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Abstract: Background and objectives: Alzheimer’s disease (AD) is a progressive neurodegenerative
disease that results in severe dementia. Having ischemic strokes (IS) is one of the risk factors of the
AD, but the molecular mechanisms that underlie IS and AD are not well understood. We thus aimed
to identify common molecular biomarkers and pathways in IS and AD that can help predict the
progression of these diseases and provide clues to important pathological mechanisms. Materials
and Methods: We have analyzed the microarray gene expression datasets of IS and AD. To obtain
robust results, combinatorial statistical methods were used to analyze the datasets and 26 transcripts
(22 unique genes) were identified that were abnormally expressed in both IS and AD. Results: Gene
Ontology (GO) and KEGG pathway analyses indicated that these 26 common dysregulated genes
identified several altered molecular pathways: Alcoholism, MAPK signaling, glycine metabolism,
serine metabolism, and threonine metabolism. Further protein–protein interactions (PPI) analysis
revealed pathway hub proteins PDE9A, GNAO1, DUSP16, NTRK2, PGAM2, MAG, and TXLNA.
Transcriptional and post-transcriptional components were then identified, and significant transcription
factors (SPIB, SMAD3, and SOX2) found. Conclusions: Protein–drug interaction analysis revealed
PDE9A has interaction with drugs caffeine, γ-glutamyl glycine, and 3-isobutyl-1-methyl-7H-xanthine.
Thus, we identified novel putative links between pathological processes in IS and AD at transcripts
levels, and identified possible mechanistic and gene expression links between IS and AD.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease causing severe dementia and
cognitive decline in elderly people. There are now 5.5 million AD sufferers in USA and the number is
predicted to rise to 13.8 million by 2050 [1]. The pathobiology of AD involves the formation of amyloid
plaques and tangles in neurofibrils [2] which may disrupt neuron function, although it is controversial
as to whether this is causative. Ischemic strokes (IS) is usually estimated as the second highest cause
of death worldwide, and is predicted to rise to 81.1 million incidents by 2040 [3]. When considered
separately from other cardiovascular diseases, stroke accounts for killing nearly 133,000 people a year
in the USA [4]. The risk of IS (and AD) increases after age 55, although it can occur at any age. Even
if in a minority of cases (less than 5%), AD can be genetically determined. In these cases, defined as
familial AD, symptoms show much earlier in life if compared to sporadic AD. Thus the prevalence,
mortality, and associated morbidity make AD and IS a major health care burden globally [4].

There is convincing evidence for epidemiological and pathological links between AD and IS from
population-based studies which revealed that AD is a highly significant risk factor for IS [5,6], and vice
versa [7]. Clearly, both involve neurological damage, and it is possible that there are shared pathological
mechanisms underlying both conditions [8–10]. Several studies have tried to identify genetic links
between IS and AD, for example, by genome-wide association studies; these have identified common
genetic elements, mainly single nucleotide polymorphisms in IS and AD that point to at least some
shared element in their pathogenesis [10–18], but the significance of these is currently uncertain.
Molecular components that are commonly dysregulated in both diseases is, to date, very limited in
AD and IS. However, candidate biomarkers, such as differentially expressed genes (DEGs), have been
identified using transcriptomic datasets from RNA-seq and microarray studies [14,15,18]. Therefore,
to capitalize on the availability of these datasets, we have employed a systems biology approach to
identify dysregulated genes and molecular pathways that are common to AD and IS affected tissues. We
have used findings from such analyses to integrate the differentially expressed genes (DEGs) in AD and
IS tissues with interaction networks using the following approaches: (i) A protein–protein interactions
(PPI) network of the proteins encoded by the common DEGs; (ii) identification of transcriptional
and post-transcriptional regulatory components of the common DEGs; (iii) protein–drug interaction
networks to screen potential drugs. This comprehensive systems biology pipeline thus allows us to
explore possible critical pathway hub protein transcription factors (TFs), transcripts of interest, and to
provide potential biomarker signatures useful for disease assessment and further biological research.
We can also use these insights to identify drug binding partners to some of the hub protein that may
indicate new therapies if the proteins prove to have important pathological influences on AD and IS
(Figure 1).
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Figure 1. The integrative approach employed in the present study. The gene expression data of 
Alzheimer’s disease (AD) and ischemic stroke (IS) were obtained from the Gene Expression 
Omnibus. The datasets were analyzed by a combinatorial statistical approach to identify the 
differentially expressed genes (DEGs). Then, common DEGs between the AD and IS were identified 
by these methods. The common DEGs between AD and IS (i.e., genes dysregulated in both AD and 
IS) were subjected to Gene Ontology (GO) and pathways enrichment analyses to obtain significant 
GO terms and pathways. The proteins encoded by the common DEGs were also analyzed by 
protein–protein interaction (PPI) analysis to identify hub proteins. The transcriptional regulators of 
the DEGs were identified, and the protein–drug interactions analysis was performed to identify 
compounds that may block pathway hub proteins. TF: Transcription factor. 

2. Materials and Methods 

2.1. Identification of Differentially Expressed Genes in AD and IS 

The microarray gene expression high-throughput analysis datasets for IS- and AD-affected 
tissues were obtained from the NCBI-GEO database [19]. The IS dataset was accession number 
GSE22255, which was generated using peripheral blood mononuclear cells (PBMCs) from 20 IS 
patients and 20 sex- and age-matched controls using Affymetrix microarrays. The AD dataset was 
GEO accession number GSE4757 dataset of laser-capture microdissected brain tissue (entorhinal 
cortex layer 2 stellate island neurons) containing approximately 1000 cells attached to neurofibrillary 
tangles from mid-stage AD patients, and matched neurons in normal tissues as controls. The 
datasets were first analyzed in the Bioconductor environment implemented in R (version R × 64 
3.4.1) to identify DEGs in the IS and AD data relative to their respective matched controls. Firstly, the 
gene expression dataset was normalized by log2 transformation and combinatorial statistical 
methods using the Limma package in R, Kruskal-Wallis, and Student’s t-test in hypothesis testing, 
with Benjamini–Hochberg correction to control the false discovery rate. A p-value <0.05 and absolute 
log2 fold change (FC) >=1 was regarded as threshold criteria for significant DEGs of interest.  

2.2. Gene Ontology and Pathway Enrichment Analysis 

Gene overrepresentation analyses were performed to identify Gene Ontology (GO) (i.e., 
biological process, cellular component, and molecular functions) and KEGG pathways using 
NetworkAnalyst [20]. An adjusted p-value <0.05 was considered significant for all the enrichment 
analyses.  

2.3. Protein–Protein Interaction Analysis 
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Alzheimer’s disease (AD) and ischemic stroke (IS) were obtained from the Gene Expression Omnibus.
The datasets were analyzed by a combinatorial statistical approach to identify the differentially expressed
genes (DEGs). Then, common DEGs between the AD and IS were identified by these methods. The
common DEGs between AD and IS (i.e., genes dysregulated in both AD and IS) were subjected to
Gene Ontology (GO) and pathways enrichment analyses to obtain significant GO terms and pathways.
The proteins encoded by the common DEGs were also analyzed by protein–protein interaction (PPI)
analysis to identify hub proteins. The transcriptional regulators of the DEGs were identified, and the
protein–drug interactions analysis was performed to identify compounds that may block pathway hub
proteins. TF: Transcription factor.

2. Materials and Methods

2.1. Identification of Differentially Expressed Genes in AD and IS

The microarray gene expression high-throughput analysis datasets for IS- and AD-affected tissues
were obtained from the NCBI-GEO database [19]. The IS dataset was accession number GSE22255,
which was generated using peripheral blood mononuclear cells (PBMCs) from 20 IS patients and
20 sex- and age-matched controls using Affymetrix microarrays. The AD dataset was GEO accession
number GSE4757 dataset of laser-capture microdissected brain tissue (entorhinal cortex layer 2 stellate
island neurons) containing approximately 1000 cells attached to neurofibrillary tangles from mid-stage
AD patients, and matched neurons in normal tissues as controls. The datasets were first analyzed
in the Bioconductor environment implemented in R (version R × 64 3.4.1) to identify DEGs in the IS
and AD data relative to their respective matched controls. Firstly, the gene expression dataset was
normalized by log2 transformation and combinatorial statistical methods using the Limma package in
R, Kruskal-Wallis, and Student’s t-test in hypothesis testing, with Benjamini–Hochberg correction to
control the false discovery rate. A p-value < 0.05 and absolute log2 fold change (FC) >=1 was regarded
as threshold criteria for significant DEGs of interest.

2.2. Gene Ontology and Pathway Enrichment Analysis

Gene overrepresentation analyses were performed to identify Gene Ontology (GO) (i.e., biological
process, cellular component, and molecular functions) and KEGG pathways using NetworkAnalyst [20].
An adjusted p-value < 0.05 was considered significant for all the enrichment analyses.

2.3. Protein–Protein Interaction Analysis

We used the STRING protein interactome database [21] to construct PPI networks of the proteins
encoded by the identified DEGs. We set a medium confidence score (400) to construct the PPI, since
the number of DEGs was low. Network analysis was performed using the NetworkAnalyst online
resource [20].

2.4. Identification of Transcriptional and Post-Transcriptional Regulator Components

We used Enrichr [22] to identify regulatory TFs which regulate DEGs of interest at the
transcriptional level using TRANSFAC database [23]. A p-value < 0.05 was considered significant for
the analysis.

2.5. Protein–Drug Interactions Analysis

The protein–drug interaction was analyzed using DrugBank database (Version 5.0) [24] to identify
potential drugs to be proposed in the AD. The protein–drug interactions analysis was performed using
NetworkAnalyst [19].
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3. Results

3.1. Identification of Differentially Expressed Genes Common to AD and IS

The IS and AD gene expression microarray datasets were analyzed and for both datasets
significant DEGs were identified using applied combinatorial statistical methods. Twenty-six transcripts
(representing 22 unique genes) were identified as common between the IS DEGs and AD DEGs (Figure 2).
This set of identified genes was subjected to gene set enrichment analysis to obtain biological process,
molecular function, and cellular component enrichment that the genes participate in. The enriched
biological processes (BP) were regulation of axonogenesis, learning or memory, brain development,
behavior, aging, and others shown in Table 1. The significant molecular function of the DEGs common
to IS and AD were phosphoric ester hydrolase activity, 3′,5′-cyclic nucleotide phosphodiesterase activity,
phosphatase activity, hydrolase activity, acting on ester bonds, antiporter activity, and hormone binding
(Table 1). The significant cellular pathways were identified as neuron projection, cell projection part, and
axon and cell projection (p-value < 0.05) (Table 1). The altered molecular pathways identified included
alcoholism, MAPK signaling pathway, and glycine, serine, and threonine metabolism (Figure 3).

Table 1. The significant Gene Ontology terms (top five) enriched by the differentially expressed genes.

Category Gene Ontology Term p-Value

Biological process

Regulation of axonogenesis 0.002
Learning or memory 0.006
Brain development 0.007

Behavior 0.009
Aging 0.009

Carbohydrate biosynthetic process 0.010

Cellular component

Neuron projection 0.014
Cell projection part 0.014

Axon 0.018
Cell projection 0.019

Molecular function

Phosphoric ester hydrolase activity 0.004
3′,5′-cyclic nucleotide phosphodiesterase activity 0.023
3′,5′-cyclic nucleotide phosphodiesterase activity 0.023

Phosphatase activity 0.026
Hydrolase activity, acting on ester bonds 0.027
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3.2. Identification of Hub Proteins 

Firstly, a protein–protein interactions (PPI) network was constructed by retrieving the 
interaction of the common DEGs from STRING database (Figure 4). The PPI network consists of 94 
nodes (7 nodes from the common DEGs) and 97 edges. This PPI analysis revealed seven hub 
proteins, namely PDE9A, GNAO1, DUSP16, NTRK2, PGAM2, MAG, and TXLNA (Table 2). 

Figure 2. The gene expression datasets of Alzheimer’s disease (AD) and ischemic stroke (IS) were
analyzed by combinatorial statistical approaches comprising Limma, Kruskal-Wallis (KW), and t-tests
(t-test) to identify the common differentially expressed genes (DEGs) between the AD and IS. Twenty-six
transcripts (22 unique genes) identified by all three approaches were regarded as the DEGs common to
IS and AD.
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Figure 3. The significant molecular pathways enriched by the common differentially expressed genes
in Alzheimer’s disease and ischemic stroke. The molecular pathways alcoholism, MAPK signaling
pathway, and glycine, serine, and threonine metabolism pathways were statistically significant
(p-value < 0.05).

3.2. Identification of Hub Proteins

Firstly, a protein–protein interactions (PPI) network was constructed by retrieving the interaction
of the common DEGs from STRING database (Figure 4). The PPI network consists of 94 nodes (7 nodes
from the common DEGs) and 97 edges. This PPI analysis revealed seven hub proteins, namely PDE9A,
GNAO1, DUSP16, NTRK2, PGAM2, MAG, and TXLNA (Table 2).
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Figure 4. The protein–protein interaction of the common differentially expressed genes (DEGs) with
other genes was retrieved from the STRING database. The PPI network consists of 94 nodes (7 nodes
from the common DEGs) and 97 edges. The nodes indicate the DEGs and the edges indicate the
interactions between two genes.
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Table 2. A list of common biomarker candidates proposed for AD and IS in the present Study.

Biomarker
Candidate Name Biological Roles/Significance of the Biomolecules

Hub proteins

PDE9A Phosphodiesterase-9
Already a potential target for treatment of the AD with

phase II clinical trials underway for one PDE9
compound, BI409306

GNAO1
Guanine Nucleotide-Binding

Protein, Alpha-Activating
Activity Polypeptide O

Mutations in GNAO1 are already noted to be associated
with neurologic pathophysiology

DUSP16 Dual Specificity Phosphatase 16 Associated with neurological functions in
axonal degeneration

NTRK2 Neurotrophic Receptor Tyrosine
Kinase 2

The genetic variants of NTRK2 are suggested to show a
significant association between NTRK2 with AD

PGAM2 Phosphoglycerate Mutase 2
Diseases associated with PGAM2 include glycogen

storage disease X and phosphoglycerate
mutase deficiency

MAG Myelin Associated Glycoprotein
Diseases associated with MAG include spastic
paraplegia, autosomal recessive, and chronic

polyneuropathy

TXLNA Taxilin Alpha Diseases associated with TXLNA include B-cell growth
factor and inclusion conjunctivitis

Transcription Factor

SPIB (Spi-B Transcription Factor) Diseases associated with SPIB include primary biliary
cholangitis and colorectal cancer

SMAD3 SMAD Family Member 3
NFT protein can sequester phosphorylated Smad3 in AD
brain, thus preventing its translocation into the nucleus

and the induction of gene transcription

SOX2 SRY-Box2 Sox2 deficiency causes neurodegeneration and impaired
neurogenesis in the adult mouse brain

3.3. Identification of Transcriptional Regulators of AD and IS

The gene expressions are controlled at transcriptional and post-transcriptional levels. To identify
the transcriptional and post-transcriptional regulatory components of the common DEGs between IS
and AD, we identified the significant TFs SPIB (targeting DEGs KRT78; DUSP16; PDE9A; KLHDC9),
SMAD3 (targeting DEGs PDE9A), and SOX2 (targeting DEGs MAS1) (Table 2).

3.4. Protein–Drug Interactions of Common DEGs of AD and IS

We studied the protein–drug interactions analysis and found that PDE9A protein has known
interactions with three characterized compounds namely caffeine, γ-glutamyl [S-(2-iodobenzyl)
cysteinyl]glycine, and 3-isobutyl-1-methyl-7H-xanthine (Figure 5).
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4. Discussion

In the present work, we studied gene expression data of AD and IS patients in order to identify
genes dysregulated in both diseases that may be candidate disease biomarkers and potential therapeutic
targets. The candidate biomarker genes were explored in microarray and RNA-seq studies of AD and IS,
an approach now commonly used to identify interactions between complex diseases [14,15,18,19,25,26].
Our analysis of these gene expressions patterns seen in AD and IS patients revealed numerous significant
alterations, with expression profiles of 26 transcripts (22 unique genes) (termed “common DEGs”) that
were found to be dysregulated in both transcriptomic datasets. The Gene Ontology and pathways
analysis revealed a number of neurodegenerative disease associated pathways, i.e., alcoholism [27,28]
and MAPK signaling pathway [29,30]. Nevertheless, this integrative analysis has the potential to
identify novel key or hub genes that are common to these two diseases suggesting new lines of enquiry
for studies, including identification of new targets for possible therapeutic intervention. Since both
involve damage to the central nervous system, processes and dysregulated genes that they have in
common are likely to be particularly important to that damage.

Protein–protein interaction analysis is increasingly used to discern important disease associated
signaling molecules and pathways that may drive aspects of a disease. Thus, we analyzed PPI analysis
of the corresponding proteins encoded by the AD- and IS-common DEGs to identify key or hub
proteins with the potential to contribute to the progression of AD and IS (Table 2). Of those identified,
phosphodiesterase-9 (PDE9) is already a potential target for treatment of the AD with phase II clinical
trials underway for one PDE9 compound, BI409306, although this may not proceed to phase III but
may be used for schizophrenia trials [31]. Mutations in GNAO1 are already noted to be associated
with neurologic pathophysiology [32]. DUSP16 is associated with neurological functions in axonal
degeneration [33]. Chen et al. have reported that the genetic variants of NTRK2 is suggested to
show a significant association between NTRK2 with AD [34]. Diseases associated with PGAM2
include glycogen storage disease X and phosphoglycerate mutase deficiency. Among their related
pathways is central carbon metabolism in cancer and metabolism according to GeneCards database
(www.genecards.org). Diseases associated with MAG include spastic paraplegia, autosomal recessive,
and chronic polyneuropathy according to GeneCards database (www.genecards.org). Diseases
associated with TXLNA (Taxilin Alpha) include B-Cell growth factor and inclusion conjunctivitis
according to GeneCards database (www.genecards.org).

In addition to these protein interactions, we also identified several transcriptional regulators
i.e., TFs that play a role in the functions of these common DEGs. The alteration in these molecules may
provide critical information regarding the clarification of roles of biomolecules behind the diseases.
Diseases associated with SPIB (Spi-B transcription factor) include primary biliary cholangitis and
colorectal cancer according to GeneCards database (www.genecards.org). The relationship between
tau hyperphosphorylation and TGF-ß1 signaling has also been recently studied in the temporal lobe in

www.genecards.org
www.genecards.org
www.genecards.org
www.genecards.org
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AD [35]. Interestingly, NFT protein can sequester phosphorylated Smad3 in AD brain, thus preventing
its translocation into the nucleus and the induction of gene transcription [36,37]. Sox2 deficiency causes
neurodegeneration and impaired neurogenesis in the adult mouse brain [37].

Finally, we studied the known protein–drug interactions to identify candidate drugs that may
have the potential to influence AD and IS. Three compounds were identified from the interaction
network. These require proper validation to determine their value, but this highlights that the present
study provides insights into biomolecules and possible new avenues for therapeutic interventions,
in addition to the potential for biomarker discovery for AD and IS.

5. Conclusions

In the present study, we analyzed gene expression transcriptomics profiles using systems biology
analyses to reveal potential biomarkers that may clarify important pathobiological mechanisms
underlying AD and IS. Significantly altered molecular pathways included alcoholism, MAPK signaling
pathway, and glycine, serine, and threonine metabolism. We also detected seven significant hub
proteins: PDE9A, GNAO1, DUSP16, NTRK2, PGAM2, MAG, and TXLNA. TFs that influence expression
in the common DEGs was also identified, namely SPIB, SMAD3, and SOX2. These biomolecules may
be considered systems biomarkers at the protein level and RNA levels. A number of compounds were
identified from protein–drug interaction networks that might be investigated for their ability to block
processes important to AD and IS. In sum, we have identified potential common biomarker signatures
for AD and IS that may reveal new aspects of development and progression in these diseases.
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