biomedicine; processing conditions; tailored pharmaceutical
treatments; personalised medicine

1. Introduction

Biomaterials are natural or engineered substances that interact with components of
living systems that can be exploited for a medical purpose, either as therapeutic or diag-
nostic agents [1]. The development of novel, customised solutions urged by society to
minimise detrimental invasive side effects involves complex multifunctional compounds
that feature ambivalent properties. Likewise, the molecular engineered design should
consider the processing steps required to generate the final material as well as the mech-
anism of application to attain a high performance of the targeted activities. Particularly,
metals are typically used when mechanical strength or electrical conductivity is required,
whilst ceramics exhibit a high compressive strength and relative chemical inertness and
polymers possess a great potential due to the chemical flexibility that endows them with
a wide range of physical and mechanical properties, as well as activities through their
functionalisation [2]. The use of biopolymers as agents for medical applications dates
back thousands of years, when, in ancient India and Egypt, wounds were sutured by
using natural polymers such as catgut and silk. Likewise, naturally occurring polymers,
such as polysaccharides and proteins, are abundantly available and have been widely
used in biomedicine ranging from wound dressing to arterial and skin grafts. However,
its application in the field of medicine is limited due to the risk of infections, antigenic-
ity, and batch-to-batch variability [3]. In contrast, the application of synthetic polymers
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in medicine was reported more recently during the Second World War, when Nicholas
Harold used poly(methyl methacrylate) (PMMA) as an artificial corneal substitute [4].
Subsequently, several biostable (non-degradable under physiological conditions) synthetic
polymers were employed in the biomedical field, such as polyethylene terephthalate (PET)
for vascular grafts, polydimethylsiloxane (PDMS) for breast implants, and polyethylene
(PE) for hip joint replacements [3], due to their mass production at an industrial scale that
endows them with a low cost, batch-to-batch reproducibility, and flexibility for performing
function-specific applications. In addition, hydrolysable polymers such as polylactic acid
(PLA) were considered valuable for degradable surgical implants to avoid a subsequent
clinical intervention for removing the medical implant [5]. Since then, the development of
biodegradable (under physiological conditions) polymers, such as polyesters, poly-ester-
urethanes, polycarbonates, etc., for biomedical applications, such as bone grafts, sutures,
and 3D scaffolds, and for pharmaceutical applications such as drug delivery systems or
polymer therapeutics has increased exponentially due to their tunable degradation proper-
ties, the ease of their processing and administration, as well as their chemical and biological
properties that resemble numerous biological tissues [6,7].

The design of novel polymeric materials must fulfil the environmental and societal
demands to diminish the carbon footprint required to adopt manufacturing strategies
that meet the European policies such as “A European Strategy for Plastics in a Circular
Economy”, which was launched in 2018 to address how plastics are designed, used, and
recycled [8]. Likewise, the European Parliament has recently recognised the potential role
of bioplastics and compostable plastics in the circular economy and sustainability [9,10].
Consequently, bio-based plastics synthesised from renewable resources such as PLA are
promising environmentally friendly candidates for the development of biomedical and
pharmaceutical applications whilst contributing to the circular economy.

PLA is a compostable polymer derived from corn sugar, potato, and sugar cane [11,12]
whose promising physicochemical properties are comparable to those of petroleum-based
polymers, such as PE, polypropylene, polystyrene, polycarbonate, and PET [13]. PLA is a
semicrystalline polymer that hydrolyses in physiological media, yielding lactic acid, a non-
toxic component that is eliminated via the Krebs cycle as water and carbon dioxide [14]. The
biocompatibility, biodegradability, and resorbability characteristics of PLA have promoted
its use in the biomedical field for a wide range of applications (suture threads, bone fixation
screws, drug delivery systems, etc.), offering an alternative to conventional biocompatible
materials such as metals and ceramics [15]. In addition, the ability to tailor the mechanical,
thermal, and degradation properties of PLA derivatives due to the range of afforded
nanostructures depending on the chemical architecture and processing conditions allows
for designing personalised medical solutions. Indeed, the novel available synthetic PLA
approaches to generate multiblock copolymers as well as the advent of current processing
technologies broaden its suitability to advance into the customisation of the generated
end-products to minimise the adverse side effects. In particular, several highly cutting-edge
PLA-based therapeutic applications have recently attained the clinical phase, such as drug-
eluting stents [16–19] as well as personalised pharmaceutical agents that were designed
from an interdisciplinary approach to avoid the serendipitous progress, emphasising
the beneficial interaction between the materials and the biomedical fields. Likewise, the
frequent dismissed PLA nanostructure of the designed biomedical solutions hamper the
systematic advance by correlating the structure–property relationship of the system with
the application performance. Several reviews about PLA have been published covering a
wide range of topics, such as the PLA synthesis [20,21], the physicochemical and mechanical
properties of PLA [22], the crystallisation and structure–properties relationship of PLA [23],
the characteristics of the promising stereocomplex PLA phase [24,25], and PLA applications
in widespread fields [11,15,26–30]. Herein, the state-of-the-art of PLA-based biomedical
applications is reviewed from a global approach by highlighting the interconnections
among the architectural designing parameters with the desired applications, with an
emphasis on the stereocomplex phase of PLA.
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2. Poly-(lactic Acid) (PLA)

Polylactic acid is a poly-α-hydroxy acid synthesised from lactic acid (LA; 2-hydroxypro-
panoic acid) which exists in two optically active stereoisomers, namely, L-LA and D-LA (S
and R in absolute configuration, respectively) [31]. Approximately 90% of the total lactic
acid produced worldwide is made by bacterial fermentation, which offers advantages in
both the utilisation of a renewable source and the production of optically pure L- and
D-lactic acid, depending on the strain selected (the chemical synthesis of lactic acid always
results in a racemic mixture). The dehydrated cyclic dimer of lactic acid is commonly called
lactide (3,6-dimethyl-1,4-dioxane-2,5-dione). Lactide exists in three different forms due to
the presence of two asymmetric carbon atoms in the molecule: L-lactide, D-lactide, and
meso-lactide. In addition, a racemate of D-lactide and L-lactide exists as rac-lactide [31]. The
chirality of PLA adds new functionality to PLA applications such as the specific recognition
and interaction with chiral molecules (drugs, proteins, DNA, etc.) [32].

The polymerisation of optically pure L- and D-lactide yields isotactic homopoly-
mers of Poly–(L-lactide) (PLLA) and Poly–(D-Lactide) (PDLA), respectively (Figure 1).
Both PLLA and PDLA are semicrystalline polymers, showing a melting temperature (Tm)
around 170 ◦C [20,33] and a thermal degradation temperature around 200 ◦C [34]. The
PLA derivative crystallinity as well as their melting and glass transition temperatures (Tg)
usually decrease with the diminishing optical purity of the lactate units [22,35]. PLLA
polymers with a D-lactide content lower than 10% tend to be crystalline (or PDLA with
L-lactide content), whilst homopolymers with a lower optical purity are amorphous [36].
The random insertion during the polymerisation of D- and L-LA units of both rac- and
meso-lactide monomers generates an atactic polymer, Rac-PLA, which is completely amor-
phous. Moreover, syndiotactic PLA is obtained when D- and L-lactic acid units are placed
alternatively along the chain, whereas a heterotactic chain architecture is attained when
D- and L-lactide units are inserted alternatively on the polymer chain [37]. Syndiotactic
PLA is a semicrystalline polymer exhibiting higher Tc than isotactic PLA but lower Tm,
whilst heterotactic PLA is amorphous [38]. Furthermore, the one-pot sequential addition
polymerisation method [39] of D- and L-lactide monomers yields stereo-block copolymers
with blocks of opposite chirality, featuring melting temperatures 50 ◦C higher than those of
isotactic homopolymers (220 ◦C) [25].

Figure 1. PLA microstructures. (a) Rac-Lactide, (b) meso-lactide. Reproduced with permission from
Ref. [33]. Copyright 2010, The Royal Society of Chemistry.

PLA displays different crystalline phases (α, α′, β, γ) established by the chain archi-
tecture and the specific crystallisation mechanism or thermo-mechanical history imposed
during its processing, which define the properties of the final product [40]. The α-phase
is the more stable PLA homocrystal structure that corresponds to an orthorhombic unit
cell in which the helices are packed in a hexagonal fashion, containing two antiparallel
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chains per unit cell. The α-phase is normally obtained when isotactic PLLA or PDLA are
crystallised from the melt above 130 ◦C or by crystallisation from the solution, charac-
terised by a melting temperature of around 170 ◦C [41,42]. The α′-phase (or δ-phase) is
the disordered form of the α-phase that is generated either from crystallisation from the
melt at temperatures below 110 ◦C or by cold-crystallisation after quenching PLA to the
glassy state. The α’-phase is also organised in the orthorhombic crystallographic unit cell;
however, it contains two parallel helices per unit cell, which increase the lattice parameters
when compared to the ordered α phase. A mixture of α- and α’-phases is obtained when
PLA is crystallised between 110 ◦C and 130 ◦C, although the α’-phase recrystallises into the
α-phase when heated near the Tm (150–160 ◦C) [41]. Moreover, the β-phase is developed
by stretching PLA fibres in the α-phase at a high temperature (130–140 ◦C) and high draw
ratios as well as by casting thin films from the solution [42,43]. The chain conformation of
the β-phase is a threefold helix in a trigonal unit cell containing three chains per unit cell,
and its Tm is ca. 10 ◦C lower than α-phase Tm [44,45]. In addition, the β-phase exhibits
piezoelectricity that allows for the interchange of mechanical and electrical energy [45],
broadening its potential applications. Finally, the γ-phase is produced by the epitaxial
crystallisation of PLA on hexamethylbenzene, forming two antiparallel threefold helices in
an orthorhombic unit cell [46].

Furthermore, a new crystal structure, the stereocomplex (SC) phase, is formed from
the co-crystallisation of the two stereoisomers of PLA (PLLA and PDLA) that feature a
trigonal unit cell comprised of six threefold helices per unit cell. The structural peculiarity
of the SC phase, with the nearest neighbours of any stem being of a different polymeric
chain, provides them easy access to the growth front for both enantiomeric species. In
addition, the specific C-H···O-H hydrogen bonds within the crystal lattice that stabilise
the structure [47] endow stereocomplexes with a higher melting point (220 ◦C) and degra-
dation temperature (220–260 ◦C) [34]. The SC phase was first found by casting a mixed
solution of both enantiomers [48], and since then, the SC phase has typically been obtained
intentionally from the blend of both enantiomers in the solution (in an appropriate solvent
such as dichloromethane or chloroform at room temperature or acetonitrile around boiling
temperature [49]) or in the solid-state from the melt [24]. However, the SC crystallisation
of the blended enantiomers diminishes for high-molecular-weight (HMw) PLA, and enan-
tiomeric homocrystals (HC) in the α-phase are obtained instead [50]. Additionally, the
critical Mw to exclusively obtain SC crystallisation is lower for blends obtained from the
melt than those obtained from the solution [51], which hampers its industrial application.
The optical purities of the polymers and the mixing ratio of the isomeric chains also affect
the obtained ratio of SC-to-HC crystallites, and thus, the preparation of pure SC-PLA
requires meticulous specific conditions [52]. SC crystallites can also be generated through
the synthesis of block copolymers by the one-pot sequential monomer addition to a truly
living polymerisation catalyst, which allows for the retention of the SC crystallisation in
HMw polymers [53,54].

The new synthetic approach affords a wide range of chain architectures that can be
generated through different ratios of L- and D-Lactide monomers that offer the possibility to
tailor the properties of the final polymeric product depending on the intended application.
Furthermore, understanding the advantages and drawbacks of the different synthetic
processing methods to obtain PLA is crucial to tailoring the foreseen applications. Moreover,
since PLA still exhibits performance drawbacks such as low mechanical properties, a
low thermal resistance, and a low hydrophobicity, which limit its applications in some
biomedical fields, novel materials with unique properties can be obtained through the blend
or copolymerisation of PLA with other biodegradable or non-biodegradable polymers,
such as polyethylene (PE), polypropylene (PP), Polyhydroxhyalkanoates (PHA), PMMA,
Poly(ethylene-co-vinyl acetate) (PEVA), etc. [13,55,56]. In addition, nanocomposites can
be fabricated by mixing PLA with other complementary compounds such as silk [57],
gelatin [58], collagen [59], tungsten disulfide [60–62], natural fibres (flax, jute, hemp,) [63],
ceramics (ZnO, TiO2) [64,65], etc. to enhance their performance.
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3. Synthesis of PLA

PLA was first synthesised by polycondensation by Théophile-Jules Pelouze in 1845.
In 1932, Wallace Hume Carothers developed a novel synthetic method based on the ring-
opening polymerisation (ROP) of the cycle lactide monomer to synthesise PLLA. ROP was
later patented by Du Pont in 1954 to synthesise vinyl fluoride (U.S. Patent No. 2674632,
1954). However, HMw PLA by ROP on an industrial scale was only attained by the mid-
1990s [31].

The lactic acid monomer can be converted to PLA through a polycondensation pro-
cess by the reaction of the hydroxyl (–OH) and carboxylic acid (–COOH) groups with
the removal of the detrimental byproducts such as water. Generally, catalysts are added
to polymerisation to increase the reaction rate. The removal of water, enhanced under
vacuum pressure, is critical to producing HMw polymers due to the increased viscosity
of the reaction mixture as the reaction proceeds. However, side reactions, such as trans-
esterification, can also occur during the polycondensation of lactic acid, resulting in the
formation of ring structures of different sizes, such as lactides. Transesterification reac-
tions lower the overall Mw and the stereocontrol over the chain architecture, decreasing
the physical properties of the PLA afforded as well as reducing the reaction yield [35].
The HMw PLA is mainly synthesised by ROP due to the accurate chemical control in
terms of molecular weight, polydispersity, polymer chain-ends, and tacticity. Moreover,
ROP requires relatively mild conditions (130 ◦C) when compared to polycondensation
(180–200 ◦C) [35,66]. Three reaction mechanisms have been proposed for ROP of lactide:
anionic, cationic, and coordination-insertion mechanisms. In both anionic and cationic
polymerisations, a monomer-activation mechanism occurs first, which permits the catalyst
to be independent of the propagating polymer and can thus be easily removed as the
polymerisation finishes. However, undesirable side and racemisation reactions are likely
to occur due to the highly activated monomers. On the contrary, coordination-insertion
polymerisation attains HMw PLA with higher control over the Mw distribution [14,35].
Metal complexes of several metals have been widely employed as the catalysts for the
ROP of lactides [35], of which the most studied are stannous 2-ethylhexanoate [Sn(Oct)2],
aluminium isopropoxide [Al(O i-Pr)3], and zinc(II) lactate [Zn(Lact)2] [66]. Sn(Oct)2, is
the catalyst utilised for the industrial synthesis of PLA, largely due to its approval by the
FDA for use in medical (<20 ppm [67]) and food applications. Moreover, lauryl alcohol
(1-dodecanol) is usually added as an initiator [35].

The polymerisation is induced by a coordination-insertion three-step mechanism sup-
ported by the catalyst [66], which was first formulated in 1971 by Dittrich and Schulz [14]
(Figure 2). Firstly, Sn(Oct)2 reacts with the lauryl alcohol to form a tin alkoxide. Sub-
sequently, the exocyclic carbonyl oxygen of lactide temporarily coordinates with the tin
atom of the catalyst in the alkoxide form. The formed coordination system enhances the
nucleophilicity of the alkoxide part of the initiator as well as the electrophilicity of the
lactide carbonyl group that enables the reaction to each other. Finally, the acyl-oxygen bond
of lactide is disrupted, and the generated linear chain of the lactide turns into the alkoxide
part of the catalyst, promoting the coordination with a new lactide molecule and, thus, the
polymerisation propagation [35]. Finally, the active metal-alkoxide bond is hydrolysed as
the monomer is entirely consumed, and the formation of a hydroxyl end-group occurs [66].
In the last stage of the propagation step, as the monomer concentration becomes signif-
icantly lower (~80%), both intra- and inter-molecular transesterification reactions occur,
and the molecular weight distribution increases. However, the degrees of racemisation
and chain scrambling achieved by metal complexes that follow coordination-insertion
mechanisms are notably lower than those obtained by anionic or cationic catalysis [35].
The microstructure of the final polymers depends both on the initial monomers added
to the reaction mixture (Scheme 1) and the catalyst stereocontrol. The control exerted by
the catalyst over the nanostructure of the PLA, particularly to synthesise the PLA stereo
block copolymers of HMw, is essential to tailor the properties of the final product, and
the synthesis of novel catalysts, particularly metal-based catalysts, for polymerisation by
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the coordination mechanism has attracted much attention since the pioneering work of
Kleine et al. in the 1950s [66,68,69]. However, several drawbacks to controlling the synthesis
of stereoblock HMw PLA have emerged since then, such as the decrease in the living char-
acter of the catalyst due to the increase in the reaction heterogeneity [70], the detrimental
side reactions due to the multiple nuclearities exhibited by the catalysts [71], as well as the
long reaction time required to achieve the desired architectures and molecular weight [14].
Recently, novel catalysts that fulfil the synthetic requirements whilst exhibiting low toxicity
for the application of the PLA derivatives in the biomedical and pharmaceutical fields
were just attained [54,72,73], which offer the possibility to design multiblock copolymers
simultaneously featuring the PLA stereoblock to attain higher physicochemical properties
with other complementary blocks to tackle the PLA limitations.

Figure 2. ROP of lactide by Sn(Oct)2 by the coordination-insertion mechanism. Reproduced with
permission from Ref. [35]. Copyright 2015, The Royal Society of Chemistry.

Scheme 1. Overview of the morphology attained by the different PLA derivatives depending on
the processing conditions. Dimer refers to lactide dimer starting materials for ROP polymerizations.
Tg: glass transition temperature; Tc: crystallisation temperature; Tm: melting temperature; ?: No
information found. a [46]; b[74]; c[24]; d [41]; e [38].
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4. PLA Processing

Once synthesised, PLA is usually manipulated into its final shape by the use of differ-
ent processing techniques that apply diverse thermomechanical histories. Melt processing
is a three-step process generally used to transform PLA into different commodity products
at an industrial scale [75]. Firstly, the polymer is melted to subsequently be moulded into
the desired shape, which is then generally cooled to stabilise its dimensions. Widespread
industrial techniques such as extrusion and injection moulding are the two most common
melt-based processes for manufacturing thermoplastic polymers. Novel common additive
manufacturing technologies with promising personalised biomedical applications such as
fused deposition modelling follow a melt-based process [76]. Likewise, the tailoring of Tm
of PLA is crucial for the performance of applications employing melt-based processing
techniques, as the process temperature must be above Tm to form a homogeneous melt but
low enough to minimise thermal degradation [77]. In addition, the cooling rate during the
third step will influence the properties of the final product, which determine the crystalli-
sation conditions that dictate the crystallinity degree and crystalline phase. Particularly,
quenching PLA from the melt at a high cooling rate (>500 ◦C/min, such as during injection
moulding) will result in a highly amorphous polymer [78], whilst semicrystalline PLA
is obtained when the cooling rate is reduced (>30 ◦C/min [79]). The α-form is usually
developed from PLLA or PDLA during typical melt processing; however, a mixture of
the α and α′ phases is obtained when the cooling rate is higher than 2 ◦C/min since the
α-form has very slow crystallisation kinetics (pure α-phase is obtained at slower rates) [80].
Furthermore, post-production treatments such as annealing can be implemented to increase
the thermal stability and mechanical properties of the final product. The α-phase develops
completely from a melt-crystallised material exhibiting a mixture of α and α’when anneal-
ing at 140 ◦C for 1 h [80]. Additionally, obtaining only the SC phase from the melt from the
equimolar blend of PLLA and PDLA enantiomers can be achieved by restricted thermody-
namic conditions such as relatively low cooling rates (20 ◦C/min) to avoid phase separation
or from low-molecular-weight enantiomers (~20 kDa) [50] and isothermal crystallisation
at temperatures above the Tm of homocrystals (~175 ◦C) [51], as well as by melt-spinning
under high-tensile-stress conditions [81] (Scheme 1). However, PLA materials crystallised
in the stereocomplex phase have not reached the market yet [82].

Three-dimensional (3D) printing is an additive manufacturing technology with the
unique ability to produce personalised objects with complex designs at reduced costs and a
high-resolution precision [83,84]. They have already reached the market in the biomedical
field such as the manufacturing of 3D scaffolds for studying the response of particular
tissues to different stimuli [85]. In particular, PLA is the most-used polymer for 3D printing
since the slow crystallisation rate compared to that of polyolefins (i-PP or PET) avoids
warping between layers [86]. Classical processing methods such as particulate leaching,
gas foaming, or solvent-casting were used for the tuning of the internal architecture of
3D scaffolds due to their adequacy for replacing tissues with a high regenerative capacity.
However, 3D printing enables the required control over the scaffold architecture for fewer
regenerative tissues, such as tendons or nerves [87]. Likewise, PLA 3D-printed scaffolds
have already been investigated for bone [88–93], neural [94], and musculoskeletal soft [95]
tissue engineering. In addition, PLA nanofibres have also been used as part of a fibrous
bioink for the 3D printing of a meniscus construct to study the proliferation of human
adipose-derived stem cells that provide a higher cell proliferation and metabolic activ-
ity [95]. Recently, the assessment of the PLA scaffold geometry effect on the orthopaedic
applications [96] revealed that the presence of hydroxyapatite (HA) in the scaffold effi-
ciently enables mineralisation as well as induces the crystallisation of PLA after being 3D
printed, whilst PLA without HA remained amorphous. The presence or absence of crys-
talline domains within the 3D-printed PLA scaffold will invariably influence the hydrolysis
degradation rate, which is crucial to controlling the optimum performance of the biomate-
rial. However, the usual lack of structural study for most of the reported 3D-printed PLA
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scaffolds for biomedical applications impedes the determination of the relationship between
the processing conditions, the crystalline structure, and the biomedical performance.

Furthermore, in the biomedical industry, electrospinning has been considered a promis-
ing method to fabricate polymer nanofibres due to its simplicity and the cost-effectiveness
of the technique. Electrospinning, unlike drying spinning, which relies on mechanical extru-
sion, uses the electrostatic force to spin the solution into fibres [78]. The fibres thus obtained
have a nanometric diameter, producing materials with a high area/volume ratio, a high
flexibility, and superior mechanical properties compared with other material formats [97].
Electrospun PLA usually exhibits either an amorphous structure or a semicrystalline struc-
ture, although with a very low crystallinity (~10%), due to the rapid solidification of the
fibres during the process, which entails post-processing thermal treatment between the
Tg and the Tm to enhance the crystallinity by cold-crystallisation in the α-phase [98,99].
Recently, the straightforward fabrication of PLA electrospun fibres exhibiting the β-phase
without further post-processing treatment was achieved [100], facilitating the development
of PLA-based devices with piezoelectric properties for potential biomedical applications,
as will be further discussed [101]. Furthermore, PLA fibres in the SC phase were also
generated from the electrospinning of PLLA/PDLA blends, resulting in more uniform
fibres [102]; however, an annealing post-processing step is usually required to obtain
crystalline structures [103,104]. In addition, the tensile strength and Young’s modulus
was found to be modulated by varying the spinning method, i.e., either by melt-spun,
solution-spun, and/or as-spun [103]. Moreover, plasma protein adsorption was also in-
vestigated on solution cast films of PEG-PLA and compared to the SC phase formed by
the PEG-PLLA/PEG-PDLA blend. The absorption of both albumin and fibrinogen was
higher on the SC films than on the homopolymer counterparts. The SC crystallisation was
revealed to hamper the migration of the PEG to the surface of the film, prolonging protein
adsorption and cell attachment over a longer period [105]. The large efforts dedicated to
electrospun nanofibres in the biomedical field raise the possibility to mimic the extracellular
matrix, since the human tissues and organs are formed by nanofibrous scaffolds [106,107].
However, industrial-scale production of PLA nano-fibres has not been achieved yet due to
the low throughput of the technique and the requirement of specific solvents [78]. Never-
theless, PLA nanofibres are a topic in continuous research due to their crucial role in several
biomedical applications such as bone regeneration [108,109], drug delivery systems [110],
and wound dressing [111].

Furthermore, PLA can also be processed into nanoparticles to generate drug delivery
systems in which the drug release rate can be controlled by varying parameters such as
the processing method, the microstructure of the starting polymer, or its concentration in
the organic solvent [112]. However, contradictory results are usually found when relating
certain processing parameters to the final nanoparticle release kinetics [113–115], and hence,
further studies based on the structure–property relationship are required to understand the
mechanistic process occurring during nanoparticles formation to design drug nanocarriers
with tailored drug release profiles [112] (Figure 3). Furthermore, the methods for preparing
nanoformulations most commonly utilised at the laboratory scale, such as nanoprecipitation
or emulsification-solvent evaporation, lack reproducibility between batches. However,
novel approaches such as supercritical technology, electrospraying, or premix membrane
emulsification have emerged as methods that are better adapted for industrial production,
enabling the scale-up process of nanoparticles [116].

In addition, PLA is generally employed to afford hydrogels, as is capable of absorbing
a large amount of water that can be programmed to be expanded or shrunk due to external
condition changes [117]. Hydrogels are aqueous dispersions that solidify by the decrease in
polymer solubility in response to different physical and/or chemical stimuli—typically, pH
or temperature—that are used to control the drug delivery systems [118]. PLA is usually
copolymerised with a hydrophilic polymer to form associative micelles that constitute the
gel in which the nanostructure and rheological properties can be tuned by varying the
stereochemistry of the PLA [119,120]. Moreover, PLA can also be part of hydrogel materials
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as a mechanically reinforcing and/or drug-eluting component [58,121,122]. PLA-based
hydrogel studies are less common than PLA-based nanoparticle studies. However, a deeper
structural characterisation is usually accomplished.

Figure 3. Manufacturing process of PLGA microparticles by emulsion methods and the parameters
affecting the final properties of the formulation. Reprinted with permission from Ref. [112]. Copyright
2021, Elsevier.

5. PLA Properties

When designing a PLA-based material for biomedical applications, physicochemi-
cal properties such as the mechanical and thermal behaviour as well as the degradation
degree under physiological conditions must be considered for the chain architecture syn-
thesis together with the subsequent impact of the processing methods to correlate the
structure–property relationship with the targeted application.

5.1. Mechanical Properties

The mechanical properties of PLA are mainly associated with the crystalline phase and
crystallinity degree [40], which must be tailored by controlling the stereocontrol exerted
during the synthesis as well as the subjected thermal history and pre-treatment conditions.
The mechanical properties of PLA range from soft and elastic (amorphous PLA) to stiff and
high-strength (semicrystalline PLA) [22], and thus, semicrystalline PLA is preferred when
robust mechanical properties are required.

Amorphous PLA is typically obtained from rac-PLA as well as from isotactic PLA
quenched from the melt. Semicrystalline PLA has a tensile strength of 60 MPa, a flexural
strength of 100 MPa, and an elongation at break of about 4%, whilst amorphous PLA has
lower tensile and flexural strengths (40 MPa and 84 MPa, respectively) and a higher elon-
gation at break (7.5%) [75]. The mechanical properties are also dependent on Mw [22]—in
particular, semicrystalline PLA is more affected compared to amorphous PLA [75], as the
chain entanglements, which influence the crystallinity and hence the mechanical properties,
increase as the Mw increases [123]. Likewise, the tensile strength increases by a factor of
10 when Mw is increased only by a factor of 4 [124]. Semicrystalline PLA presents higher
mechanical properties than a few relevant commodity polymers, such as PS, i-PP, and
PET, but an inferior thermal resistance [125]. PLA is thus more susceptible to thermal
degradation during processing, lowering its Mw and hence its final mechanical properties
(Mw of PLA decreased by 14–40% after injection moulding [126]).

The mechanical properties of PLA as a function of crystal polymorphisms have also
been investigated, although mainly for the α- and α’-forms due to their abundant availabil-
ity under industrial processing conditions. Likewise, the heat deflection temperature of
injected-moulded PLA materials was found to increase linearly with increasing crystallinity
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above ca. 35–40% as well as with the annealing temperature increase, which could be
explained by the rise of the α/α’ ratio [80,127]. Furthermore, PLLA materials crystallised
in the α-phase by annealing after quenching feature a larger Young;s modulus, tensile
strength, and storage modulus as well as a lower elongation-at-break and water vapour
permeability when compared to those crystallised in the α′-phase [127,128], which may be
attributed to the tighter molecular packing of PLA chains in the α-phase [128]. However,
PLA crystallised from the melt showed a decrease in tensile strength, elongation at break,
and unnotched impact strength as the temperature of crystallisation increased (isothermally
analysed between 100 ◦C and 130 ◦C) [129]. Moreover, the Young’s modulus increased as
the temperature increased, except for the PLA crystallised at 130 ◦C (α-phase), which is
associated with the formation of an aggregate between the amorphous and crystal region
due to the formation of fewer nuclei [129]. The discrepancy between results may be at-
tributed to the difference in spherulite density dependent on thermal treatment (annealing
after quenching vs. crystallisation from the melt) [130]. In addition, the tensile modulus
and tensile strength of PLA also increase for the β phase compared to the α-phase [43].
Similarly, tensile properties such as tensile strength, Young’s modulus, elongation at break,
and storage modulus are also improved by the stereocomplexation of PLA [131].

5.2. Degradation

Degradation is a crucial feature to be considered when designing PLA biomedical
materials with tailored properties. The main factors that affect the mechanism and rate
of PLA degradation depend on the polymer characteristics such as the molecular weight,
crystallinity, and shape and/or size as well as the physicochemical parameters related to
the surrounding medium such as temperature, pH, and/or enzymes [132].

Commonly, PLA degradation is a multistep process that is initiated through a hy-
drolytic process followed by enzymatic action, since biotic attack only occurs when PLA
reduces its Mw [133]. However, in the human body, only the hydrolytic process occurs,
followed by the degradation of lactic acid in the Krebs cycle to finally yield water and
oxygen. PLA hydrolysis follows the ester moiety cleavage from the polymeric backbone
chain, decreasing the Mw:

-[C(RR′)COO-] + H2O→ -C(RR′)COOH + -C(RR′)COH

Moreover, PLA hydrolysis is an autocatalytic process, as the chain scission increases the
concentration of carboxylic acid end groups in the degradation medium, which possesses a
catalytic action on the process (Equation (1)) [134].

d[COOH]/dt = k[COOH][H2O][E] (1)

where [COOH], [H2O], and [E] are the concentrations of the carboxylic groups, water, and
ester groups in the medium, respectively. The hydrolytic degradation of PLA typically
occurs in a stepwise fashion. Firstly, water is diffused into the material that triggers the
later hydrolysis of the chains in the amorphous region; subsequently, the diminution of
Mw proceeds as a result of the hydrolytic cleavage of ester bonds and the formation of
water-soluble compounds; finally, the hydrolysis of the crystalline phase occurs [135].

• Polymer factors

Hydrolytic degradation is inversely proportional to Mw below 4 × 104 g/mol due to
the higher mobility of chains and the larger density of hydroxyl groups, which enhance the
probability of water-soluble oligomers formation, thus catalysing PLA degradation [136].
However, the hydrolysis rate is no longer dependent on Mw above 8 × 104 g/mol since
other parameters, such as total crystallinity, have a greater effect on hydrolysis [137].

Semicrystalline PLA is more resistant to hydrolytic degradation than amorphous
polymeric chains, including the amorphous regions between crystalline parts. [132]. The
hydrolysis of amorphous PLA showed a weight decrease of about 14% after 18 weeks,
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whilst semicrystalline PLA lost a similar weight after 20 months (at pH 3.4 and 37 ◦C) [135].
However, accelerated hydrolysis in the early stages has been observed with the increase
in the initial polymer crystallinity (Xc) at pH 7.4 [138]. The higher density of hydrophilic
terminal groups in the amorphous regions between the inter-crystalline areas accelerates
the initial hydrolytic degradation of crystallised PLA regions by enhancing the diffusion
of water molecules into the bulk material. Likewise, films formed by mainly amorphous
PLA undergo hydrolytic degradation with a nearly steady hydrolysis rate constant (kh)
throughout the process, whilst films composed of predominantly semicrystalline PLA are
subjected to a two-step hydrolytic degradation, initiated by a higher kh stage, followed by
a smaller kh. Moreover, the degradation rate of the SC crystalline phase is smaller than that
of the α-phase [139].

In addition, degradation is faster as the thickness of the object is increased [140]. The
size is related to the hydrolytic degradation as a result of the solubility of the oligomers
close to the surface, which are drained into the solution as the ageing time increases. The sol-
ubilised oligomers within the matrix remain entrapped and contribute to the autocatalytic
effect (Equation (1)). Likewise, the main PLA degradation mechanism was found to be
dependent on several size regimes: bulk erosion for a material thickness lower than 2 mm,
core-accelerated erosion between 2 mm and 7.4 cm, and surface erosion for a thickness
higher than 7.4 cm [132].

• Media factors

Furthermore, the main media factors that affect PLA hydrolysis are pH and tempera-
ture. Particularly, understanding the degradation kinetics dependence of PLA on pH is
crucial to generating materials with tailored properties for biomedical applications due to
the pH of the human body ranging from strongly acidic to almost neutral. Recent efforts
have been focused on elucidating the effect of pH in the PLA hydrolysis mechanism of
degradation. The pH dependence of the kh was found to be described by the general rate
constant equation (Equation (2)) [141]:

kh = ko + kH [H+] + kOH [OH−] (2)

where ko is the first-order rate constant degradation in water, and kH and kOH are the
second-order rate constants catalysed by protons and hydroxyl ions, respectively. A pH
regime dependence described the hydrolysis mechanism specifically hydroxyl-catalysed
above pH 5 (Figure 4, the slope is ~1 in the plot of log kh against pH), and specific proton
catalysis occurs at pH values below pH 4 (Figure 4 slope ~−1), whilst kh is minimal at a
pH value around 4.5 [141,142]. Likewise, the dependence of the hydrolysis mechanism on
pH was proved for degradation under acidic conditions, which occurs through the split
of the last lactic acid monomer after the nucleophilic attack by water [141–143]. However,
the mechanism of PLA degradation in neutral or alkaline media is controversial, and the
decomposition route is believed to follow either an intramolecular transesterification with
the formation of lactide from the two end units of the oligomer [141] or a random ester
cleavage degradation mechanism [142].

In addition, the effect of temperature on the hydrolytic degradation (Th) was found
to be differentiated into three thermal regimes related to the chain mobility: Th < Tg,
Tg ≤ Th < Tm, and Tm ≤ Th. The hydrolytic degradation rate increases when Th is higher
than Tg in contrast to Th being lower than Tg as a consequence of the higher chain mobility.
Likewise, if Th exceeds Tm, crystalline regions melt and disappear, and thus, the hydrolytic
degradation in the melt occurs homogeneously, similarly to racemic PLA. However, when
Th is lower than Tm, the hydrolysis degradation causes a heterogeneous Mw reduction
as a result of the lower water diffusion. Indeed, the activation energy of the hydrolytic
degradation increases from 50.9 kJ/mol for the thermal range Tm ≤ Th, to 83 kJ/mol
for Th < Tg, whilst an intermediate activation energy of 69.9 kJ/mol is found for the
temperature regime Tg ≤ Th < Tm [132].
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Figure 4. Dependence of the hydrolytic degradation constant (kobs) on pH. Reprinted with permission
from Ref. [141]. Copyright 2001, Elsevier.

Moreover, the rate of degradation is also dependent on the magnitude and type of the
applied stress that is crucial to designing biomedical materials employed in physiological
conditions. Materials subjected to a static load experience a higher rate of degradation,
which is further increased when a dynamic load is applied [144].

6. Medical Applications

PLA and its copolymers are currently used at the clinical level in different pharma-
ceutical applications, such as dermal fillers and drug delivery systems (DDS), as well as in
biomedical applications such as sutures or tissue engineering (TE) [7,145–147]. The first
biomedical application of PLA at the clinical level, namely, the suture Vycril® composed of
glycolide and lactide components, dates from 1974. Since then, several sutures composed
of different ratios of glycolide and lactide have reached the market, such as Polysorb®,
Radik®, or XLG® [7]. Moreover, Decapeptyl SR was the first pharmaceutical product based
on PLGA microparticles approved in Europe in 1996 for the treatment of prostate can-
cer. Thereafter, more than 15 microparticle PLA-based products have been approved and
marketed to control drug delivery [145] and as a soft-tissue augmentation agent [146,147].

The recent trends of PLA in pharmaceutical and biomedical research will be addressed
in the following section. The pharmaceutical section comprises the applications related to
drug delivery such as nanoparticles, whilst the biomedical section includes the applications
related to tissue reparation and the diffuse limit between both fields.

6.1. Pharmaceutical Applications
6.1.1. Nanoparticles

PLA is among the biocompatible polymers most frequently used as DDS due to the
ease of tuning the drug release profile from PLA formulations by modifying different archi-
tectural parameters such as the polymer molecular weight, stereochemical composition, or
polymer crystallinity. Nowadays, several PLA-based microparticle formulations have suc-
cessfully reached the market [145]; however, microsized DDS feature inherent drawbacks
to traversing biological barriers, as well as their rapid clearance after systemic admin-
istration, limiting the application of microparticles to subcutaneous and intramuscular
injections [148]. In contrast, nanosized DDS increase the systemic circulation time and facil-
itate tissue penetration as well as sterilisation via filtration [148]. PLA nanoparticles have
been designed for the treatment of several pathologies such as cancer [149,150], Chagas
disease [151], Alzheimer disease [152], or insulin-dependent diabetes [153]. The surfaces
of PLA nanoparticles have been functionalised with antibodies [154] or cell-penetrating
peptides [155,156] as a synthetic approach to target specific tissues or cells in order to
increase the therapeutic effect and decrease side effects. Moreover, the attachment of PLA
nanoparticles to cells exhibiting blood barrier brain migratory properties (T lymphocyte)
has also been proposed as a novel approach to drug delivery into the brain [157].
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However, the unusual establishment of the correlation of the structure–property rela-
tionship of the PLA-based nanoparticles after formulation, such as the Tg, the crystallinity,
or the physical ageing, makes it difficult to understand the drug release mechanism from
a nanoscopic scale (Table 1). Particularly, the rearrangement of polymer chains during
physical ageing, which typically occurs during the storage step and depends on the Tg, may
increase water absorption, leading to an initial burst release [158]. The control and analysis
of the polymeric physicochemical parameters of the generated formulations are crucial to
designing a specific degradation rate considering also the influence of the performance
conditions on the drug-release mechanism: drug diffusion through water-filled pores,
diffusion through the polymer matrix, osmotic pumping, or surface and bulk erosion [148].

Table 1. Summary of the PLA-derivative nanoparticles.

Material Processing
Technique Polymer Structure Molecular

Weight (kDa)
Material

Characterisation 1 Studies 2 Ref.

Nanoparticles

Double
emulsion-solvent

evaporation

PLLA-PEG
85–160 Size, PDI, EE (%) In vitro/in vivo [149]

PLLA

Nanoprecipitation-
solvent

displacement
Rac-PLA -

Size, PDI, Z-potential,
LE (%), EE (%),

Morphology (SEM)

In vitro/in vivo
/clinical [150]

Interfacial
deposition-solvent

displacement
Rac-PLA-Peg 18–28 Size, PDI, Z-potential In vivo [151]

Emulsion-solvent
evaporation

Maleimide-PEG-PLA
(no PLA specification) PEG3-PLA70

Size, Z-potential,
Morphology (TEM)

In vivo [152]

Methoxy-PEG-PLA
(no PLA specification) PEG3-PLA50

Emulsion-solvent
evaporation PLGA (75L:25G) 15

CE (%) complexation
efficiency, Z-potential,

morphology (SEM)
In vivo [153]

Nanoprecipitation-
solvent

displacement

Trastuzumab-
PEIcoating-Rac-PLA 22 LE (%), EE (%),

Morphology (TEM) In vitro [154]

Emulsion-solvent
evaporation

Maleimide-PEG-PLA
(no PLA specification) PEG3.4–PLA34 Size, PDI, Z-potential,

Morphology (TEM) In vitro/In vivo [155]

Methoxy-PEG-PLA
(no PLA specification) PEG3.4–PLA30

Emulsion-solvent
evaporation

Maleimide-PEG-PLA
(no PLA specification) PEG3.4–PLA34 Size, PDI, Z-potential,

EE (%), LC (%),
Morphology (TEM)

In vitro/In vivo [156]

Methoxy-PEG-PLA
(no PLA specification) PEG3.4–PLA30

Nanoprecipitation-
solvent

displacement

Rac-PLA-OH 10.5
Size, Z-potential,

Morphology (TEM)
In vitro [157]

Rac-PLA-PEG-NH2
PLA4.5–PEG3.5–

NH2

Nanoprecipitation-
solvent

evaporation
PLA -

Size, Z-potential, pH,
EE (%), LE (%),

Morphology (AFM,
SEM), Molecular
structure (FTIR)

In vitro [159]

1 After processing; 2 In vitro/in vivo/clinical.

6.1.2. Hydrogels

PLA-based hydrogels (Table 2) that are formed through different external stimuli have
already reached the clinical level. Particularly, Atridox® is a doxycycline formulation used
for chronic periodontitis containing PLA and N-methyl-2-pyrrolidone mixtures that solidi-
fies to a wax-like consistency upon contact with gingival crevicular fluids. Furthermore,
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OncoGel® is a paclitaxel formulation used for local tumour treatment based on the PLGA-
PEG-PLGA triblock copolymer that exhibits a sol-gel transition at body temperature [160].
The fabrication of PLA-hydrogels usually requires copolymerisation with other polymers
such as polyethylene glycol (PEG), polyurethane and polyglycolic acid [161], as well as the
blend with collagen and gelatin [58,59] to increase the hydrophilic character. Moreover,
different physicochemical and mechanical properties, such as the drug release rate, can be
modulated by varying the size of the PEG block, the polymer concentration, as well as the
stereoisomery of the PLA [162,163]. Likewise, a series of stereocomplexed PLA pentablock
hydrogels were synthesised with a tailored microstructure by varying the stereostructure,
crystallisation, and stereocomplexation, and their physical properties were thoroughly char-
acterised. The PLA hydrogels featuring symmetric pentablock copolymers exhibited higher
a gel-sol transition temperature, a higher storage modulus, and a slower biodegradation
and drug release compared to asymmetric pentablocks [164]. Recently, the synthesis of
hydrophobic polymers, in particular PLA, to produce thermohydrogels has been achieved
without the use of a solvent, which enhances thermohydrogels’ biocompatibility [165].
Furthermore, a PLA-based hydrogel was designed that might be applied as a delivery
vehicle with immediate release upon contact with reducing conditions, such as tumour
microenvironments [166]. The polymer solution gelled between 32 ◦C and 40 ◦C due to
the decrease in polymer solubility and collapsed upon exposure to strong reducing agents
due to the cleavage of the disulphide bond incorporated in the polymer structure [166].
Likewise, a PLA-based hydrogel was recently designed for the treatment of chronic inflam-
matory diseases, such as rheumatoid arthritis, which fulfils an on-demand drug release
depending on the severity of the disease by using nitric oxide (overproduced in inflamma-
tory environments) as a hydrogel degradation agent [167]. PLA-based injectable hydrogels
were also envisaged to be used for regenerative medicine requiring higher mechanical
properties. Particularly, hydrogel composites comprising electrospun-PLA nanofibres and
gelatin nanoparticles led to a 15-fold increase in the storage modulus without compro-
mising the injectability [168]. Moreover, the incorporation of PLA nanoparticles into a
gelatin hydrogel also leads to a 100-fold increase in the viscosity, without compromising the
injectability [121]. Although the characterisation of the physicochemical properties of PLA-
based hydrogels is generally conducted in a comprehensive way, the hydrogels should also
be evaluated under physiological conditions, such as in vitro and in vivo studies, which is
unusually accomplished (Table 2).

Table 2. Summary of PLA-derivative hydrogels.

Material Processing
Technique Polymer Structure Molecular

Weight (kDa)
Material

Characterisation 1 Studies 2 Ref.

Hydrogels

Temperature
increase of

solutions (RT
→ 37 ◦C)

PLLA-Castor Oil 4.8 Viscosity, specific
optical rotation, Tg,

shear stress

- [162]

Rac-PLA-Castor Oil 4.6

Temperature
increase of

solutions (RT
→ 37 ◦C)

PLLA 1.5 Sol-gel transition,
micelles size, circular

dichroism, morphology
(TEM), nanostructure

(XRD)

- [169]Rac-PLA 1.5

PLLA-PEG 14.4

Rac-PLA-PEG 14.4

Hydrogelation
by

concentration

PLLA-PEG-PLLA
11.5–15.5 Storage modulus,

nanostructure (WAXD)
- [170]

Rac-PLA-PEG-Rac-
PLA

Temperature
increase of

solutions (RT
→ 37 ◦C)

OS-rac-PLA-PEG-
rac-PLA-OS

(olygomer serin)
~3

Sol-gel phase transition
(depending on

PEG Mw)
In vitro/In vivo [163]
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Table 2. Cont.

Material Processing
Technique Polymer Structure Molecular

Weight (kDa)
Material

Characterisation 1 Studies 2 Ref.

“Click” reaction
DA-NOCCL + N3 +

rac-PLA-PEG-N3
(NP)

~6

Aggregates size,
morphology

(Crio-SEM and TEM),
mechanical properties

In vitro/In vivo [167]

1 After proccesing; 2 In vitro/in vivo/clinical.

6.1.3. Pharmaceuticals Design

The application of 3D printers for the customisation and personalisation of pharma-
ceuticals is one of the most revolutionary and powerful tools in the last decades [171,172].
The traditional one-size-fits-all treatment approach in the healthcare industry is ineffective
in up to 70% of patients, according to the National Health Service, due to the varied phar-
macokinetic traits of different patients, creating the need to shift from mass production to
personalised dosage medicine [173]. 3DP technologies have been used for the production
of pharmaceutics for pre-clinical animal models due to the accuracy in producing dosage
forms of appropriate geometry and size [174]. The Food and Drug Administration (FDA),
in 2015, approved the first drug manufactured using 3DP technology, Spritam® [175,176],
opening the scope of oral drug delivery using 3DP. Likewise, a five-in-one dose combina-
tion polypill was manufactured by three-dimensional extrusion with two independently
controlled and well-defined release profiles [177], simplifying the drug therapy and po-
tentially improving the adherence of patients to the prescribed treatment. Additionally,
artificial intelligence machine learning techniques have been developed to predict key
3DP fabrication parameters and advance the 3DP fabrication process, reducing the time,
costs, and resources normally invested in formulation development [83] (Figure 5). The
current variety of biomedical applications attained by PLA materials processed by 3D
technology, such as the oral formulation of solid dosage forms [178] and subcutaneous
implants for prolonged drug delivery [179] by fused deposition modelling, increases as the
3D techniques advance and the utilisation of 3DP is expanded in society.

6.1.4. Chiral Drugs

The development of chiral drugs has recently become important for the pharmaceuti-
cal industry, as, frequently, the enantiomers of a racemic drug have different physiological
activities and pharmacokinetic profiles (e.g., R-Thalidomide is a sedative, S-Thalidomide
leads to birth deformity). However, the vast majority of drugs used clinically are still
employed as racemates, likely due to the difficulty in separating racemic compounds into
enantiomerically pure isomers. The chirality of PLA enables its use for enantioselective
drug delivery [32], as proved by the generation of chiral particles of PLLA and PDLA
loaded with racemic naproxen, which preferably releases S-naproxen isomer in ethanol
and chloroform for both PLLA and PDLA particles. The enantioselective release of S-
naproxen was found to result from a different distribution of R- and S-naproxen within
the particle caused by enantioselective interaction [180] (Figure 6). Furthermore, the drug
release of the designed drug nanocarrier by chiral particles composed of two chiral helical
polymers (PLA and the polymer based on chiral acetylenic (PCM)) revealed that polymer
chains with a similar chirality (S-PCM/PLLA and R-PCM/PDLA) cooperated to release
R-naproxen, while, for S-PCM/PDLA and R-PCM/PLLA, the particles preferably released
S-naproxen [181]. In addition, hetero-stereocomplexes were reported to form between
poly-D-lactide and L-configured proteins [182] such as insulin [183], somatostatin [184], or
leuprolide [185]. Particularly, different factors such as the increase in the PDLA molecular
weight or the Leuprolide/PDLA ratio increased the leuprolide release rate [186]. Further-
more, Leuprolide induced PDLA crystallisation in a less stable crystal phase (β-phase) that
recrystallises into the α-phase upon further heating [187]. DNA-loaded PLA [188] as well
as PLA-PEG [189,190] nanoparticles were also recently developed, where DNA acts as a
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nucleating agent due to the strong interactions between PLA/DNA molecules, promoting
the crystallisation of PLA nanoparticles, which is primarily responsible for the sustained
release of DNA. In addition, the DNA melting point shifted to a higher temperature in the
PLA-DNA complex, suggesting the good protecting ability of the PLA matrix towards the
incorporated DNA. Finally, the PLA-DNA complex exhibited a high transfection efficiency,
which is a crucial step to ensuring the efficacy of the DNA molecule in being transcripted
and translated. However, the PLGA nanoparticles exhibited higher gene transfection due
to the higher DNA release [189]. Moreover, PLGA nanoparticles loaded with the correspon-
dent antigen stimulated robust mucosal IgA immunity after intranasal administration for
both parainfluenza virus [190] and tuberculosis [191].

Figure 5. Machine learning approach for predicting the 3D printability of medicines (M3DISEEN).
Reprinted with permission from Ref. [83]. Copyright 2020, Elsevier.

Figure 6. Polylactide-based chiral particles with an enantio-differentiating release ability. Reprinted
with permission from Ref. [180]. Copyright 2018, Elsevier.

6.1.5. Antibacterial Applications

Bacterial infections originating from implants and medical devices are typically treated
with antibiotics, and their misuse has promoted their resistance to drugs. Multidrug-
resistant bacteria are one of the main threats to health and food security worldwide, accord-
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ing to the World Health Organisation, and alternative treatments mainly based on bacterial
proliferation prevention need to be addressed [192]. Polymers usually do not exhibit intrin-
sic antibacterial properties, although antibacterial additives can be easily incorporated, such
as silver nanoparticles [193,194], titanium dioxide [195], or essential oils, [196] to develop
nanocomposites exhibiting antimicrobial activity. Moreover, antibacterial PLA filaments
for 3DP that contain cooper particles are already commercially available (PLACTIVE AN1
Copper3D [197], PLActive Red [198]). Likewise, antibacterial 3D prostheses have been
developed to minimise skin disorders related to microbial infections [199]. PLA-based
nanocomposites exhibiting antibacterial characteristics can be manufactured in a wide
variety of architectures due to the capability of PLA to be processed by different techniques,
such as 3DP [200], electrospinning [201] (Figure 7), extrusion [202], spin coating [203], etc.,
which broadens its applicability in the biomedical field.

Figure 7. Schematic diagram of the release of Ag+ ions from AgNPs comprising PLA electrospun
membranes exhibiting antibacterial properties. Reprinted with permission from Ref. [201]. Copyright
2017, American Chemical Society.

6.1.6. Polymer Therapeutics

Polymer therapeutics is an alternative approach to conventional drug delivery systems
which comprises polymer-drug/protein conjugates as well as polymers with a therapeutic
effect in and of themselves (polymeric drugs). The lack of therapeutic activity featured
by PLA has determined its conjugated use with drugs due to its higher stability, precise
drug loading efficiency, and sustained drug release compared to drug encapsulation sys-
tems [204,205]. Several synthetic methods have been proposed to conjugate PLA into
different drugs. Particularly, paclitaxel has been employed as an initiator for the ROP of
rac-PLA through the reaction of the 2′OH of paclitaxel with lactide, ensuring the presence
of paclitaxel at the chain termini [206]. In addition, paclitaxel has also been conjugated
to rac-PLA throughout the PLA chain in a controlled way through an azide-alkyne click
reaction that afforded the conjugate with a higher therapeutic effect than the free drug, as
confirmed by in vitro cytotoxic analysis [207]. Antihypertensive drugs such as lisinopril
have also been conjugated to PLA-PEG-PLA copolymers, followed by micelle formulation,
exhibiting a more sustained release compared to physically loaded micelles [208]. Moreover,
anti-inflammatory drugs such as indomethacin have also been covalently immobilised
onto PLLA films as a potential coating for the metallic implants to avoid biofilm and blood
clot formation [209]. However, the unusual nanostructure characterisation of the PLA
component of the polymer–drug conjugate, which is typically based only on the molecular
weight, morphological aspects, and thermal properties (Tg, Tc, Tm, crystallinity), deters the
understanding of the release kinetics [210] (Table 3).
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Table 3. Summary of PLA-derivative polymer therapeutics.

Material Processing
Technique

Polymer
Structure

Molecular
Weight (kDa)

Material
Characterisation 1 Studies 2 Ref.

Polymer
therapeu-

tics

ROP mediated by
Paclitaxel

PEG-RacPLA-
Ptxl ~30

Structure (NMR), Mw
(GPC)

- [206]

ROP mediated by
Docetaxel

PEG-RacPLA-
Dtxl

Azide-alkine click
reaction

Ptxl (23%)-
RacPLA-PEG

(25%)
~10–15

Size (DLS), structure
(NMR), morphology

(TEM), molecular
weight (GPC)

In vitro [207]

Conjugation +
micelles formulation

RacPLA-PEG-
RacPLA-

Lisinorpil
~10 Size (DLS),

morphology (AFM)
In vitro drug

release [208]

Hot press film PLLA-
indomethacin -

Conjugation
(fluorescence, XPS),

contact angle
- [209]

ROP
(PLLA)3-

Camptothecin
[3-armed]

~30

Molecular weight
(GPC), structure

(NMR), morphology
(AFM), thermal

properties (TGA, DSC)

In vitro drug
release and
enzymatic

degradation

[210]

1 After processing; 2 In vitro/in vivo/clinical.

6.2. Biomedical Applications
6.2.1. Tissue Engineering and Scaffolds

Tissue engineering (TE) is one of the main strategies of regenerative medicine that
consists of the regeneration of neotissues by applying 3D scaffolds for cell attachment
and growth [211]. The designed scaffolds must fulfil different criteria with ambivalent
properties such as biocompatibility and mechanical properties suitable for the intended
application whilst supporting the normal functioning of cells and tissues. Polymers are the
most popular materials for scaffold production due to their physicochemical characteristics
and bioactivity [212]. Particularly, synthetic polymers have drawn significant attention
as an alternative to natural polymers such as peptides, nucleic acid, and polysaccharides
due to their price and the ease of their production [213]. Among the synthetic polymers,
PLA, PGA, poly-(e-caprolactone) (PCL), polydioxane, and poly-(trimethylene carbonate)
are currently the most extensively used for tissue engineering applications [213], and the
specific polymer selection is based on the structure–property relationship required for the
targeted application. Likewise, PCL features a high drug permeability and fewer acidic
byproducts compared to other polyesters but a relatively slow degradation rate, limiting
its usage to long-term applications. In contrast, PLA presents a faster degradation rate
compared to PCL, although still relatively slow. However, long degradation times cou-
pled with the high crystallinity of the remaining fragments might cause inflammatory
reactions in the body. Likewise, PLA is used frequently as rac-PLA to diminish detrimen-
tal health effects, the latter being rapidly degraded without the formation of crystalline
fragments [15]. Alternative approaches to circumvent the individual limitations of single
polymers such as synthetic co-polymers, the combination with natural polymers, and/or
scaffold surfaces functionalisation are frequently used to overcome the manifested issues
such as hydrophilicity compatibility, a low cell attachment, and biodegradability concerns
at the application conditions [212].

However, 3D scaffolds generated from PLA and its copolymers [212] have already
been evaluated for a wide variety of regenerative applications with different tissues such
as bone [214], nerve [215], tendon [216], and cartilage, which enlarges the applicability
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of conventional ceramic and metal solutions focussed on the orthopaedic field (Table 4).
Particularly, polymers can be shaped into complex topologies for customised medical
solutions with the advent of 3D printing technologies.

Table 4. Summary of PLA-derivative scaffolds.

Material Processing
Technique Polymer Structure Molecular

Weight (kDa)
Material

Characterisation 1 Studies 2 Ref.

Scaffolds

Freeze-drying,
salt-leaching (3D

scaffold)

PLGA (75L:25G) +
Silk +

HA(Hidroxiapatite)
90–126

Structure (FTIR),
degradation temperature

(TGA), morphology
(SEM), swelling (%), water

uptake (%), mechanical
properties

In vitro/In vivo [214]

Wet-spinning
(microfilament)

P(L-co-rac-LA)
(75:25) 200 Morphology (SEM) In vivo [215]

Bought (kinnet
filmanets) PGA/PLA (2:1) -

Morphology (SEM and
TEM), biomechanical

properties
In vitro/In vivo [216]

Bought (forged
composite sheets)

PLLA-PGA (88:12) +
HA - Morphology (SEM) In vivo [217]

PLLA + HA

Bought
(OSTEOTRANS MX) PLLA + HA -

Molecular weight,
crystallinity, morphology

(SEM) (after surgery)
Clinical [218]

Bought (plates) PLLA/PGA - - Clinical [219]
PLLA/HA

Electrospinning PLGA (85/15) 285
Morphology (SEM),

mechanical properties,
structure (FTIR)

In vitro [220]

Electrospinning PLGA (85/15) 285
Morphology (SEM),

mechanical properties,
structure (FTIR)

In vitro [221]

Supercritical
emulsion extraction

PLGA carriers +
fibrin hydrogel 38–54 Size, morphology (SEM) In vitro [222]

Electrospinning PLGA + silk - Morphology (SEM),
mechanical properties In vitro [223]

Knitted fibres PLGA (10/90) - Mechanical properties In vivo [224]

Micelles in an
aqueous solution

(hydrogel)

Four-armed
PEG-(PLLA)4

PEG10-PLLA1

Size, morphology (TEM),
nanostructure (FTIR,

XRD), thermal properties
(DSC), mechanical

properties

In vitro [225]Four-armed
PEG-(PDLA)4

PEG10-PDLA1

Four-armed
PEG-(PLLA-Cho)4

PEG10-PLLA1-
Chol

Four-armed
PEG-(PDLA-Chol)4

PEG10-PDLA1-
Chol

Hydrogel by solution PDLA-PLLA-PEG-
PLLA-PDLA ~20

Specific optical rotation,
gel-sol transition, physical

gelation, nanostructure
(WAXS), microstructure

(SAXS)

In vitro drug
release [164]

1 After processing; 2 In vitro/in vivo/clinical.

Bone Regeneration

Bone fracture is one of the more common injuries which is associated with treatment
costs exceeding billions of dollars, societal productivity losses, and individual disability.
Approximately 5 to 10% of fractured bones result in incomplete healing [226]. Currently,
stainless steels- and titanium-based bone plates remain dominant in the internal fixation
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of bone fractures [227]. However, metallic implants usually lead to health complications,
including bone atrophy and infection, and their subsequent removal can result in increased
weakening and bone re-fracture due to the presence of the remaining screw holes. Addi-
tionally, the organisation and function of each bone are highly site-specific and related to
its embryological origin [228].

In recent years, the use of biodegradable polymer plates for bone regeneration has
garnered attention [15]. PLA and PGA are the biopolymers more commonly used due to
the featured higher mechanical properties compared to other polyesters and the sufficiently
low elastic modulus, avoiding the stress shielding caused by metallic implants [227]. PLA
was proposed as a potential substitute for titanium plates to heal bone fractures 30 years
ago, and several generations of PLA-based materials have been developed since then,
especially for the treatment of maxillofacial fractures [217]. The third-generation materials
composed of uncalcined hydroxyapatite and PLLA have reached the market (FIXSORB
MX or OSTEOTRANS MX), and several clinical studies have been conducted, exhibiting
promising results [217]. However, titanium plates remain in daily clinical use due to the
persistence of drawbacks of the PLA properties—in particular, the slow degradation rate,
which leads to a foreign body reaction and thus inflammation two years after implantation.
The increase in the thickness of PLLA plates to match the strength of titanium plates
increases the risk of exposure and patient discomfort [229], which might be improved by
the fabrication of PLA plates in the SC phase to increase the strength, avoiding the thickness
increase. In addition, a fourth PLA-based material generation was recently developed,
which includes a small amount of PGA to overcome the slow degradation issue and its
associated detrimental body inflammation [224,226,227]. PGA exhibits the highest initial
mechanical properties but lessens the strength very rapidly in the body due to its hydrolytic
instability, resulting in incomplete bone healing and a high local acid concentration, causing
inflammation [230], which turns the copolymer poly (lactide-co-glycolide) (PLGA) into
the best option for bone regeneration. PLGA mechanical properties and the degradation
lifetime can be modified based on the PLA/PGA ratio (the lower the PLA/PGA ratio, the
faster the PLGA is expected to degrade). Moreover, silk [214], hydroxyapatite [231], or
collagen [59] can be included in the scaffold to increase the hydrophilicity, bone regeneration
ability, and tensile strength of the composite, respectively.

Recently, PLA applicability in bone tissue repair has advanced to tackle characteristic
limitations by the enhancement of the mechanical properties and the degradation rate and
the optimisation of PLLA osteogenic activity [229]. Moreover, the optimisation of the 3D
printing parameters of PLA/Hydroxyapatite composites for bone plates has recently been
developed, correlating the processing conditions with the final mechanical properties of
the composite [232].

Tendon Regeneration

PLA and, in particular, its copolymer with poly-glycolide (PLGA) have also been em-
ployed for other tissue applications such as tendon regeneration. Tendinopathies represent
about 30% of tendon-related injuries [220], and spontaneous tendon healing results in prob-
lematic restitution due to the low cellular and hypo-vascular nature of tendon tissue [221].
Bio-polymeric 3D scaffolds provide a means to both heal tendon injuries and understand
cell behaviour and differentiation in response to defined external biochemical and mechani-
cal stimuli [222]. Particularly, a 2 cm partial resection of the Achilles tendon was repaired in
rabbits using a composite scaffold composed of an outer part of knitted PLGA and an inner
part of unwoven PGA fibres. The generated scaffold was incubated in adipose-derived
stem cell culture and cell-seeded assemblies formed a neo-tendon presenting a histological
structure similar to that of native tendon 45 weeks after implantation [216]. PLGA has
also been employed for tendon regeneration applications as a nanocarrier to ensure the
sustained and controlled delivery of human growth differentiation factor 5 [222], which
is crucial for the expression of genes linked to the neo-tendon type. Similarly, stem cells
with different origins were selected to understand the physiopathology of tendinopathy, in
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which PLGA was always used as a 3D scaffold [223,224]. Recently, the influence of certain
production parameters to tailor the final nanofibre morphology, such as the alignment
and the fibre size, were probed for an electrospun PLA scaffold on the differentiation of
amniotic epithelial stem cells towards tenogenic lineage, indicating that highly aligned
electrospun fibres [221] and smaller fibre diameters [220] enhanced cell differentiation and
immunomodulation. Moreover, the mechanical properties of the electrospun scaffold were
also influenced by the fibres alignment and its diameter; particularly, the scaffold featuring
a higher diameter exhibited a lower Young’s modulus [220] and a higher fracture strain,
whereas the alignment of the fibres increased the stress and strain values [221].

Nerve Regeneration

Peripheral nerve injuries are the most common injury types affecting the nervous
system, and the posterior recovery of sensibility and motor functions is estimated to be only
less than 3% and 25%, respectively. Peripheral nerve injuries can be repaired by surgery;
however, the use of grafts becomes necessary when an important loss of physical substance
occurs (>5 mm) [233]. Synthetic conduits of PLA/PLDLA, combined with longitudinal
PLA filament scaffolds, were shown to enhance axon myelinisation in a rat sciatic nerve
lesion model when compared to a silicone conduit [215]. In addition, the neural precursor
cells, which are an interesting source of cells for neural tissue regeneration, generate a
high number of detrimental reactive oxygen species during metabolism. Furthermore, the
lactic acid degradation product released from PLA scaffolds has been shown to reduce
the intracellular redox state that increases the proliferative capacity of the neural cell
population [234].

Cartilage Regeneration

Similarly to tendons, cartilage tissue exhibits little ability to self-repair due to the
limited vascularity. Likewise, the polymeric approaches were envisaged due to their
versatility and the lack of current satisfactory solutions for cartilage tissue regeneration by
other means [235,236]. Electrospun scaffolds based on PLA and gelatin loaded with the
antioxidant resveratrol showed a high specific surface area, slow drug release, and thinner
diameter to promote the repair of cartilage injury [237].

In addition, thermogels containing PEG-sc-PLA-Chol were evaluated as scaffolds
for cartilage tissue engineering, in which the cholesterol block enhanced the mechanical
properties, enlarged the pore size, and improved chondrocyte adhesion. The degradation
cycle of the PLA scaffold was found to be consistent with the regeneration stage of cartilage
defects, and in vivo results showed a good differentiation of the loaded chondrocytes
in cartilage-like tissue [225]. The crystallisation in the α- or SC-phase of the PLA block
depending on the initial materials was evidenced by different techniques; however, only
the stereocomplexed materials were analysed in vivo [225].

Stents for Cardiac Regeneration

Stents are medical devices placed in a lumen of the body, particularly blood vessels,
to prevent its closure. Metal stents are typically used to treat coronary disease due to
their flexibility, radial force, resistance to fracture, radiopacity, biocompatibility, and low
thrombogenicity. However, several late clinical complications including stent thrombosis,
restenosis, and neoatherosclerosis still exist [18]. Bioresorbable vascular scaffolds emerged
as a new technology in the field of percutaneous coronary intervention to provide temporary
mechanical support and drug delivery, followed by bioresorption of the scaffold in the
vessel. The first biodegradable stent in the clinical setting was developed 30 years ago and
was constituted by PLLA [16]. Subsequently, several drug-eluting stents mainly based on
PLLA and Rac-PLA were developed; particularly, BVS Absorb is widespread in clinical
practice [238]. BVS Absorb was approved in 2016 by the FDA based on the non-inferiority
test after 1 year of implantation compared to the corresponding “gold-standard”, namely,
the metallic everolimus-eluting stent [239]. However, compared with metallic stents, the
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BVS appears to be associated with both a lower efficacy and a higher thrombotic risk
after 2 years, on average [240], mainly due to scaffold discontinuity, malposition due to
under-expansion, and neoatherosclerosis [241,242]. In addition, the current challenging
generation of PLA-based scaffolds with radial strengths and flexibilities equivalent to their
metallic stent counterparts [243] was recently addressed by investigating the influence of
the stent geometric parameters on the mechanical properties. The radial stiffness and peak
compression force of the PLLA helical stents were found to increase as both the initial pitch
angle as well as the initial diameter decreased [244].

The physicochemical properties of PLA-based stents are rarely found (Table 5) despite
having already reached clinical studies. In turn, it is difficult to replicate and improve the
material performance from the issues encountered in the clinical step.

Table 5. Summary of PLA-derivative stents.

Material Processing
Technique Polymer Structure Molecular

Weight (kDa)
Material

Characterisation 1 Studies 2 Ref.

Stents

Bought
(REMEDY) 3 Rac-PLA - - Clinical [16]

Desolve Cx 3 PLLA-Novolimus -
In vitro/in vivo

degradation
(MW lost)

Clinical [17]

Mirage 3 PLLA (4%
D-LA)-sirolimus - - Clinical [18]

ABSORB V G2 3 PLLA - - Clinical trial
(RENASCENT III) [245]

MAGNITUDE 3 PLLA-sirolimus - - Clinical [19]
1 After processing; 2 In vitro/in vivo/clinical; 3 Commercial name of the stent.

6.2.2. Piezoelectric Activity

The β-phase of PLA [45] as well as the oriented α form of PLLA films fabricated by
solution casting and uniaxial stretching [246] exhibit piezoelectric characteristics (Figure 8)
that could enhance the functional complexity designed for therapeutic applications. Indeed,
the piezoelectricity of PLA has already been explored for its biomedical application as a
film sensor device [247,248].

The voltage gradient present in cells can trigger different cell types to change prolif-
eration and differentiation by signalling across membranes. The potential for harnessing
the electric fields in cells to enhance growth and differentiation has recently gained atten-
tion. Likewise, the piezoelectric properties of PLA have been evaluated from a biomedical
perspective, as the regeneration of damaged tissue starts with the growth and prolifer-
ation of cells [249]. Particularly, PLLA nanotubes produced via the melt-press template
wetting technique provided a soft piezoelectric surface for biological studies in which a
cell can electromechanically stimulate itself by interacting with the piezoelectric nanostruc-
ture [250]. Moreover, cell attachment could be regulated by controlling the crystallinity
of PLLA nanotubes since the surface potential of the nanotubes increases subtly upon
crystallisation [251].
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Figure 8. Piezoelectric activity of PLA. (a) Schematic of the bending mode of high-aspect-ratio struc-
tures with aspect ratio φ, which results in reduced effective stiffness by a factor of φ−2 with respect
to the bulk material. (b) Proposed mechanism by which a cell can electromechanically stimulate itself
by interacting with the piezoelectric nanostructures. (c) Simulation of a PLLA nanotube with axial
polymer chain orientation, showing the potential developed in response to bending. Inset shows the
opposing potentials developed across the tube diameter and the orientation of the corresponding
electric field. (d) An example of the PLLA nanotube arrays produced via melt-press template wetting
(i) in the cross-section and (ii) in the plan view. Adapted with permission from Ref. [251]. Copyright
2020, American Chemical Society.

Furthermore, a strong antibacterial effect due to the electric field generated by a
piezoelectric PLLA yarn was recently observed, which could potentiate the applications of
medical devices based on PLA [248].

6.2.3. Shape Memory Polymers

3D printing (3DP) is an additive manufacturing technology that allows for the mimicking
of the complex and multicomponent structure of human tissues at reduced costs [85,86,89].
Moreover, the 4D printing processing method has emerged as an extension of 3D printing
in which printed objects exhibit the capability to self-transform over time or in response to
an external stimulus such as heat, light, pH, or magnetic and electric forces [252]. Likewise,
shape memory polymers (SMP), after experiencing a shape deformation, are capable of
recovering their initial shape upon an external stimulus [253] (Figure 9). Indeed, PLA has
already been used as a bio-ink for 4D printing applications such as a spiral shape scaffold
SMP generated from a PLA composite with magnetic iron oxide nanoparticles. Likewise, the
iron oxide nanoparticles can be remotely heated and attracted by alternating magnetic fields,
proving its application as a self-expandable stent with a minimally invasive intervention [253]
as well as assisting in overcoming the lack of radial strength found for PLA stents compared
to metallic stents. Similarly, porous tissue scaffolds attaining different internal structures
formed from PLA with embedded magnetic nanoparticles have recently been developed by
3D printing, showing a great cell attachment and proliferation ability [254].
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Figure 9. 4D scaffold of c-PLA/Fe3O4 ink and its potential biomedical application. (a) Optical image
of the multilayer scaffold; (b) schematic diagram of the detailed structure of the scaffold; (c) top
view of the optical image of the printed scaffold; (d) deformation shape of the printed scaffold;
(e) schematic of the restrictive shape recovery process; (f) demonstration of the restrictive shape
recovery process triggered by a 30 kHz alternating magnetic field; (g) recovery shape under restrictive
conditions; (h) potential application of the 4D scaffold as an intravascular stent. Reprinted with
permission from Ref. [253]. Copyright 2017, American Chemical Society.

7. Conclusions

Polymers were envisaged as an alternative to conventional materials as well as to
realise novel highly functionalised applications in the pharmaceutical and biomedical
fields due to their ease in being shaped, lightness, industrial scalability, and chemical
and biological inert nature. The current status of the cutting-edge applications in the
pharmaceutical and biomedical fields based on PLA has been revised, covering the updates
on the synthetic routes to attain multiblock PLA architectures and their structure–property
relationships as well as the processing conditions impacting the performance of the final
material. PLA is a bio-based polymer that has attracted significant interest due to its
biodegradation capability and low price. PLA derivatives attaining different architectures
are obtained depending on both the starting lactide derivative and the polymerisation
method. The recently employed living polymerisation assisted by a single-site catalyst
has enabled the attainment of PLA derivatives with high stereocontrol, high Mw, and
narrow polydispersity, including stereo-block copolymers, which expands the availability
of multiblock polymers on demand. In particular, high-Mw PLA stereo-block copolymers
and their derivatives feature enhanced physicochemical properties that enlarge the potential
biomedical and pharmaceutical applications. In addition, the rich PLA nanostructure, with
diverse crystalline phases featuring different thermo-mechanical properties, as well as
particular physicochemical properties such as piezoelectricity, are obtained through several
processing techniques such as electro-spinning, 3D printing, or nanoparticle formulation.
Likewise, the PLA crystalline domains degrade in physiological media at different rates
depending on the crystalline PLA phase as well as the physicochemical and morphological
parameters related to the surrounding medium, which must be considered when designing
a biomedical device for a specific application.
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Remarkably, PLA-based materials have already reached the clinical level in both
pharmaceutical and biomedical applications such as sutures, stents, microparticles, and
dermal fillers. In addition, PLA-based nanoparticles and 3D scaffolds are currently be-
ing developed for drug delivery and tissue regeneration applications, respectively. The
piezoelectricity and chirality exhibited by PLA enlarge the functionalities and, in particular,
the molecular recognition for potential biomedical devices. Likewise, the generation of
bionanocomposites based on PLA affords the customisation of therapeutic materials with
multifaceted capabilities. Furthermore, personalised therapeutic approaches have become
feasible with the advent of 3D printing technology designing specific pharmaceutical
formulations for specific patients, pointing toward personalised medicine.

However, the current gap between the PLA structural characterisation and the perfor-
mance of PLA in biomedical applications hinders the systematic conception of personalised
biomedical solutions based on the correlation of the structure–property relationship with
the required functionalities. The end-user requirements should be considered from an
interdisciplinary approach from the genesis of PLA-based material to realistically reach
the pharmaceutical/biomedical market. Likewise, the PLA-nanoparticles formulation has
greatly advanced to attain drug carriers down to nanoparticles with a fair control; however,
the nanostructure development during the polymer processing is frequently dismissed,
which is key to tuning the drug release profile as well as diminishing the batch-to-batch
variability usually obtained through conventional techniques that hamper the scalability
of nanoparticle formulation to the industrial scale. Moreover, the comprehensive nanos-
tructure control achieved for a wide range of smart PLA-based hydrogels with specific
functionalities must be followed by in vitro and in vivo studies to correlate the physic-
ochemical properties with its performance under physiological conditions. In addition,
the screening focus to develop new synthetic pathways to efficiently conjugate drugs to
PLA should be also associated with a targeted PLA conjugate nanostructure in the ap-
plied medium in order to be translated reliably to both the release mechanism and the
molecular recognition activity required to efficiently target the damaged tissue. Moreover,
the tissue regeneration progress achieved from the materials approach requires a further
understanding of the particular physicochemical and mechanical properties of each tissue,
the alterations occurring under pathological conditions, and its evolution upon healing for
designing materials according to the real requirements. Furthermore, the performance of
the PLA-based stents suffers from structural stability due to the exhibited lack of radial
strength that could be tacked by iterative structure-properties studies of novel multiblock
copolymers. The mastering of novel polymer processing techniques, especially 3D tech-
niques, should be achieved to generate customised materials with performing mechanical
properties to attain consistently demanding applications.
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Abbreviations

3DP Three-dimensional printing
DDS Drug delivery system
D-LA D-Lactide
FDA Food and Drug Administration
HC Homocrystals
HMw High molecular weight
i-PP Isotactic polypropylene
kh Hydrolysis constant
kH Degradation constant catalysed by protons
ko Degradation constant in water
kOH Degradation constant catalysed by hydroxyl ions
LA Lactide
L-LA L-Lactide
Mw Molecular weight
PCL Poly(e-caprolactone)
PCM Polymer of chiral acetylenic
PDLA Poly(D-lactide)
PE Polyethylene
PEG Polyethylene glycol
PET Polyethylene terephthalate
PEVA Poly(ethylene-co-vinyl acetate)
PGA Polyglycolic acid
PHA Polyhydroxhyalkanoate
PLA Polylactic acid
PLGA Poly(lactic-co-glycolic) acid
PLLA Poly(L-lactide)
PMMA Poly(methyl methacrylate)
PP Polypropylene
PS Polystytene
Rac-LA Racemic-lactide
ROP Ring-opening polymerisation
SC Stereocomplex
SMP Shape memory polymer
Tc Crystallisation temperature
TE Tissue engineering
Tg Glass transition temperature
Th Hydrolytic degradation temperature
Tm Melting temperature
Xc Crystallinity
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