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Contagion on complex networks
with persuasion

Wei-Min Huang?, Li-Jie Zhang??3, Xin-Jian Xu'3 & Xinchu Fu'?

The threshold model has been widely adopted as a classic model for studying contagion processes

. on social networks. We consider asymmetric individual interactions in social networks and introduce
Accepted: 11 March 2016 - a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption
Published: 31 March 2016 @ and persuasion in cascading processes on complex networks. It is found that with the introduction

. of the persuasion mechanism, the system may become more vulnerable to global cascades, and
the effects of persuasion tend to be more significant in heterogeneous networks than those in
homogeneous networks: a comparison between heterogeneous and homogeneous networks shows
that under weak persuasion, heterogeneous networks tend to be more robust against random shocks
than homogeneous networks; whereas under strong persuasion, homogeneous networks are more
stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic
stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an
overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is
sufficiently dense.
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In a population of interacting agents, a small fraction of individuals holding an opinion opposite to the one
held by the majority may trigger large cascades under certain circumstances. Examples include the diffusion of
cultural fads', the outbreak of political unrest?, and the spread of rumor?, etc. All these processes can be studied
by contagion models**, in which inactive (or susceptible) individuals are activated (or infected) by contacts with
active neighbours. Different from mathematical models of biological contagions® where each susceptible-infective
contact results in infection spreading with an independent probability, social contagions are not just the spread
from one specific source to another. In many situations, the possibility of an individual being activated depends
on who are active among her social contacts; and this is particularly true for people who interact with each other
in a social network”. Therefore, the individual heterogeneity and the interaction structure are two key factors
in determining whether a cascade occurs or not. One of the prototypes for studying such contagion dynamics
is the threshold model originated from the seminal work of Schelling® on residential segregation, and subse-
quently developed by Granovetter® in the study on social influences. According to the general definition of the
threshold model, an individual adopts a new opinion only if a critical fraction (the Watts model*) or number (the
Centola-Macy model®) of her friends have already been activated. This required fraction/number of adopters in
the neighbourhood is defined as the threshold. We call it adoption threshold hereafter.

Theoretical studies on complex contagions have mainly been developed along two distinct directions. On
the one hand, researchers have been focusing on large ensembles of network systems, where interactions among
individuals are described by a complex network. In 2002, Watts* studied the threshold model on Poisson and
power-law networks. It was found that having heterogeneous nodal degrees helps enhancing systemic stability
compared to that of homogeneous networks with a Poisson degree distribution. Threshold heterogeneity, however,
has an opposite effect. By adopting an analytical approach on locally tree-like networks, Gleeson and Cahalane'®
extended Watts’ model to a finite fraction of initiators. Such extension appears to make a drastic impact on the
cascade transition as a function of the average degree z, even making the transition to be discontinuous for rela-
tively small values of z. Further work along this line has generalized the study to degree-correlated!'?, directed"?,
weighted!, small-world", modular?®, clustered'”!8, temporal'®?°, and multiplex?!-* networks, etc. On the other
hand, studies have been carried out on contagion mechanisms. Dodds and Watts?*?* proposed a generalized
contagion model incorporating individual memory, variable magnitude of exposure, and susceptibility heteroge-
neity. They identified three basic classes of contagion models based on the memory length and the probabilities
of being infected by one and two exposures, respectively. Research has also been conducted on more complicated
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threshold models. For example, one interesting work?® introduced syngergistic effects from nearby neighbours,
which can be mapped into a dynamical bond percolation with spatial correlations. Another study?” decomposed
the motivation for a node to adopt a new behaviour as a combination of personal preference, the average of the
states of each node’s neighbours and the system average. It is worth mentioning that Melnik et al.?® considered
the threshold model with multi-stages and found that global cascades can be driven not only by high-stage influ-
encers but also by low-stage ones. More recently, Wang et al.*>** proposed a contagion model with reinforcement
derived from nonredundant information memory. They used a spreading threshold model as a specific example
to understand the memory effect. Ruan et al.*! considered individual conservativeness and studied Watts’ model
with mechanisms of spontaneous adoption and complete reluctance to adoption.

Most of these previous studies have assumed that whether or not a node gets activated depends on the states
of its neighbours, ignoring the asymmetry of social interactions. During the diffusion of an entity or influence
among individuals, however, transmission depends on both the probability of giving it and the probability of
catching it, which are usually distinct. Although the adoption threshold, which represents the catching probabil-
ity, has stimulated a rapid acceleration of research work, little attention has been paid to the giving probability.
In reality, an individual surrounded by many active neighbours is easier to become a supporter of the issue and
has a tendency towards convincing others that are insensitive®*-**. In accordance with the catching dynamics, we
introduce a persuasion threshold to the giving dynamics; that is, an activated individual can convince her inacti-
vate friends if the active fraction among her friends is larger than a critical fraction. Based on this, we propose a
(¢, ¢')-threshold model, where ¢ and ¢’ denote the adoption and persuasion thresholds, respectively. We study
analytically and numerically the model on Poisson and power-law networks. As found earlier in the ¢-threshold
model*'**, a global cascade is not triggered when the average degree z of nodes is either too low or too high.
However, large cascades are realized within an intermediate range of z, which is referred to as the cascade win-
dow. When the persuasion threshold is taken into consideration, the cascade window becomes wider and the
low-degree transition may be discontinuous in certain parameter regimes. We also investigate the impact of het-
erogeneous degrees and thresholds on the system dynamics, revealing that both of the heterogeneities make the
dynamics much richer because of the ambiguous role of ¢’. To the best of our knowledge, such dynamics could
not be observed in single threshold models.

Results

In the (¢, ¢’)-threshold model, each node of a network can be in one of the two discrete states: inactive and active.
Initially a fraction p, of nodes are chosen randomly from the network to be active, and the others are inactive. At
each time step, an inactive node i will be activated in either of the following two cases: i) the active fraction of the
neighbours of node i is larger than its adoption threshold ¢;, which is defined as the adoption dynamics; or ii) the
adoption dynamics does not occur, but there is at least one active neighbour j of the node i being a persuader, i.e.,
the active fraction in the neighbourhood of j is larger than the persuasion threshold ¢j’ . We call it the persuasion

dynamics. Once a node is activated, it remains unchanged. The system evolves according to above rules until no
further activation occurs. Both ¢ and ¢’ are random variables drawn from probability distribution functions f(¢)

and g(¢’) with j: f(¢)d¢ = land fol g(¢")d¢’ = 1, respectively. In the context of innovation diffusion or opin-
ion spreading, the (¢, ¢’)-threshold model can be described as follows. Consider a population of users to adopt a
new product or idea, a small fraction of users are the initial spreaders. For a user in the rest part of population, if
the adopted fraction of her friends is larger than her adoption threshold, she will use the product. Meanwhile, a
friend of the user with many adopted neighbours may tend to be more committed and thus has a good chance to
convince her. As shown in Fig. 1, the activated sizes are different with or without persuasion.

The impact of persuasion. The persuasion threshold ¢’ represents the situation that a persuader activates
her inactive friends. Therefore it gives rise to global cascades. According to the model definition, the higher ¢/,
the lower the persuasion possibility is. In the extreme case ¢’ = 1, our model reduces to Watts’ model*. In this
scenario, the cascade condition in random networks for one seed is >_;k(k — 1) p(k)P(k) = z, where p(k) represents
the distribution of vulnerable nodes and P(k) is the distribution of all the nodes. While the network is sparse, the
criterion of the cascade is ¢ < 1/z. But if the number of initiators is sufficiently large, large cascades will occur
despite of ¢.

In Fig. 2 we plot the normalized size of the final giant component of inactive nodes 7, as a function of the seed
fraction p,. Both the adoption and persuasion thresholds are uniform. Simulations are performed on Erdds-Rényi
(ER)* and scale-free (SF) networks®, respectively. The adoption threshold is fixed at ¢ = 0.5, and two different
values of the persuasion threshold ¢’ = 0.7 and 0.8 are considered, representing different extents of persuasion
respectively. From left to right, the values of the average degree of nodes are z= 2, 3, and 10, respectively. All
the symbols correspond to numerical results of the model. The solid lines represent analytical results based on
Eq. (6) in the methods section. For ER networks, one notices smooth curves separating two phases for z=2
(see Fig. 2(a)), which defines the transition point p.. Global cascades are observed when p,> p.. As z increases
to 3 (see Fig. 2(b)), different behaviours can be observed: the curve is still smooth without persuading effect for
¢ =0.5. While the persuasion is considered and of a high value (¢/ = 0.7), the curve drops abruptly from a finite
size to zero at p,, indicating a discontinuous transition. For z= 10 (see Fig. 2(c)), the system exhibits discontin-
uous transitions for all the parameter values. Thus, the addition of the persuasion mechanism not only causes p,
to be smaller but also changes transition behaviour. These conclusions hold in SF networks as well (see the lower
panel of Fig. 2). We also studied 1), for ¢ = 0.6 and obtained similar phenomena (see Supplementary Fig. S1).

Next, we investigate the persuading effect on the cascade window which delineates the region where global
cascades can occur. We carry out simulations on ER and SF networks for the uniform threshold with seed fraction
po=107*In Fig. 3 the color-coded values are analytical results of the final fraction of activated nodes p (=1 —17)
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Figure 1. Illustration of cascade clusters for ¢- and (¢, ¢’)-threshold models. (a) The initial network
has one active seed and the rest nodes are inactive. The adoption and persuasion thresholds are ¢ = 0.3 and

' = 0.4, respectively. (b) The final activated nodes for the ¢-threshold model. Since the activated fractions in
the neighbourhoods of nodes k and I are 1/5 and 1/4, respectively, which are less than the adoption threshold
¢ = 0.3, both of them are not activated. (c) The final activated nodes for the (¢, ¢’)-threshold model. Although
the adoption rule is unsatisfied for k and J, the activated fractions in the neighbourhoods of i and j are 2/3 and
1/2 (see Fig. 1(b)), respectively, both of which are larger than the persuasion threshold 0.4. According to the
persuasion rule, i and j can activate k and /, respectively.

for ¢/ = 0.5, where 7 is the stable fraction of inactive nodes (see Equation (1) in the methods section). For a given
¢, p becomes smaller as z decreases, since the network connectivity is low which limits cascade propagation. For
the ER networks the cascade boundaries are in good agreement with numerical results (open circles). While for
the SF networks the fluctuation of the numerical results occurs (not shown) because of the degree heterogene-
ity. The solid lines in Fig. 3(a,b) correspond to the results of Watts’ model on the ER and SF networks, respec-
tively. One notices that the persuasion mechanism makes both networks more vulnerable. However, the influence
is weakened as z increases, since the possibility for a node being a persuader is low when it is surrounded by
many inactive neighbors. We also calculated p for p,= 1073. Again, similar phenomena can be observed (see
Supplementary Fig. S2).

The impact of heterogeneity. Although SF networks show qualitatively the same behaviour as those of
ER networks with the persuasion threshold, i.e, the decrease of ¢’ results in a larger cascade window. However,
they are quantitatively different. We compare cascade windows for both networks in Fig. 4, where the upper
and lower panels correspond to p,=10"* and 1073, respectively. Under weak persuading effect (¢’ = 0.9), the
cascade windows in the SF networks are smaller than those in the ER networks (see Fig. 4(b,e)), which is similar
to the ¢-threshold model (see Fig. 4(a,d)), implying that heterogeneous networks are more robust against ran-
dom shocks than homogeneous networks with the same connectivity. While the persuading effect is enhanced
(¢' =0.5), the SF networks are much more impacted than the ER networks: when the connectivity is sufficiently
sparse (z < 10 in Fig. 4(c) and z < 9 in Fig. 4(e)), the systemic stability of the SF networks is still better than that
of the corresponding ER networks with the same connectivity; but when it is sufficiently dense (z> 10 in Fig. 4(c)
and z > 9 in Fig. 4(e)), the SF networks tend to become less stable than the ER networks. We conclude that heter-
ogeneous networks are more vulnerable to perturbations when the persuading effect is strong enough.

To get a clear inspection on this point, we have calculated average degrees of newly activated nodes in ER
and SF networks with z= 10. The values of the persuasion threshold are ¢ = 1.0 (without persuading effect)
and 0.5 (with persuading effect), respectively. For the ER network (see Fig. 5(a)), both plots display the same
trend, implying that the persuading effect does not change the cascade order of the network. Therefore, low- and
average-degree nodes are still responsible for triggering large cascades®. By contrast, there is a big difference for
the SF network with and without persuasion (see Fig. 5(b)). While the persuasion dynamics is considered, the
cascade invades high-degree nodes quickly and then spans the whole network.

We now turn to the effect of the threshold heterogeneity on the cascade dynamics. Figure 6(a,b) show cascade
windows for ER networks with the adoption and persuasion thresholds respectively following the Gaussian dis-
tribution. The standard deviation is o = 0.1 representing fluctuations. For both cases, the active fraction increases
with the network connectivity for a given ¢ inside the cascade window. Figure 6(c) shows the comparison of the
cascade windows. It is clear that the threshold heterogeneity appears to increase the likelihood of global cascades.
Especially for networks with dense connectivity, the adoption threshold has an overwhelming influence com-
pared to that of the persuasion threshold. Such difference can be understood: when the persuasion threshold ¢’
is Gaussian distributed, there is a higher probability for the active fraction of a adopter’s neighbors exceeds the
persuasion threshold than the uniform case, which results in a stronger inducing effect on cascade propagation.
While the network connectivity increases, an adopter is surrounded by many inactive neighbors, which leads to
a lower chance for her to be a persuader. Hence the number of persuaders is reduced, leading to a less significant
inducing effect. On the contrary, when the adoption threshold ¢ follows the Gaussian distribution, the increase of
the network connectivity brings about more early adopters with lower adoption thresholds and relatively higher
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Figure 2. Normalized size of the giant component of inactive nodes 7, in the stable states as a function of
the seed fraction p,. Both the adoption and persuasion thresholds are uniform. Symbols represent simulation
results on ER (upper panel) and SF (lower panel) networks of N= 10* nodes and average degree z=2 (left
column), 3 (middle column) and 10 (right column), respectively. All the results are averaged over 50 realizations
of the model, each of which is performed on 50 network configurations. Error bars are the standard deviations
of the means. Solid lines are theoretical predictions by Eq. (6).

Figure 3. Effect of the persuasion threshold on the cascade window in ER (a) and SF (b) networks. Color-coded
values represent analytical results of the final fraction of active nodes p based on Eq. (1) with seed fraction
po= 107 The persuasion threshold is ¢’ = 0.5. Circles correspond to simulation results of the present model.
Solid lines are cascade boundaries of Watts’ model on the ER and SF networks, respectively.

degrees, which accelerates cascade propagation. This conclusion is valid for a wider range of the seed fraction (see
Supplementary Fig. S3).

Finally, we examine the threshold heterogeneity on the transition behaviour. Figure 7 shows the normalized
size of the giant component of inactive nodes 7). as a function of the seed fraction p, in ER networks. The upper
and lower panels correspond to ¢’ = 0.8 and 0.6, respectively. When the network connectivity is sufficiently sparse
(z=3) and the persuading effect is sufficiently weak (¢’ = 0.8), the system exhibits the continuous transition for
o =0 (see Fig. 7(a)). When the adoption heterogeneity is allowed but of a relatively small value (¢, = 0.1), the
transition becomes discontinuous. For larger adoption heterogeneity (o,= 0.2) the system exhibits the contin-
uous transition again. This is qualitatively the same as the ¢-threshold model®. On the contrary, the increase of
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Figure 4. Comparison of the systemic stability of ER and SF networks. Both the adoption and persuasion
thresholds are uniform. The seed fractions are N= 10~* (upper panel) and 10~° (lower panel), respectively.
The values of the persuasion threshold are ¢/ = 1.0 (left column), 0.9 (middle column) and 0.5 (right column),

respectively.
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Figure 5. Temporal plots of the average degree of newly activated nodes for ER (a) and SF (b) networks. The
seed fraction is p,= 10~* and the adoption threshold is ¢ = 0.1. Squares and circles correspond to simulation
results of the model without and with persuasion, respectively.

the persuasion heterogeneity o, results in the monotonic change in the phase transition: the transition is always
discontinuous in dense networks or in networks with strong persuasion (see Fig. 7(b-f)).

Discussion
In spite of its simplicity, the threshold model has attracted much attention from social, mathematical, physical,
and biological communities. Although there is a rapid acceleration of work on this topic, very few studies have
considered the asymmetry of social interactions. In this paper, we decomposed the spread of an entity or influ-
ence as a combination of giving and catching operations, with chances of happening ruled by persuasion and
adoption probabilities, respectively. Based on this, we proposed the (¢, ¢’)-threshold model.

The focus of the present work is to identify the effects of the adoption and persuasion thresholds. We first
studied the stable giant component of inactive nodes as a function of initiators for uniform thresholds. The
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Figure 6. Effect of heterogeneous thresholds on the cascade window in ER networks. Cascade windows

on the (¢, z) plane with seed fraction p,= 10~* in the ER networks where the adoption threshold is normally
distributed with a mean ¢ and a standard deviation o = 0.1 (a) and the persuasion threshold is normally
distributed with a mean ¢’ = 0.5 and a standard deviation o= 0.1 (b), respectively. The color codes represents
analytical predictions of the final fraction of active nodes p based on Eq. (1). (¢) Comparison of the cascade
windows for both thresholds. The solid line corresponds to the result of Watts’ model with the uniform adoption
threshold.
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Figure 7. Effect of heterogeneous thresholds on the size of the giant component of inactive nodes 77, in ER
networks. Symbols represent simulation results of the ER networks of size N= 10* and an average degree z=3
(left column), 5 (middle column) and 10 (right column), respectively. The values of the persuasion threshold are
¢’ = 0.8 (upper panel) and 0.6 (lower panel), respectively. Error bars are the standard deviations of the means.
Lines are theoretical predictions by Eq. (6).

introduction of the persuasion threshold not only facilitates global cascades, but also may turn the transition from
continuous to discontinuous, even when the network connectivity is low. This local mechanism is expected to
explain abrupt breakdown of real systems. We also explored the effect of the persuasion threshold on the cascade
window. When the persuading effect is weak, heterogeneous networks are more robust against random shocks
than homogeneous networks; when the persuading effect is strong, however, homogeneous networks are more
stable. Thus, the uniform persuasion threshold has stronger effects on the transmission dynamics than the uni-
form adoption threshold. Finally, we studied the effect of threshold heterogeneity on systemic stability. Although
both heterogeneities give rise to the cascade, the adoption heterogeneity has an overwhelmingly stronger influ-
ence than the persuasion heterogeneity for the networks that are sufficiently dense: the higher the network con-
nectivity is, the less significant effects the persuasion threshold has on the cascade dynamics, since the local
stability of nodes suppresses the persuading effect. These striking results indicate that the persuasion dynamics is
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important for understanding contagion processes on social networks with asymmetry. It is interesting to incorpo-
rate more structural characteristics in asymmetric contagion models, such as direction, weights, and correlations.

Methods
Given an uncorrelated network of N nodes following the degree distribution P(k), a fraction p, of nodes are
chosen randomly to be active. According to the model definition, we obtain the stable fraction of inactive nodes:

)
k; 1)

where F(x) denotes the probability that the adoption threshold ¢ of a node is no less than x. « represents the
probability that a random neighbor j of the inactive node i is active and the active fraction in the neighbourhood
of j is larger than the persuasion threshold ¢ B represents the probability that a random neighbor j of the inactive
node i is active and the active fraction in the neighbourhood of j is less than the persuasion threshold ¢
Following the ideas of refs 10,33, we obtain the self-consistent equations for the two probabilities:

n=0- po)zmk)zck (1—a - pys4F

k=0 s=0

k;

ki —
a = pOZQ(k)ZCk (1 — syekil1 — 6| 2
=0 5=0 f+ 1
L )ZQ(k iC( T I s
pO k =0 s=0 Eh kj +1
X - — - -
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ki—1 ki—s
+(1 - pO)ZQ(k )ch [(o + B — B4 F| L
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s 8 k:—m
x QM1 —a =B -y - G| :
Kongy i kiospl ks
B=1—a—1-p)> Qk)> Ci(1—a—Byss'F ,
k=0 =0 kj+1 (3)

where  refers to the critical case separating « and 3, and ¢ describes the probability that a random neighbor j of
the active node i is active, written as

k; k.—s ki+1—s
Y= (= p) S QUk)SCE( — a — BB F Sy ,
"E szok kj] kj+ 1 ] @)
Kinax k.f k+1—
§=1-(1-p) > Q)Y Ci(1 - a — By F|—
k=0 =0 kj+1 (5)

G(x) denotes the probability that the persuasion threshold ¢’ of a node is no less than x. Q(k) = (k+ 1)P(k+ 1)/z
is the excess degree distribution. One can solve the above equations using a simple iterative scheme, and finally
get the stable size of the giant component of the inactive nodes:

S —a— - 0",

kmax ki
n,=(1— p) Y Pk)>.Ci B F| =
' ki Jm=1 (6)

k=1 s=1 i

where 6 is the probability that a random neighbor j of the inactive node i is inactive but not belonging to the giant
component of the inactive nodes, given by

kmu.x
0=01-p)>.Qk, ZCkHﬂf“F Sl
k]-=0 s=0 k +1 (7)
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