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Abstract

Background: The radiation sensitivity index (RSI) and 12-chemokine gene expression signature
(12CK GES) are two gene expression signatures (GES) that were previously developed to predict
tumor radiation sensitivity or identify the presence of tertiary lymphoid structures in tumors,
respectively. To advance the use of these GES into clinical trial evaluation, their assays must
be assessed within the context of the Clinical Laboratory Improvement Amendments (CLIA)
process.
Methods: Using HG-U133Plus 2.0 arrays, we first established CLIA laboratory proficiency.
Then the accuracy (limit of detection and macrodissection impact), precision (variability by time
and operator), sample type (surgery vs. biopsy), and concordance with reference laboratory were
evaluated.
Results: RSI and 12CK GES were reproducible (RSI: 0.01 mean difference, 12CK GES 0.17 mean
difference) and precise with respect to time and operator. Taken together, the reproducibility
analysis of the scores indicated a median RSI difference of 0.06 (6.47% of range) across samples
and a median 12CK GES difference of 0.92 (12.29% of range). Experiments indicated that the
lower limit of input RNA is 5 ng. Reproducibility with a second CLIA laboratory demonstrated
reliability with the median RSI score difference of 0.065 (6% of full range) and 12CK GES
difference of 0.93 (12 % of observed range).
Conclusions: Overall, under CLIA, RSI and 12CK GES were demonstrated by the Moffitt
Cancer Center Advanced Diagnostic Laboratory to be reproducible GES for clinical usage.
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1 Background

Molecular gene expression signatures (GES) have been developed for multiple purposes within cancer
research and for potential use in clinical oncology indications across different tumor types, such as
breast [1] and prostate [2] cancers. Many studies use clinical specimens for identifying molecular dif-
ferences with respect to patient outcome or treatment response. With the advent of several clinically
validated gene expression array platforms, new GES can be derived from data generated from these
platforms. Far fewer publications exist for evaluating specific GES for clinical decision making and/or
clinical trial designs in a Clinical Laboratory Improvement Amendments (CLIA) laboratory setting.
The moving of a molecular GES from research-grade data to a reproducible, clinical GES involves
experimental evaluation of multiple analytical variables, including sample type and RNA quality [3].
Technical variability is common in molecular GES research studies [4]. However, this variability can
be explicitly evaluated in the context of a clinical laboratory that generates the necessary operating
characteristics for molecular gene expression tests to be used under clinical conditions. Without ade-
quate assessment of technical variability, clinical validation as a necessary step within the context of
a clinical trial, would not be expected to be successful.

The radiation sensitivity index (RSI) is a molecular signature to predict tumor sensitivity to
radiation therapy. RSI was developed from a subset of the NCI-60 cell lines that were profiled using
Affymetrix HU6800 gene expression arrays [5]. Survival fraction at 2 Gy (SF2) was used with baseline
gene expression levels to model an association of gene expression and radiation response. Ten hub
genes from among the significant gene expression results were identified using a network biology
approach [6]. These 10 genes were combined into a simple rank-based linear model for predicting
radiation sensitivity (RSI). This model was demonstrated to predict clinical outcome in patient
cohorts [6]. Subsequently, RSI has been used to assess clinical outcome in several cancer types and
its radiation-specific nature is indicated in cohorts in which RSI is prognostic only in RT-treated
patients [7–16]. Importantly, the RSI model originally developed in 2009 has not been modified
from the original formula. RSI was used as the basis for GARD [17], or the Genomically Adjusted
Radiation Dose, to estimate the effect of radiation on a tumor by using the linear-quadratic model.
GARD has been demonstrated to predict for radiation response more accurately than RSI alone in
several diseases, including breast cancer and lung cancer [18–20]. Table 1 highlights the major studies
that demonstrated the clinical utility of RSI in retrospective clinical cohorts.

The 12 chemokine gene expression signature (12CK GES) (CCL2, CCL3, CCL4, CCL5, CCL8,
CCL18, CCL19, CCL21, CXCL9, CXCL10, CXCL11, and CXCL13 ) was first developed in a large
cohort of colorectal cancer samples [21] and showed a strong correlation between the 12CK GES and
the presence ectopic lymph node-like/tertiary lymphoid structures (TLS) [22]. The 12CK GES was
derived from a set of related chemokines that demonstrated its predictive ability for immunotherapy
response, better patient survival, and the presence of TLS, which has been validated in at least 6
cohorts (Table 1).

Given the literature support for the value of these two GES, there is translational oncology
interest in evaluating them in prospective clinical trials to determine their clinical utility. To do so,
the operating characteristics of the RSI/12CK GES, above and beyond the platform characteristics,
must be established. Therefore, we undertook a comprehensive series of experiments to establish
these operating characteristics and validation in a Clinical Laboratory Improvement Amendment
(CLIA)-certified laboratory (i.e. the Moffitt Advanced Diagnostics Laboratory).

2 Methods

Tissue samples were assayed in various conditions using the HG-U133Plus 2.0 GeneChip between
04/02/2019 and 8/17/2020. The Affymetrix GeneChip Scanner 3000 7G was used for MCC experi-
ments. Unless indicated in the experiment, the evaluated samples were generated from 100ng input
RNA and 15ug cRNA. The ThermoFisher GeneChip 3’ IVT PLUS reagent kits were used for sample
processing.

The most relevant experiments are presented as results and detailed in Table 2. Note that the same
GeneChip may be reused in different experiments (e.g., variation over time and operator-to-operator)
as appropriate. Supplemental Table 1 includes the specific samples used for each experiment with
the corresponding GES (RSI and 12CK GES) values. Tissue/RNA assessment values are included in
Supplemental Table 2.
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Table 1 Publications on the use of RSI/12-CK in retrospective cohorts.

Disease Reference

RSI

Breast Cancer Eschrich et al [7], Torres-Roca et al[10], Sjöström
et al.[12], Kang et al. [15]

Prostate Cancer Thiruthaneeswaran et al[23]

Colon Cancer Ahmed et al[24]

Sarcoma Yang, et al[25]

Penile Cancer Johnstone, et al [26]

Pancreatic Cancer Strom, et al[27]

GBM Ahmed,et al[9]

Lung Cancer Scott, et al[20]

Endometrial Cancer Mohammadim et al[14]

Bladder Cancer Khan, et al[28]

Melanoma Strom, et al[11]

Pancancer Scott, et al[19], Ahmed, et al[29], Strom, et al[27],
Ahmed, et al[30], Scott, et al[17]

12CK
GES

Colorectal carcinoma Coppola et al.[21]

Pan-Cancer/Melanoma Messina et al.[22]

Breast Prabhakaran et al.[31]

Bladder Li et al. [32]

TCGA Li et al. [33]

Clear cell renal cell carcinoma Xu et al. [34]

Proficiency Study Four samples previously profiled in a research genomics facility were profiled in
the MCC CLIA laboratory.
Surgery vs Biopsy Study We evaluated four breast cancer samples (BRCA) and five head and
neck cancer samples (HNC). Core biopsies were obtained from the corresponding tissue block to
simulate a clinical biopsy.
Concordance Study Thirty frozen tumor specimens (head and neck cancer surgical samples) were
profiled in the MCC CLIA Laboratory and an external provider (COV, CLIA Outside Validation).
RNA was extracted via the flowthrough for DNA extraction on the Qiacube using the Qiagen AllPrep
DNA/RNA/miRNA Universal kit. RNA integrity was assessed using the Tape Station. Due to tissue
and array quality concerns, the following filtering criteria were used: MAS5.0 scaling factor ≤ 1,
percent present ≥ 40 and RIN ≥ 6.5. See Supplemental Table 2 for details on RIN values for all
samples.
The 12CK GES For the 12CK GES, BrainArray36 HGU133Plus2 Hs ENTREZG.cdf Ver-
sion 25.0.0 downloaded from http://mbni.org/customcdf/25.0.0/entrezg.download/HGU133Plus2
Hs ENTREZG 25.0.0.zip on 2022-02-25 was used. The following probesets were used for each of the
12CK genes: CCL2 (6347 at), CCL3 (missing), CCL4 (6351 at), CCL5 (6352 at), CCL8 (6355 at),
CCL18 (6362 at), CCL19 (6363 at), CCL21 (6366 at), CXCL9 (4283 at), CXCL10 (3627 at),
CXCL11 (6373 at), and CXCL13 (10563 at). A PCA model was derived using the 74 samples from
the GSE15605 dataset [35]. The raw CEL files were downloaded and processed using IRON [36].
The HGU133Plus2 Hs ENTREZG 25.0.0 version of CDF was used. IRON was used with default set-
tings and GSM390277.CEL was used as median sample. The 11 probesets were selected and a PCA
model was calculated. PC1 explains 64.3% of the variation and the PC1/PC2 ratio is 5.1 indicating
a robust PCA model [37]. All loadings in the first component are positive indicating that the PCA
model behaves as expected.

The 12CK GES scores and RSI scores can be found in Supplemental Table 1 for each dataset/-
experiment. The MATLAB code for generating all the figures is available at https://github.com/
aebergl/12CK RSI Article.
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Table 2 Experimental design of CLIA validation experiments. The experiments were organized into three
categories: Accuracy, Precision and Sample Content. Each of these categories assessed different sources of
variability expected to impact signature scores.

Study N Samples Category Source1 Goal

Proficiency 8 4 samples x 2 labs Accuracy CRC Determine proficiency of
CLIA lab by comparing
samples from research lab
vs. CLIA lab.

Repeatability 16 4 samples x 4 repli-
cates

Precision CRC Determine repeatability of
the signature using 4 repli-
cates each of 4 samples run
on the same day from the
same operator.

Operator 12 3 samples run in
duplicate by 2 oper-
ators

Precision CRC Determine impact of two
different operators

Time 8 4 samples run in
duplicate one week
apart

Precision CRC Determine impact of pro-
cessing replicates one week
apart

LOD 17 3 samples were
assessed at 5 dif-
ferent amounts of
input RNA: 100ng,
25ng, 10ng, 5ng,
and 2.5ng.2

Accuracy CRC Determine a lower thresh-
old of input RNA for suc-
cessful signature genera-
tion.

Macrodissection 9 Accuracy HNC

Surgery vs. Biopsy
(BRCA)

8 4 samples x 2 sam-
ple types

Sample
Content

BRCA Assess the variability due
to sample preparation

Surgery vs. Biopsy
(HNC)

10 5 samples x 2 sam-
ple types

Sample
Content

HNC Assess the variability due
to sample preparation

MCC vs. External
Lab

28 30 samples
attempted x 2 labs3

Concordance HNC Assess variability from mul-
tiple CLIA laboratories

1CRC = colorectal cancer, BRCA = breast cancer, HNC = head and neck cancer
2S19/2.5ng was lost when prepared for hybridization.
37 samples failed processing steps; 9 excluded due to poor QC (scaling factor > 1 and percent present < 40%)

RSI Each experiment was normalized using RMA independently using R/Bioconductor. The ten
genes were rank-ordered per sample and RSI calculated as previously described in Equation 1. The
following probesets were used for each of the RSI genes: AR (211110 s at), JUN (201466 s at),
STAT1 (AFFX-HUMISGF3A/M97935 MA at), PRKCB (207957 s at), RELA (201783 s at), ABL1
(202123 s at), SUMO1 (208762 at), CDK1 (205962 at), HDAC1 (201209 at), and IRF1 (202531 at).

RSI =− 0.0098009 ∗AR+ 0.0128283 ∗ JUN + 0.0254552 ∗ STAT1

− 0.0017589 ∗ PRKCB − 0.0038171 ∗RELA+ 0.1070213 ∗ABL1

− 0.0002509 ∗ SUMO1− 0.0092431 ∗ CDK1− 0.0204469 ∗HDAC1

− 0.0441683 ∗ IRF1

(1)

3 Results

Profiling of paired samples in research lab and CLIA lab show high
concordance (Proficiency Study)

Four fresh-frozen samples that were previously profiled on the same platform in a research molecular
genomics shared resource facility (MGC) were repeated within the Clinical Laboratory Improvement
Amendment (CLIA)-certified laboratory. The gene signatures were calculated from arrays indepen-
dently from the MGC and CLIA environments and the correlation of the signature scores were
compared (Figure 1A). Interestingly, the 12CK GES showed a systematic shift in score range but
otherwise demonstrated very high correlation (r=0.991). The RSI scores showed less correlation
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(r=0.762) however the range of observed RSI was compressed in the CLIA experiment. These results
emphasize the need to characterize performance of each GES, as the characteristics differ even with
the same samples.

Fig. 1 Proficiency and repeatability of the CLIA laboratory in generating 12CK GES and RSI. (A)
Proficiency of CLIA laboratory compared to an established research-grade molecular genomics shared
resource facility. Four samples were previously processed by the MCCMolecular Genomics Core (MGC) and available
for CLIA lab processing. GES were derived from both experimental conditions. The experiment was performed to
determine that the CLIA laboratory was proficient in generating the expression data for the HG-U133+ platform.
(Left) 12CK GES scores in MGC vs. CLIA lab (r=0.991) indicating high correlation although signature calibration was
needed. (Right) RSI signature scores in MGC vs. CLIA laboratory indicating compressed RSI signal from the CLIA
experiments. (B) Repeatability of GES from quadruplicate samples in CLIA laboratory. Four samples were
processed in quadruplicate and arrayed in the CLIA laboratory from the same operator. GES scores were derived from
each experiment. (Left) 12CK GES scores had low variability in each of the four samples. (Right) RSI was identical
in two samples and had low level of variability in two samples.

Replicated assays demonstrate repeatability of signature scores

We next profiled four samples in quadruplicate to assess the repeatability of the GES. Each sample
was processed independently by the same operator resulting in four distinct gene expression arrays
per sample. As shown in Figure 1B, the 12CK GES varied for each sample but the overall variability
was low with a mean range of scores by sample of 0.16825 (7.8% of total observed range). Likewise,
the RSI score variability was generally low with a mean range of scores by sample of 0.01 (6.5%
of total observed range). In the case of RSI, two samples (S 19 and S 17) show identical signature
scores across all four replicates. The RSI is rank-based, therefore small variations in expression do
not always result in differences in GES score. Operators and time demonstrate higher RSI variability,
but not 12CK variability

The replicability and precision of the GES was assessed using two different experiments, evaluating
the impact of operator and processing date on the GES. To test the operator characteristics, three
samples were run in duplicate by two different operators (O1, O2) (Figure 2A). The 12CK GES
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showed a very small operator effect, much smaller than the sample differences in GES score. In
contrast, the operator had a larger impact in one sample (S 11) for RSI. The impact of processing
date was assessed by profiling four samples that were independently processed one week apart (Figure
2B). The 12CK GES showed low variation among replicates across time. In the case of RSI, S11 and
S12 did show differences (less than 0.1 difference) in replicates while the other two replicates were
identical in score.

Fig. 2 Replicability and Precision Analysis through measuring operator-to-operator and repeated run
experiments. (A) Operator Variability: Three samples were run in duplicate by two different operators to assess
both the variability in operator handling as well as repeatability from the same operator. The 12CK GES showed
low variability across operator whereas the RSI score had a larger difference in RSI score between operators. (B)
Repeated run over time: Four samples were repeated one week apart and assessed. The variability in the 12CK
GES was low for all samples. RSI showed variability (less than 0.1) in two of the four samples.

Summary Reproducibility

Using the experiments in which four replicates were produced (either from operator-to-operator
variability or the repeatability study), Table 3 shows the summary mean and standard deviation for
the GES scores. Overall, reproducibility analysis of the scores indicated a median RSI difference of
0.06 (6.47% of range) across samples and a median 12CK GES difference of 0.92 (12.29% of range).
The GES are very reproducible in the CLIA laboratory using the pre-defined processing protocols.

Amount of material (input RNA) indicates 2.5 ng is lower limit for GES

An important consideration for any molecular test is the amount of material required to perform
reliably and robustly. To address this question, three samples were profiled using 100, 25, 10, 5
and 2.5 ng of input RNA (Figure 3). For the 12CK GES, the scores are very similar across RNA
amounts, with a lower score observed in the 2.5 ng condition suggesting a lower limit on RNA.
RSI demonstrated more overall variability (less than 0.1), however did not appear to have an input
amount-related impact.
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Table 3 Summary of reproducibility of signature scores across
operator to operator and repeatability experiments.

Sample N RSI Mean (SD) 12CK GES Mean (SD)

11 4 0.5 (0.078) -0.67 (0.149)

13 4 0.56 (0) -2.87 (0.169)

14 4 0.32 (0.059) 2.67 (0.057)

16 4 0.63 (0.017) -3.82 (0.071)

17 4 0.57 (0) -2.63 (0.075)

19 4 0.63 (0) -1.87 (0.087)

20 4 0.75 (0.004) -3.23 (0.072)

In each case, four replicates of the sample were performed; listed are
the mean and standard deviation for each sample. Note that the first
four samples are operator-to-operator.

Fig. 3 Impact of amount of input RNA on GES scores. Three samples were profiled using differing amount of
input RNA (100ng, 25ng, 10ng, 5ng, and 2.5ng). Lower 12CK GES scores were observed at 2.5ng suggesting a lower
limit on input RNA. RSI demonstrated more variability overall but did not appear to have a systematic difference at
2.5ng.

Tissue Type Factors

We also assessed the impact of macrodissection or normal tissue mixtures on GES score. From
three samples, we examined the tumor macrodissected tissue (T), normal macrodissected tissue (N)
and non-macrodissected tissue (PM). As shown in Figure 4, the normal (N) scores demonstrate
large differences from tumor (T) as is the case with the 12CK GES for S1. In this case, the non-
macrodissected tissue (PM) 12CK GES score was more similar to the corresponding normal (N).
In other cases, the RSI score (S3) showed a large difference between normal and tumor. These
results indicate that, as expected, GES scores derived from tumor tissue must be assayed from
macrodissected (predominantly) tumor tissue to be reliably reproduced.

Surgical specimens vs. punch biopsies in breast cancer and head & neck
cancer introduces variability

While both GES were developed from macrodissected surgical specimens, punch biopsies are often a
more readily available source of material for clinical assays. Therefore, we assessed the variability in
GES scores between these preparation types in two different diseases: breast cancer and head & neck
cancer. Core biopsies were obtained from tissue blocks. Figure 5A indicates that in breast cancer, the
12CK GES score can be attenuated by punch biopsy whereas the RSI score showed small changes
in both directions. In the case of head & neck cancer, both the 12CK GES and RSI scores showed
increases in scores for biopsy samples (Figure 5B). This may relate to the cellular content and/or
proportion of immune cells present in the specimen. The variability introduced into the scores due
to preparation type can be used when considering alternative methods for use. Interestingly, RSI
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Fig. 4 Impact of Macrodissection on signature scores. Three samples were profiled across three different sample
conditions: tumor macrodissected tissue (T), normal macrodissected tissue (N) and non-macrodissected tissue (PM).
As expected, normal tissue can result in large changes to the signature score, which can be seen in non-macrodissected
tissues as well. For instance, the 12CK GES score for Normal tissue from sample 1 is much higher however there is
elevated signal in the PM sample as well, whereas the differences in sample 3 (N,T,PM) are small.

tended to have a much narrower range of values (e.g., 0.6-0.8 for breast cancer vs 0.2-0.5 head &
neck cancer) indicating some tissue-specific sensitivity that has been noted previously.

Concordance with External Laboratory

Thirty samples were processed internally at the Moffitt Cancer Center (MCC) CLIA Laboratory and
sent to an external vendor for processing. Five samples failed processing and were not hybridized; two
samples where hybridized but failed initial QC. An additional 9 samples were excluded due to poor
QC. After filtering, GES scores from 14 samples were compared between the MCC CLIA Laboratory
and the external vendor (Figure 6). Using the Passing-Bablok test [38], both the 12CK GES and RSI
signatures had linear relationships between the two sites. The median RSI score difference was 0.065
(6% of full range) and the 12CK GES difference was 0.93 (12% of observed range).
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Fig. 5 Impact of Surgery vs Biopsy Sample on Signature Scores. (A) Breast cancer specimens from tissue
resection (surgery) and punch biopsy (biopsy) were compared. (B) Head and Neck cancer specimens from tissue
resection (surgery) and punch biopsy (biopsy) were compared.

Fig. 6 Concordance of signature scores across MCC CLIA Laboratory and external vendor. 30 samples
were profiled in the MCC CLIA Laboratory and external vendor. After excluding low quality samples, the linearity of
the 12CK GES (left) and RSI (right) scores for 14 samples across sites was assessed.
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4 Discussion

We describe a series of experiments that were performed to systematically assess the assay platform
(the Affymetrix HG-U133Plus 2.0 GeneChip) and specific gene signatures (RSI and 12CK) for CLIA
laboratory use in clinical trials assessing utility. Our results indicate that specific GES have different
operating characteristics, even using the same platform and hybridizations. Thus, it is important for
each GES to undergo systematic evaluation for its own unique precision and robustness limits.

The studies described herein were initially performed to provide support for the CLIA validation
of RSI. We note that a “valley of death” exists for GES being deployed clinically. Retrospective anal-
yses across a variety of platforms are more typically observed in research studies, however clinical
translation requires explicit experiments to clearly assess the operating characteristics under con-
trolled conditions. Importantly, the arrays generated in this study were subsequently reused to assess
the variability the 12CK GES without requiring additional hybridizations. As new GES are devel-
oped, this dataset can support rapid verification any additional GES under controlled conditions.
These types of experiments systematically generated across clinical specimens as a public resource
can provide initial data on the reliability of the GES for clinical translation, in particular where
patient decisions are made.

One aspect for GES is the underlying model used for prediction. RSI, for instance, was developed
as a rank-based linear regression to maximize robustness across multiple platforms. This approach
has been used for validation in many retrospective cohorts. Notwithstanding, the model was not
designed to optimize precision. This can be seen in the evaluation for CLIA operations; the level
of variability observed for RSI is higher than the 12CK GES for this reason. In contrast, the 12CK
GES was developed as a PCA-based model and is likely more robust to individual genes introduc-
ing variability. In both cases, the research-grade model has been used for extensive retrospective
validation in clinical cohorts. Modifying the scoring algorithm for precision is not possible without
re-validating the approach across retrospective datasets. An open area for additional research is a
systematic approach for hardening, modifying or adapting an existing model without negating the
value of the prior clinical validation data.
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