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AbstrAct
To explore the role of miRNAs in colorectal cancers (CRC), we have deep 

sequenced 48 pairs of frozen CRC samples, of which 44 pairs produced high quality 
sequencing data. By using a combined approach of our bias reduction small RNA 
(smRNA) deep sequencing protocol and Illumina small RNA TruSeq method for 
sample bar coding, we have obtained data from samples of relatively large size with 
bias reduced digital profile results. This novel approach allowed us to validate many 
previously published results using various techniques to profile miRNAs in CRC tissues 
or cell lines and to characterize ‘true’ miRNA signatures highly expressed in colon/
rectum (CR) or CRC tissues. According to our results, miR-21, a miRNA that is up-
regulated in CRC, and miR-143, a miRNA that is down-regulated in CRC, are the two 
miRNAs that dominated the miRNA population in CR tissues, and probably are also 
the most important miRNAs in CRCs. These two miRNAs, together with the other eight 
miRNAs, miR-148a, -194, -192, 200b, -200c, -10b, -26a, and -145, with descending 
expressing levels, constituted the top 10 highly expressed miRNAs in CR/CRC. Using 
TaqMan miRNA qPCR, we detected the relative expression of some of the CRC miRNAs 
in 10 CRC cell lines, validated their dysregulation under cancer condition, and provided 
possible explanation for their dysregulation, which could be caused by APC, KRAS, 
or TP53 mutations. We believe these results will provide a new direction in future 
miRNA-related CRC development studies, and application of miRNAs in CRC diagnosis/
prognosis, and therapy.

INtrODUctION

CRC includes two major entities: colon cancer (CC) 
and rectal cancer (RC). It ranks the 3rd in all cancer cases 
worldwide and represents one of the cancers with high 
mortality [1]. CRC rates are much higher in populations 
consuming low fiber, high fat, and high protein diet, 
compared with populations consuming high fiber, low fat, 
and low protein diet [2]. It is conceivable that as more 
populations in the world are moving towards high standard 

of living, which allows consuming varieties of foods, more 
CRC cases will be inevitably increasing worldwide. One 
supporting evidence for the above conclusion is that CRC 
already becomes the number one cancer cases in some rich 
areas that allows consuming large amount of high protein, 
high fat foods. CRC can be cured if it is diagnosed early. 
But because of its location, it is not easily spotted early 
and currently is usually diagnosed through unpleasant 
colonoscopy and biopsy (most in advanced stages 
already). It is conceivable researches that address novel 
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mechanisms in CRC development may be able to provide 
noninvasive, cost-effective approaches to diagnose CRC 
in early stages and provide new avenues for treatment.

MicroRNA (miRNA) is a family of conserved small 
RNAs (smRNAs) that can regulate target gene expression 
through mediating mRNA degradation or translational 
repression. It was proposed that miRNAs will become 
new frontier players in cancer biology [3]. Reduced 
accumulation of specific miRNAs in colorectal neoplasia 
was reported early on [4]. The milestone miRNA-cancer 
paper that reported the profile of miRNAs in cancers to 
be correlated with the origin, progression, and metastasis 
of many cancers have attracted the attention of more 
cancer biologists in this new field. Since then, more and 
more miRNA-cancer studies have advanced basic cancer 
research, the development of biomarkers for diagnosis/
prognosis, and the identification of miRNAs as targets for 
cancer therapy [5].

There are thousands of human miRNAs and their 
abundance is varied among different tissues [6, 7]. It 
is more practical to use a panel of miRNAs that are 
specifically expressed in certain cancer to study their role 
in carcinogenesis and to use them as biomarkers in cancer 
clinical practice. Therefore, it is critical to profile miRNAs 
that are highly or specifically expressed in certain cancer. 
While both microarray and deep sequencing are excellent 
platforms for global miRNA profiling, they are labor 
intensive, costly, have relatively low detecting range when 
compared to RT-qPCR, and the turnaround time is in days. 
In clinical setting, a small number of highly expressed 
miRNAs in the panel that can be detected by qRT-PCR 
within a few hours will be ideal. So the ideal approach is 
to screen a panel of miRNA using global miRNA profiling 
approaches, such as deep sequencing and microarray, then 
detect this panel of miRNAs by qRT-PCR that has high 
specificity, sensitivity, and fast turnaround time.

To explore the role of miRNAs in CRCs, Northern 
blotting, miRNA microarray, miRNA qRT-PCR, and high-
throughput small RNA sequencing methods have been 
applied in miRNA-CRC studies using CRC cell lines or 
patient samples in the past several years (See latest review 
[8]). Although results from these published studies are 
encouraging, they are limited by the techniques available, 
sample size, and the difficulty in sampling CRCs at 
different stages [8-10]. We are still in the early stage of 
collecting CRC-miRNA data and much more of this kind 
of data are necessary to advance this field and achieve 
our goal of using miRNAs in CRC diagnosis/prognosis, 
and therapy. To achieve this goal, CR/CRC miRNAs 
profiling will be the first step. Among all the miRNA 
profiling platforms, deep sequencing is the best technique 
to identify signature/marker miRNAs because they can 
detect thousands of annotated and novel miRNAs, as well 
as other small RNAs simultaneously.

Here we report our finding of a pilot study on 
miRNA deep sequencing using 48 paired frozen biopsy 

CRC samples, of which 44 paired samples produced 
high sequencing quality data and were used for further 
analysis. This study allowed us to validate many 
previously published results. Moreover, by using a bias 
reduction protocol for smRNA deep sequencing, we were 
able to provide novel digital miRNA profile data of CRC 
samples. The bias reduced digital profile results allowed 
us to characterize a ‘true’ miRNA signature that is highly 
expressed in CR or CRC tissues. Using TaqMan miRNA 
qPCR, we detected the relative expression of some of the 
CRC miRNAs obtained from deep sequencing in 10 CRC 
cell lines, which validated their dysregulation under cancer 
condition. We also provide possible explanation for their 
dysregulation, which could be caused by APC, KRAS, 
or TP53 mutations. We believe these results will provide 
a new direction in future miRNA-CRC development 
studies, and the application of miRNAs in CRC diagnosis/
prognosis, and therapy.

rEsULts

Deep sequencing data summary and signature 
mirNAs in cr or crc

Today, the bias results in ligation-based deep 
sequencing gene profiling remains as one major technical 
problem for its application to quantity gene expression 
after its discovery and publication of our bias reduction 
workaround solution [11-13]. In the current study, CRC 
samples were sequenced using a combined approach of 
our bias reduction smRNA deep sequencing method with 
the protocol provided in the Illumina TRUE smRNA 
sequencing kit for both bias reduction and sample bar 
coding [11]. Total 48 paired samples were used for this 
pilot experiment (one and half runs, each run using twelve 
lanes on an Illumina HighSeq2000 machine with eight 
bar coded samples per lane). After data validation, we 
were able to get 46 paired samples (46 samples set) that 
produced high quality sequencing data.

After filtering out low quality reads, we obtained 
about 7 to 10 M smRNA reads per sample for most of 
the samples (Figures 1a, S1, Table S1). Analysis of reads 
composition of smRNA fragments revealed that majority 
of them are mature miRNAs, ranging from 60 to 80 % for 
most of the samples (Figures 1b, S2). Total reads agreed 
well with mature miRNA reads in each sample (Figure 
1c). Summarized composition of smRNAs in reads from 
all sequenced samples showed that miRNAs represent the 
largest group, comprising of 72% of the total population. 
The second largest population is tRNA-derived smRNAs, 
which consist of 16% of the total population (Figure 1d). 
This data showed that we have high quality RNA samples 
and small RNA libraries, and our smRNA deep sequencing 
produced highly reliable data. Next, we performed miRNA 
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Figure 1: summary of smrNA deep sequencing reads. a. Histogram of smRNA deep sequencing reads for all samples. Majority 
of samples have smRNA reads between 7 to 10 millions. b. Histogram of miRNA percentage for all samples. Most of the samples have 
miRNA percentage ranging from 60% to 80%. c. Paired x-y plot of total smRNA reads per samples versus % of miRNA population per 
sample. d. Summary of smRNA composition for all samples. e. Box plot for log transformed T to N ratio of deep sequencing reads of 
miR-21, -31, -135b, -143, and -484 in the 44 pairs sample set. f. Box plot for ΔΔCt value of miRNA qRT-PCR detected miR-21, -31, -135b, 
-143, and -484 in the 44 pairs sample set.
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table 1: summary information of crc samples used in this study
samples  All colon rectal
Size Normal 44 29 15
 Tumor 44 29 15
Stage 0 1 1 0
 1 7 5 2
 2 7 5 2
 3 33 22 11
 4 1 1 0
Sex Male 13 7 6
 Female 31 23 8
Race Caucasian 32 19 13
 African 4 3 1
 Asian 7 6 1
 Unknown 1 1 0
Age 30-39 2 1 1
 40-49 2 1 1
 50-59 16 10 6
 60-69 9 7 2
 70-79 10 6 4
 80-89 5 4 1

Figure 2: Highly expressed mirNAs in cr/crc. a. Box plot of top 25 miRNAs by total reads in 44 pairs sample set. b. Circular 
plot of top 10 miRNA in normal tissue versus tumor tissue (44 pairs sample set).
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qRT-PCR for five miRNAs to validate our smRNA deep 
sequencing results. The qRT-PCR data agrees well with 
the deep sequencing reads (Figure 1e, 1f). Two pairs of 
samples were later reclassified as none cancer samples by 
pathologist and were removed from further analysis (44 
samples set in Table 1; most data analysis refers to this set 
hereafter unless specified).

Our bias reduction approach showed miR-21 and 
miR-143 together represent over 60% of all miRNAs, 
and the rest of the eight miRNAs from the top 10 highly 
expressed miRNAs covers 17% of total miRNAs (Figure 
2a). These data implied CR tissues are mainly controlled 
by miR-21 and miR-143. While miR-21 is up-regulated, 
miR-143 is down-regulated in majority of the tumor 
samples, which results as the rank of their abundance was 
switched in tumor samples versus normal samples (Figure 
2b). Only the rank of miR-148a remains unchanged (by 
%, Tumor versus Normal) in the top 10 miRNAs that are 
highly expressed in CR/CRC (Tables 2, S2). 

Compare published profile data with results in the 
current study

The advantage for miRNA deep sequencing is 
that the status (up/down in expression level) of miRNA 
dysregulation can be directly linked with the expression 
level of miRNAs in all CR/CRC miRNAs and the result 
can be digitalized. We compared our profile data with 
published CRC-miRNA results (Data was summarized 
in reference [8-10]). These top 10 miRNAs (by %) 
we identified in this study are also among the highly 
expressed miRNAs in CR/CRC reported before albeit 
in a different rank [14-16]. Overall, the status of miRNA 
dysregulation in published data agreed well with the 
results in our study (Tables 3, S3). However, several of 
dysregulated miRNAs that were reported previously are 
expressed at very low level according to our data, with 
only few reads per sample on average. This comparison 
showed the limitation of previous profiling methods. 
Therefore, some of the previously reported miRNAs may 

table 2: top 25 mirNAs in samples by reads or percentage
 by reads ( in 1000, sorted by All) by % in all reads (sorted by All)
rank mirNA Normal tumor All p-value mirNA Normal tumor All 
1 143 1831.29 1058.94 1445.11 0.0028 143 38.13 21.72 29.86
2 21 817.00 1993.57 1405.28 0.0000 21 17.01 40.89 29.04
3 148a 232.12 233.52 232.82 0.8591 148a 4.83 4.79 4.81
4 194 165.30 103.07 134.18 0.0048 194 3.44 2.11 2.77
5 192 146.86 96.18 121.52 0.0075 192 3.06 1.97 2.51
6 200b 110.35 109.81 110.08 0.6898 200b 2.30 2.25 2.27
7 200c 80.28 72.69 76.49 0.4658 10b 1.93 1.00 1.46
8 10b 92.64 48.62 70.63 0.0000 26a 1.88 1.04 1.46
9 26a 90.08 50.85 70.46 0.0000 145 1.70 0.67 1.18
10 145 81.46 32.82 57.14 0.0495 200c 1.67 1.49 1.58
11 10a 55.01 55.68 55.34 0.8860 10a 1.15 1.14 1.14
12 101 53.57 41.33 47.45 0.0038 101 1.12 0.85 0.98
13 let-7f 38.86 35.08 36.97 0.0774 let-7f 0.81 0.72 0.76
14 20a 23.45 46.18 34.82 0.0032 1 0.76 0.32 0.54
15 27b 34.50 26.95 30.73 0.0002 27b 0.72 0.55 0.64
16 200a 30.00 29.18 29.59 0.6801 let-7g 0.67 0.49 0.58
17 23a 27.68 28.95 28.31 0.6455 215 0.66 0.20 0.43
18 let-7g 32.19 23.93 28.06 0.0001 378 0.64 0.25 0.44
19 199a-3p 24.32 29.85 27.09 0.1416 200a 0.62 0.60 0.61
20 199b-3p 24.32 29.85 27.09 0.1416 30d 0.59 0.41 0.50
21 1 36.33 15.68 26.00 0.0001 23a 0.58 0.59 0.59
22 30d 28.36 20.12 24.24 0.0023 let-7a 0.54 0.46 0.50
23 let-7a 25.71 22.37 24.04 0.0439 199a-3p 0.51 0.61 0.56
24 146b-5p 20.28 27.00 23.64 0.1105 199b-3p 0.51 0.61 0.56
25 378 30.54 12.25 21.40 0.0000 20a 0.49 0.95 0.72
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Figure 3: Hierarchical cluster analysis classifies tumor versus normal tissues. Dendrogram of miRNAs with p<0.05 cluster 
normal tissue versus tumor tissue (44 pairs sample set). miRNAs are clustered into two groups that are either correlated with normal tissue 
or tumor tissue. There are several cases of tumor tissues are classified into normal tissues.

Figure 4: relative expression level of mirNAs in crc cell lines. Total of 18 miRNAs expression were measured by Taqman 
miRNA qPCR. ΔCt value of each miRNA was calculated as average value of ΔCtmiRNA = Ctcell line-miRNA - Ctcell line-U6sn from three independent 
reactions with duplicates in each reaction, and -ΔCtmiRNA values were used for hierarchical clustering.
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not play a critical physiological role in CR/CRC and will 
be difficult for detection and clinical applications due to 
their low abundance (Table 3). Furthermore, many of the 
reported dysregulated miRNAs are up/down less than 
50%, implying that they will not be good candidates to be 
used as biomarkers (Table S3).

The power of paired samples and miRNAs pool 
to distinguish tumor tissues from normal tissues

There are hundreds of miRNAs detected in our 
samples and the variation of reads is large, it is unlikely 
all of them can be used to classify tumor versus normal 
tissues. Unsupervised hierarchical cluster analysis using 
reads count of all miRNAs to distinguish tumor versus 
normal tissues failed to give a clear results. Instead, 

table 3: Dysregulated crc mirNAs: published list versus this study (changes by > 50%)

rank mirNA Normal tumor All (t+N) ref this t/N ratio 

161 135b 94 733 414 Up Up 7.80
596 663 1 4 3 Down Up 4.00
149 224 239 815 527 Up Up 3.41
101 183 667 2174 1421 Up Up 3.26
79 182 1641 5197 3419 Up Up 3.17
2 21 817001 1993567 1405284 Up Up 2.44
228 96 76 168 122 Up Up 2.21
34 17 10882 23553 17218 Up Up 2.16
39 7 8042 17185 12614 Up Up 2.14
14 20a 23452 46183 34818 Up Up 1.97
53 203 6086 10185 8136 Up Up 1.67
93 106a 1513 2322 1918 Up Up 1.53
5 192 146863 96181 121522 Down Down 0.65
73 99b 5486 3549 4518 Down Down 0.65
37 125a-5p 17052 10790 13921 Down Down 0.63
4 194 165296 103069 134183 Down Down 0.62
52 30c 11117 6625 8871 Down Down 0.60
84 195 3654 2123 2889 Down Down 0.58
1 143 1831286 1058943 1445115 Down Down 0.58
80 133a 4218 2340 3279 Down Down 0.55
42 451 15459 8048 11754 Down Down 0.52
115 29c 1449 754 1102 Down Down 0.52
43 30a 15825 7575 11700 Down Down 0.48
63 375 7856 3399 5628 Down Down 0.43
21 1 36329 15680 26005 Down Down 0.43
423 129-3p 17 7 12 Down Down 0.41
10 145 81457 32816 57137 Down Down 0.40
25 378 30542 12252 21397 Down Down 0.40
411 139-3p 20 8 14 Down Down 0.40
147 9 765 294 530 Down Down 0.38
318 135a 60 21 41 Up Down 0.35
26 215 31876 9542 20709 Down Down 0.30
410 124 23 5 14 Down Down 0.22
378 137 31 6 19 Down Down 0.19
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Table 4: Top 5 gene sets in oncogenic signature, Reactome, and Biocarta overlapped with experimental validated miR 
target genes

mir Gene set Name
# Genes in 
Gene set 
(K)

# Genes in 
Overlap 
(k)

k/K p-valuea FDr 
q-valueb

miR-
21

TBK1.DF_DN 287 32 0.1115 2.41E-23 4.56E-21
P53_DN.V1_UP 194 18 0.0928 2.51E-12 1.58E-10
RAF_UP.V1_DN 194 18 0.0928 2.51E-12 1.58E-10
TBK1.DF_UP 290 19 0.0655 2.66E-10 1.26E-08
PIGF_UP.V1_UP 191 15 0.0785 1.74E-09 6.23E-08
REACTOME_METABOLISM_OF_
LIPIDS_AND_LIPOPROTEINS 478 22 0.046 7.82E-09 2.72E-06

REACTOME_DEVELOPMENTAL_
BIOLOGY 396 20 0.0505 8.06E-09 2.72E-06

REACTOME_FATTY_ACID_
TRIACYLGLYCEROL_AND_
KETONE_BODY_METABOLISM

168 12 0.0714 2.09E-07 4.69E-05

REACTOME_SIGNALING_BY_TGF_
BETA_RECEPTOR_COMPLEX 63 8 0.127 2.85E-07 4.80E-05

REACTOME_HEMOSTASIS 466 19 0.0408 5.23E-07 5.92E-05
BIOCARTA_MAPK_PATHWAY 87 13 0.1494 6.50E-12 1.41E-09
BIOCARTA_HIVNEF_PATHWAY 58 10 0.1724 4.16E-10 4.51E-08
BIOCARTA_KERATINOCYTE_
PATHWAY 46 9 0.1957 9.62E-10 6.96E-08

BIOCARTA_CTCF_PATHWAY 23 7 0.3043 2.53E-09 1.37E-07
BIOCARTA_ALK_PATHWAY 37 8 0.2162 3.59E-09 1.56E-07

miR-
200c

TBK1.DF_DN 287 4 0.0139 2.53E-04 2.71E-02
BMI1_DN_MEL18_DN.V1_UP 145 3 0.0207 5.10E-04 2.71E-02
ESC_V6.5_UP_LATE.V1_DN 186 3 0.0161 1.05E-03 2.71E-02
P53_DN.V1_DN 192 3 0.0156 1.15E-03 2.71E-02
VEGF_A_UP.V1_DN 193 3 0.0155 1.17E-03 2.71E-02
REACTOME_INTRINSIC_PATHWAY_
FOR_APOPTOSIS 30 3 0.1 4.53E-06 3.05E-03

REACTOME_HEMOSTASIS 466 6 0.0129 1.02E-05 3.43E-03
REACTOME_VEGF_LIGAND_
RECEPTOR_INTERACTIONS 10 2 0.2 4.98E-05 9.68E-03

REACTOME_RIG_I_MDA5_
MEDIATED_INDUCTION_OF_IFN_
ALPHA_BETA_PATHWAYS

73 3 0.0411 6.72E-05 9.68E-03

REACTOME_PLATELET_
ACTIVATION_SIGNALING_AND_
AGGREGATION

208 4 0.0192 7.36E-05 9.68E-03

BIOCARTA_VEGF_PATHWAY 29 3 0.1034 4.08E-06 8.86E-04
BIOCARTA_AKAP13_PATHWAY 12 2 0.1667 7.30E-05 5.97E-03
BIOCARTA_HIF_PATHWAY 15 2 0.1333 1.16E-04 5.97E-03
BIOCARTA_RELA_PATHWAY 16 2 0.125 1.32E-04 5.97E-03
BIOCARTA_IL7_PATHWAY 17 2 0.1176 1.50E-04 5.97E-03
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normal tissues were mainly clustered into two groups 
(Figure S3). To reduce the variation among samples, we 
applied the power of paired sample by using tumor to 
normal reads count ratio (TN ratio) in each paired sample 
and selected a list of miRNAs using the criteria of p-value 
< 0.05. Using this approach, we were able to differentiate 
most tumor samples from normal samples and these 
differentially expressed miRNAs are classified into two 
groups that are up-regulated or down-regulated in tumor 
samples, compared with normal samples (Figure 3).

Detect the crc mirNAs in crc cell lines

Cancer cell lines have advantages over tissues for 
many cancer-related studies and research, such as drug 
testing, to study cancer causes by gene mutations, and 
using tumor mouse model for cancer studies. Therefore, 
we detected some CRC miRNAs from our deep 
sequencing results in 10 CRC cell lines using miRNA 
Taqman qPCR and correlated their expression status with 
APC, KRAS and TP53 mutations. Expression levels were 
measured by relative –delta Ct value (miRNA to U6sn). 
The expression level of miR-21, miR-200 family, miR-
194, miR -192, miR-148a, and miR-26a, was relatively 
high, consistent with their high expression in CRC tissues; 
the expression level of miR-143-3p, miR-10b, and miR-
145 was relative low, agreeing with their down-regulation 

in CRC tissues. Heatmap analysis revealed that mutation 
in either TP53 (HCT116 and LoVo are wild type) or APC 
(HCT116 is wild type) may be responsible for the down-
regulated miRNAs (Figures 4, S4, S5). These miRNAs 
may also be used to separate k-ras mutation from wt (HT-
29 and WiDr are wild type) (Figures 4, S6). These data 
provide the opportunity to manipulate these miRNAs in 
CRC cell lines for loss or gain of miRNA function studies 
using cell lines and tumor mouse model.

Functional enrichment analysis of mir-21, mir-
200c, and miR-26a target genes and pathways

To explore the possible role of oncogenic 
miRNAs in CRC, we performed enrichment analysis 
of experimentally validated target genes of miRNAs 
in oncogenic signatures and biological pathways listed 
in MSigDB. We listed the top 5 enriched terms in each 
databases in Table 4. The results demonstrated that miR-
21-regulated genes are involved in RAS/RAF activation, 
including mitogen-activated signaling and TBK1-
regulated pathways, miR-200 family-targeted genes are 
suppressed by VEGF signaling, and miR-26a-modulated 
genes are correlated with cell cycle progression.

Furthermore, we analyzed the co-expressed genes 
and miRNAs in CRC patients from an independent dataset 
in terms of oncogenic signature and signaling transduction 

miR-
26a

RB_DN.V1_UP 137 8 0.0584 6.20E-08 1.17E-05
E2F1_UP.V1_UP 189 7 0.037 8.79E-06 5.73E-04
CYCLIN_D1_KE_.V1_UP 190 7 0.0368 9.09E-06 5.73E-04
CAMP_UP.V1_UP 200 7 0.035 1.27E-05 5.99E-04
MTOR_UP.N4.V1_UP 196 6 0.0306 1.12E-04 4.24E-03
REACTOME_CELL_CYCLE 421 18 0.0428 5.79E-14 3.90E-11
REACTOME_CELL_CYCLE_
MITOTIC 325 14 0.0431 3.62E-11 1.22E-08

REACTOME_MITOTIC_G1_G1_S_
PHASES 137 10 0.073 1.50E-10 3.36E-08

REACTOME_G1_S_TRANSITION 112 8 0.0714 1.28E-08 2.15E-06
REACTOME_CYCLIN_E_
ASSOCIATED_EVENTS_DURING_
G1_S_TRANSITION

65 6 0.0923 1.92E-07 2.48E-05

BIOCARTA_G1_PATHWAY 28 5 0.1786 6.92E-08 1.50E-05
BIOCARTA_CELLCYCLE_PATHWAY 23 4 0.1739 1.70E-06 1.23E-04
BIOCARTA_CTCF_PATHWAY 23 4 0.1739 1.70E-06 1.23E-04
BIOCARTA_WNT_PATHWAY 26 4 0.1538 2.84E-06 1.54E-04
BIOCARTA_ALK_PATHWAY 37 4 0.1081 1.22E-05 5.28E-04

aP-value from the hypergeometric distribution for (k-1, K, N - K, n) where k is the number of genes in the intersection 
of the query set with a set from MSigDB, K is the number of genes in the set from MSigDB, N is the total number 
of all known human gene symbols, and n is the number of genes in the query set.
bFalse discovery rate analog of hypergeometric p-value after correction for multiple hypothesis testing according to 
Benjamini and Hochberg.
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Table 5: Top 3 enriched terms of miR correlated gene expression in oncogenic signatures and signaling pathway 
database reactome

mir Name size Es NEs p-val FDr q-
val

miR-
21

Oncogenic signature      
EGFR_UP.V1_UP* 177 0.578 1.935 0.002 0.061
TBK1.DN.48HRS_DN* 49 0.519 1.666 0.024 0.210
KRAS.DF.V1_UP* 174 0.444 1.663 0.029 0.180
YAP1_DN 40 -0.480 -1.741 0.006 0.448
KRAS.600_UP.V1_DN 266 -0.379 -1.469 0.048 1.000
KRAS.AMP.LUNG_UP.V1_UP 128 -0.418 -1.462 0.066 1.000
Pathway      
REACTOME_CELL_SURFACE_INTERACTIONS_
AT_THE_VASCULAR_WALL* 84 0.534 1.921 0.002 0.247

REACTOME_IL1_SIGNALING 32 0.628 1.864 0.002 0.275
REACTOME_SIGNALING_BY_ILS 98 0.505 1.748 0.015 0.785
REACTOME_DEFENSINS* 26 -0.636 -1.913 0.004 0.242
REACTOME_ACYL_CHAIN_REMODELLING_OF_
PC 16 -0.604 -1.769 0.011 0.690

REACTOME_ACYL_CHAIN_REMODELLING_OF_
PE 17 -0.594 -1.768 0.010 0.467

miR-
200c

Oncogenic signature      
JAK2_DN.V1_DN 132 0.410 1.518 0.079 1.000
SNF5_DN.V1_DN 146 0.332 1.408 0.057 1.000
CAHOY_OLIGODENDROCUTIC 89 0.291 1.216 0.176 1.000
RPS14_DN.V1_UP 179 -0.528 -1.619 0.067 1.000
SNF5_DN.V1_UP 163 -0.440 -1.612 0.048 1.000
KRAS.LUNG.BREAST_UP.V1_UP 134 -0.389 -1.420 0.092 1.000
Pathway      
REACTOME_CHOLESTEROL_BIOSYNTHESIS 21 0.688 1.545 0.076 1.000

REACTOME_TRANSPORT_OF_VITAMINS_NU-
CLEOSIDES_AND_RELATED_MOLECULES 31 0.410 1.454 0.030 1.000

REACTOME_BIOLOGICAL_OXIDATIONS 120 0.323 1.314 0.119 1.000
REACTOME_GPVI_MEDIATED_ACTIVATION_
CASCADE 30 -0.593 -1.807 0.004 1.000

REACTOME_GENERATION_OF_SECOND_MES-
SENGER_MOLECULES 24 -0.754 -1.801 0.014 0.780

REACTOME_COSTIMULATION_BY_THE_CD28_
FAMILY 57 -0.552 -1.791 0.012 0.576
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pathway using gene set enrichment analysis (GSEA, Table 
5). Of interest, our results revealed that genes involving 
EGFR, TBK1, KRAS signaling, as well as cell surface 
interactions at the vascular wall were positively correlated 
with miR-21 expression (Figure 5), supporting its 
oncogenic roles with integrated oncogenic gene expression 
in CRC progression.

DIscUssION

The role of miRNAs in CRC has attracted attention 
from researchers as well from physicians. MiRNAs in 
CRC tissues may correlate with it disease progression 
and disease stages and serve as biomarkers for diagnosis, 
prognosis, or suitable targets for treatments. Because 
miRNAs can also be transported through exosome 
and circulate exosomally, miRNAs have become very 
attractive noninvasive diagnosis biomarkers for cancers 
[17, 18]. In the past 10 years, many data have been 
generated using a variety of techniques and CRC samples 
[8-10]. Among all the techniques, deep sequencing is the 
most advanced and cost effective method to deal thousands 
of miRNAs at the same time, the ability to detect samples 
in a high dynamic range, and the potential to provide 
digital signature of miRNAs in profiled samples. It 
can also simultaneously detect novel miRNAs, others 
smRNAs, such as tRNA-derived smRNA fragments. But, 
due to the technical and bioinformatics challenges, and the 
high cost per run, only a few publications have employed 
deep sequencing technology in CRC-miRNA studies [14, 
16].

In the current report, we performed a pilot study 
using deep sequencing technology to profile smRNAs 

from paired frozen CRC tissue samples. We also applied 
sample bar-coding to reduce cost and increase efficiency. 
Compared with published results, we get more reads 
(about 5 fold) and may have produced a list of ‘true’ 
signature miRNAs in CR/CRC. These signature miRNAs 
are critical candidate miRNAs that can be used in future 
miRNAs-CRC studies, CRC diagnosis/prognosis, and 
therapy. Their high expression level supports the notion 
that they could be biologically significant targets. The high 
level expression of these miRNAs may also reduce the 
technique challenge for detecting them to facilitate their 
application in clinical setting.

According to our results, miR-21, a miRNA that is 
up-regulated in CRC, and miR-143, a miRNA that is down-
regulated in CRC, are the two miRNAs that dominated 
the miRNA population in CR tissue, and probably are 
also the most important miRNAs in CRC. The next eight 
miRNAs, from high to low in relative expression level, are 
miR-148a, -194, -192, 200b, -200c, -10b, -26a, and -145, 
which constituted the top 10 highly expressed miRNAs 
in CR/CRC. According to the changes in expression 
level, it seems miR-21 could act as an oncogene and 
miR-143 could serve a tumor suppressor role, but their 
exactly roles need to be defined by identifying their 
bona fide targets that can play direct physiology roles in 
CRC, and the cause of their dysregulation. The function 
of miR-21 has been well established because it is up-
regulated in nearly all types of cancers and target tumor 
suppressor genes PTEN and PDCD4 [19-21]. The role 
of miR-143 in CRC is complicated despite many earlier 
reports indicating that miR-143 is a critical CRC miRNA 
[22-28], a recent careful study put this into question 
[29]. This previous study demonstrated that miR-143 

miR-
26a

Oncogenic signature      
TBK1.DN.48HRS_DN* 49 0.602 1.920 0.000 0.056
BCAT_BILD_ET_AL_UP 44 0.465 1.520 0.046 1.000
BCAT_GDS748_DN 40 0.411 1.511 0.020 1.000
KRAS.AMP.LUNG_UP.V1_UP 128 -0.434 -1.536 0.035 1.000
KRAS.LUNG.BREAST_UP.V1_UP 134 -0.394 -1.526 0.055 1.000
KRAS.600.LUNG.BREAST_UP.V1_UP 260 -0.376 -1.510 0.048 0.809
Pathway      

REACTOME_TRANSCRIPTIONAL_REGULATION_
OF_WHITE_ADIPOCYTE_DIFFERENTIATION 53 0.478 1.750 0.006 1.000

REACTOME_ARMS_MEDIATED_ACTIVATION 15 0.650 1.688 0.006 1.000
REACTOME_PROLONGED_ERK_ACTIVATION_
EVENTS 17 0.610 1.660 0.013 1.000

REACTOME_OLFACTORY_SIGNALING_PATHWAY 78 -0.636 -1.816 0.012 0.507
REACTOME_LIGAND_GATED_ION_CHANNEL_
TRANSPORT 21 -0.661 -1.691 0.022 0.979

REACTOME_DEFENSINS 26 -0.575 -1.647 0.018 0.946
* Bold indicates significantly enriched terms with FDR less than 0.25. 
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and miR-145 are highly expressed in mesenchymal cells 
and are undetectable in colonic epithelial cells by various 
techniques, including the same deep sequencing platform 
we have used. Therefore, the role of miR-143 in CRC may 
be questionable. This result reminds us of a limitation of 
our study: the heterogeneity of tissue samples used in our 

study, especially the adjacent normal tissues that were 
resected during surgery. This may also have reflected in 
our clustering data (Figure S3). The current study can be 
further refined by detecting the list of identified candidate 
miRNAs by miRNA qRT-PCR using RNA samples from 
FFPE samples.

Figure 5: miR-21 expression is positive correlated with cancer-associated pathways. Top ranked enriched terms of gene 
set enrichment analysis (GSEA) on miR-21 correlated gene expression. a. Oncogenic signature (NES = 1.935, FDR = 0.061). b. The 
expression levels of leading edge genes in oncogenic signature and miR-21 with descending levels from red to blue and orange to green, 
respectively. c. Reactome pathway database (NES = 1.921, FDR = 0.247). d. The expression levels of leading edge genes in reactome 
pathway database and miR-21 with descending levels from red to blue and orange to green, respectively.
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It also needs to be noted that some miRNAs with 
relatively low expression level, such as miR-31, miR-9, 
miR-135b, have been shown to play critical roles in CRC 
by several previous reports [22, 27, 30-35]. It is possible 
that these miRNAs may not need high expression level 
to be physiologically relevant. Alternatively, it could be 
technical difficulties that have prevented the detection 
of these miRNAs by ligation-based deep sequencing 
technology. One example is miR-31, which was detected 
as a low abundant miRNA using deep sequencing but can 
be detected relatively easy by qRT-PCR in this study and 
another independent study [16].

CRCs origins in the lining of the bowel and can 
invade the muscle layers underneath, and then grow 
through the bowel wall, and some will eventually develop 
into cancer. Our results showed that some muscle-
specific-miRNAs (miR-1, miR-133a, ranked #21 and 
80 respectively, Table S2) were detected to be highly 
expressed in CRC and could be involved in the progress 
of CRCs.

Another limitation of this study is that most of our 
samples are at stages 3, therefore it is impossible to draw 
a conclusion on how their expressions are related to CRC 
progression. However, by comparing the normal tissues 
to CRC tissues, our data support the conclusion that 
dysregulation of miRNA expression could contribute to 
diseases development. More stage 1, 2, and 4 samples will 
help to correlate miRNA expression to CRC development 
process and it can provide physicians treatment options in 
addition to tradition method.

Our Taqman miRNA qPCR expression data in CRC 
cell lines validated the some CRC miRNAs identified by 
deep sequencing. It will provide a basis for functional 
studies of miRNAs in CRC in the future. 

MAtErIALs AND MEtHODs

Patient cohort and samples collection

Paired samples (CRC and adjunct normal tissues) 
were collected during surgery at City of Hope using IRB 
protocol #COH05130. The biopsies were immediate 
frozen in liquid nitrogen after surgery and stored at -80 °C 
until RNA isolation. Total 48 pairs of samples (CRC and 
adjunct region normal tissues) were used (Table 1). CRCs 
were staged according to American Joint Committee on 
Cancer (AJCC) staging criteria. Samples are most at stage 
3, with age from 50 to 80, and ratio of colon to rectal about 
2:1, and female to male ratio about 3:1.

rNA isolation 

Total RNA was isolated from frozen tissues or cell 
lines using Trizol (Life Technologies, Carlsbad, CA). RNA 

quality was checked and was quantified using a Nanodrop 
and an Agilent Bioanalyzer. 

small rNA deep sequencing 

One µg of total RNA was used to construct small 
RNA deep sequencing libraries as described in our 
previous publication [11] with the following modifications. 
Briefly, we mixed 64 equal molar oligos (adding three nt 
to the 3’ end of Illumina default 5’ adaptor) to produce 
a mixture of small RNA library 5’ ligation adaptor. We 
chose eight 3’ adaptors from a panel of 3’ adaptor in 
smRNA TruSeq kit (Illumina, San Diego, CA) as 3’ 
ligation adaptor and also bar-coding samples. Each lane 
was loaded with eight bar-coded samples on a HiSeq2000 
(Illumina, San Diego, CA) machine using all eight lanes 
for the first run (64 samples) and four lanes for the second 
run (32 samples).

Deep sequencing data analysis

Deep sequencing data analysis was performed as 
previously reported [11] with the following modification: 
1) Reads were aligned to human genome hg19; 2) The 
mapping table was created using the human miRNA 
mature sequences from miRBase release16 and aligned 
back to human hg19 genome afterward [11]; 3) MiRNAs 
with less than 10 reads per sample in both normal and 
tumor samples are removed for further data analyzed. 
Deep sequencing data were analyzed, summarized, 
and plotted using R or Excel. Partek genomic suite 
(Partek Incorporated, St. Louis, Missouri) was used for 
hierarchical cluster analysis.

smrNA qrt-Pcr for tissue samples

We followed the S-Poly(T) smRNA qRT-PCR 
detection protocol as previously reported [36]. Briefly, 
100 ng total RNA was poly-A tailed using the poly-A 
tailing kit from Epicentre (Madison, WI). U47 snoRNA 
was chosen as RNA sample control. ΔΔCt value of each 
paired samples was calculated as (CtTumor-miRNA-CtTumor-U47) 
– (CtNormal-miRNA-CtNormal-U47). 

taqman mirNA qPcr for cell lines

Taqman miRNA assay kits were purchased from 
Life Technologies (Grand Island, New York, USA). We 
followed the protocol from the manufacture. U6 snRNA 
was used as RNA sample control. ΔCtmiRNA values were 
used as their relative expression to U6 snRNA for data 
analysis.
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Functional gene set enrichment analysis

For miRNA-targeted genes, we obtained 
experimentally validated miRNA-target gene pairs (474, 
49, and 175 experimentally validated target genes of miR-
21-5p, miR-200c-3p, and miR-26a-5p, respectively) from 
miRTarBase [37] and assigned them as the query set for 
oncogenic signatures (C6), Reactome (CP:REACTOME 
of C2), and Biocarta (CP:BIOCARTA of C2) in MSigDB 
[38]. There are 189 and 674 gene sets collection in the 
oncogenic, and the Reactome category, respectively. For 
overlaps analysis, we used hypergeometric test to estimate 
the probability that the number of miR targeted genes 
overlapped with the genes from a given collection from 
the number of input genes randomly selected genes in 
45956 human genes. For instance, the top term of miR-21 
in oncogenic signature results in a probability of 4.56E-
21 to draw 32 TBK1.DF_DN-associated genes or more 
from 474 randomly selected genes in the list. Significance 
is indicated by p-value from the hypergeometric test and 
adjusted by false discovery rate (FDR) after correction 
for multiple hypothesis testing according to Benjamini 
and Hochberg. For gene set enrichment analysis (GSEA), 
gene expression dataset was downloaded from GEO 
(GSE29623 [39]) with corresponding miRNA expression 
profiles. We permutated phenotype labels 1000 times 
and performed GSEA on the permutated data to obtain 
a random ES distribution. For the GSEA test, a p-value 
is calculated on the original data, and the resulting 
enrichment score is compared to the distribution of the 
values obtained from the permuted data. Distinct GSEA 
on miR-21, miR-26a, and miR-200c expression levels 
were performed on gene set in oncogenic signatures and 
Reactome using Pearson matrix. FDR < 0.25 was used 
to define significant enriched gene sets as suggested by 
GSEA documentation [40].

AcKNOWLEDGMENts

Authors would like to thanks Dr. David Ann and 
Ms Mansze Kong for their helps in this project. Deep 
sequencing and raw data processing were conducted by 
City of Hope integrated genomic core. 

cONFLIcts OF INtErEst

All authors declared there is no conflict of interest.

GrANt sUPPOrt

Part of this work was supported by grants 
from the Ministry of Science and Technology 
(MOST 103-2320-B-038 -053) and Ministry of 
Health and Welfare (MOHW103-TD-B-111-01, 
MOHW103-TDU-B-212-113001 and MOHW104-

TDU-B-212-124-001) of Taiwan.

rEFErENcEs

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and 
Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 
2015; 65:87-108.

2. Norat T, Aune D, Chan D and Romaguera D. Fruits and 
vegetables: updating the epidemiologic evidence for 
the WCRF/AICR lifestyle recommendations for cancer 
prevention. Cancer Treat Res. 2014; 159:35-50.

3. McManus MT. MicroRNAs and cancer. Semin Cancer Biol. 
2003; 13:253-258.

4. Michael MZ, SM OC, van Holst Pellekaan NG, Young 
GP and James RJ. Reduced accumulation of specific 
microRNAs in colorectal neoplasia. Mol Cancer Res. 2003; 
1:882-891.

5. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, 
Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando 
AA, Downing JR, Jacks T, Horvitz HR and Golub TR. 
MicroRNA expression profiles classify human cancers. 
Nature. 2005; 435:834-838.

6. Griffiths-Jones S. miRBase: microRNA sequences and 
annotation. Curr Protoc Bioinformatics. 2010; Chapter 
12:Unit 12 19 11-10.

7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, 
and function. Cell. 2004; 116:281-297.

8. Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren N, Hu Y, 
Yi T, Zhao X, Zhou S and Wei Y. MicroRNAs in colorectal 
cancer: Small molecules with big functions. Cancer Lett. 
2015; 360:89-105.

9. Yang X, Zhong J, Ji Y, Li J, Jian Y, Zhang J and Yang W. 
The expression and clinical significance of microRNAs in 
colorectal cancer detecting. Tumour Biol. 2015; 36:2675-
2684.

10. Orang AV and Barzegari A. MicroRNAs in colorectal 
cancer: from diagnosis to targeted therapy. Asian Pac J 
Cancer Prev. 2014; 15:6989-6999.

11. Sun G, Wu X, Wang J, Li H, Li X, Gao H, Rossi J and Yen 
Y. A bias-reducing strategy in profiling small RNAs using 
Solexa. RNA. 2011; 17:2256-2262.

12. Fuchs RT, Sun Z, Zhuang F and Robb GB. Bias in 
ligation-based small RNA sequencing library construction 
is determined by adaptor and RNA structure. PLoS One. 
2015; 10:e0126049.

13. Linsen SE, de Wit E, Janssens G, Heater S, Chapman L, 
Parkin RK, Fritz B, Wyman SK, de Bruijn E, Voest EE, 
Kuersten S, Tewari M and Cuppen E. Limitations and 
possibilities of small RNA digital gene expression profiling. 
Nat Methods. 2009; 6:474-476.

14. Sun Y, Wang L, Guo SC, Wu XB and Xu XH. High-
throughput sequencing to identify miRNA biomarkers in 
colorectal cancer patients. Oncol Lett. 2014; 8:711-713.

15. Drusco A, Nuovo GJ, Zanesi N, Di Leva G, Pichiorri F, 



Oncotarget3871www.impactjournals.com/oncotarget

Volinia S, Fernandez C, Antenucci A, Costinean S, Bottoni 
A, Rosito IA, Liu CG, Burch A, Acunzo M, Pekarsky Y, 
Alder H, et al. MicroRNA profiles discriminate among 
colon cancer metastasis. PLoS One. 2014; 9:e96670.

16. Schee K, Lorenz S, Worren MM, Gunther CC, Holden 
M, Hovig E, Fodstad O, Meza-Zepeda LA and Flatmark 
K. Deep Sequencing the MicroRNA Transcriptome in 
Colorectal Cancer. PLoS One. 2013; 8:e66165.

17. Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S. 
Exosome and Exosomal MicroRNA: Trafficking, Sorting, 
and Function. Genomics Proteomics Bioinformatics. 2015; 
13:17-24.

18. Srivastava A, Filant J, Moxley KM, Sood A, McMeekin S 
and Ramesh R. Exosomes: a role for naturally occurring 
nanovesicles in cancer growth, diagnosis and treatment. 
Curr Gene Ther. 2015; 15:182-192.

19. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob 
ST and Patel T. MicroRNA-21 regulates expression of 
the PTEN tumor suppressor gene in human hepatocellular 
cancer. Gastroenterology. 2007; 133:647-658.

20. Qi L, Bart J, Tan LP, Platteel I, Sluis T, Huitema S, Harms 
G, Fu L, Hollema H and Berg A. Expression of miR-21 and 
its targets (PTEN, PDCD4, TM1) in flat epithelial atypia 
of the breast in relation to ductal carcinoma in situ and 
invasive carcinoma. BMC Cancer. 2009; 9:163.

21. Talotta F, Cimmino A, Matarazzo MR, Casalino L, 
De Vita G, D’Esposito M, Di Lauro R and Verde P. An 
autoregulatory loop mediated by miR-21 and PDCD4 
controls the AP-1 activity in RAS transformation. 
Oncogene. 2009; 28:73-84.

22. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova 
D, Bednarikova M, Nenutil R and Vyzula R. Altered 
expression of miR-21, miR-31, miR-143 and miR-145 is 
related to clinicopathologic features of colorectal cancer. 
Oncology. 2007; 72:397-402.

23. Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ 
and Rodrigues CM. MicroRNA-143 reduces viability and 
increases sensitivity to 5-fluorouracil in HCT116 human 
colorectal cancer cells. Febs J. 2009; 276:6689-6700.

24. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, 
Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang 
Y, Ren Z, Zen K, et al. Role of miR-143 targeting KRAS in 
colorectal tumorigenesis. Oncogene. 2009; 28:1385-1392.

25. Ng EK, Tsang WP, Ng SS, Jin HC, Yu J, Li JJ, Rocken C, 
Ebert MP, Kwok TT and Sung JJ. MicroRNA-143 targets 
DNA methyltransferases 3A in colorectal cancer. Br J 
Cancer. 2009; 101:699-706.

26. Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N and 
Akao Y. Decreased expression of microRNA-143 and -145 
in human gastric cancers. Oncology. 2009; 77:12-21.

27. Wang CJ, Zhou ZG, Wang L, Yang L, Zhou B, Gu J, 
Chen HY and Sun XF. Clinicopathological significance 
of microRNA-31, -143 and -145 expression in colorectal 
cancer. Dis Markers. 2009; 26:27-34.

28. Akao Y, Nakagawa Y, Hirata I, Iio A, Itoh T, Kojima K, 
Nakashima R, Kitade Y and Naoe T. Role of anti-oncomirs 
miR-143 and -145 in human colorectal tumors. Cancer 
Gene Ther. 2010; 17:398-408.

29. Kent OA, McCall MN, Cornish TC and Halushka MK. 
Lessons from miR-143/145: the importance of cell-type 
localization of miRNAs. Nucleic Acids Res. 2014; 42:7528-
7538.

30. Cekaite L, Rantala JK, Bruun J, Guriby M, Agesen TH, 
Danielsen SA, Lind GE, Nesbakken A, Kallioniemi 
O, Lothe RA and Skotheim RI. MiR-9, -31, and -182 
deregulation promote proliferation and tumor cell survival 
in colon cancer. Neoplasia. 2012; 14:868-879.

31. Schee K, Boye K, Abrahamsen TW, Fodstad O and 
Flatmark K. Clinical relevance of microRNA miR-21, 
miR-31, miR-92a, miR-101, miR-106a and miR-145 in 
colorectal cancer. BMC Cancer. 2012; 12:505.

32. Xu XM, Qian JC, Deng ZL, Cai Z, Tang T, Wang P, Zhang 
KH and Cai JP. Expression of miR-21, miR-31, miR-96 
and miR-135b is correlated with the clinical parameters of 
colorectal cancer. Oncol Lett. 2012; 4:339-345.

33. Chen T, Yao LQ, Shi Q, Ren Z, Ye LC, Xu JM, Zhou PH 
and Zhong YS. MicroRNA-31 contributes to colorectal 
cancer development by targeting factor inhibiting HIF-
1alpha (FIH-1). Cancer Biol Ther. 2014; 15:516-523.

34. Manceau G, Imbeaud S, Thiebaut R, Liebaert F, Fontaine 
K, Rousseau F, Genin B, Le Corre D, Didelot A, Vincent 
M, Bachet JB, Chibaudel B, Bouche O, Landi B, Bibeau 
F, Leroy K, et al. Hsa-miR-31-3p expression is linked to 
progression-free survival in patients with KRAS wild-
type metastatic colorectal cancer treated with anti-EGFR 
therapy. Clin Cancer Res. 2014; 20:3338-3347.

35. Wu CW, Ng SC, Dong Y, Tian L, Ng SS, Leung WW, Law 
WT, Yau TO, Chan FK, Sung JJ and Yu J. Identification 
of microRNA-135b in stool as a potential noninvasive 
biomarker for colorectal cancer and adenoma. Clin Cancer 
Res. 2014; 20:2994-3002.

36. Kang K, Zhang X, Liu H, Wang Z, Zhong J, Huang Z, 
Peng X, Zeng Y, Wang Y, Yang Y, Luo J and Gou D. A 
novel real-time PCR assay of microRNAs using S-Poly(T), 
a specific oligo(dT) reverse transcription primer with 
excellent sensitivity and specificity. PLoS ONE. 2012; 
7:e48536.

37. Hsu S-D, Tseng Y-T, Shrestha S, Lin Y-L, Khaleel A, 
Chou C-H, Chu C-F, Huang H-Y, Lin C-M and Ho S-Y. 
miRTarBase update 2014: an information resource for 
experimentally validated miRNA-target interactions. 
Nucleic acids research. 2014; 42:D78-D85.

38. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir 
H, Tamayo P and Mesirov JP. Molecular signatures 
database (MSigDB) 3.0. Bioinformatics. 2011; 27:1739-
1740.

39. Chen D-T, Hernandez JM, Shibata D, McCarthy SM, 
Humphries LA, Clark W, Elahi A, Gruidl M, Coppola 



Oncotarget3872www.impactjournals.com/oncotarget

D and Yeatman T. Complementary strand microRNAs 
mediate acquisition of metastatic potential in colonic 
adenocarcinoma. Journal of Gastrointestinal Surgery. 2012; 
16:905-913.

40. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, 
Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub 
TR and Lander ES. Gene set enrichment analysis: a 
knowledge-based approach for interpreting genome-wide 
expression profiles. Proceedings of the National Academy 
of Sciences of the United States of America. 2005; 
102:15545-15550.


