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Contagion on complex networks 
with persuasion
Wei-Min Huang1, Li-Jie Zhang2,3, Xin-Jian Xu1,3 & Xinchu Fu1,3

The threshold model has been widely adopted as a classic model for studying contagion processes 
on social networks. We consider asymmetric individual interactions in social networks and introduce 
a persuasion mechanism into the threshold model. Specifically, we study a combination of adoption 
and persuasion in cascading processes on complex networks. It is found that with the introduction 
of the persuasion mechanism, the system may become more vulnerable to global cascades, and 
the effects of persuasion tend to be more significant in heterogeneous networks than those in 
homogeneous networks: a comparison between heterogeneous and homogeneous networks shows 
that under weak persuasion, heterogeneous networks tend to be more robust against random shocks 
than homogeneous networks; whereas under strong persuasion, homogeneous networks are more 
stable. Finally, we study the effects of adoption and persuasion threshold heterogeneity on systemic 
stability. Though both heterogeneities give rise to global cascades, the adoption heterogeneity has an 
overwhelmingly stronger impact than the persuasion heterogeneity when the network connectivity is 
sufficiently dense.

In a population of interacting agents, a small fraction of individuals holding an opinion opposite to the one 
held by the majority may trigger large cascades under certain circumstances. Examples include the diffusion of 
cultural fads1, the outbreak of political unrest2, and the spread of rumor3, etc. All these processes can be studied 
by contagion models4,5, in which inactive (or susceptible) individuals are activated (or infected) by contacts with 
active neighbours. Different from mathematical models of biological contagions6 where each susceptible-infective 
contact results in infection spreading with an independent probability, social contagions are not just the spread 
from one specific source to another. In many situations, the possibility of an individual being activated depends 
on who are active among her social contacts; and this is particularly true for people who interact with each other 
in a social network7. Therefore, the individual heterogeneity and the interaction structure are two key factors 
in determining whether a cascade occurs or not. One of the prototypes for studying such contagion dynamics 
is the threshold model originated from the seminal work of Schelling8 on residential segregation, and subse-
quently developed by Granovetter9 in the study on social influences. According to the general definition of the 
threshold model, an individual adopts a new opinion only if a critical fraction (the Watts model4) or number (the 
Centola-Macy model5) of her friends have already been activated. This required fraction/number of adopters in 
the neighbourhood is defined as the threshold. We call it adoption threshold hereafter.

Theoretical studies on complex contagions have mainly been developed along two distinct directions. On 
the one hand, researchers have been focusing on large ensembles of network systems, where interactions among 
individuals are described by a complex network. In 2002, Watts4 studied the threshold model on Poisson and 
power-law networks. It was found that having heterogeneous nodal degrees helps enhancing systemic stability 
compared to that of homogeneous networks with a Poisson degree distribution. Threshold heterogeneity, however, 
has an opposite effect. By adopting an analytical approach on locally tree-like networks, Gleeson and Cahalane10 
extended Watts’ model to a finite fraction of initiators. Such extension appears to make a drastic impact on the 
cascade transition as a function of the average degree z, even making the transition to be discontinuous for rela-
tively small values of z. Further work along this line has generalized the study to degree-correlated11,12, directed13, 
weighted14, small-world15, modular16, clustered17,18, temporal19,20, and multiplex21–23 networks, etc. On the other 
hand, studies have been carried out on contagion mechanisms. Dodds and Watts24,25 proposed a generalized 
contagion model incorporating individual memory, variable magnitude of exposure, and susceptibility heteroge-
neity. They identified three basic classes of contagion models based on the memory length and the probabilities 
of being infected by one and two exposures, respectively. Research has also been conducted on more complicated 
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threshold models. For example, one interesting work26 introduced syngergistic effects from nearby neighbours, 
which can be mapped into a dynamical bond percolation with spatial correlations. Another study27 decomposed 
the motivation for a node to adopt a new behaviour as a combination of personal preference, the average of the 
states of each node’s neighbours and the system average. It is worth mentioning that Melnik et al.28 considered 
the threshold model with multi-stages and found that global cascades can be driven not only by high-stage influ-
encers but also by low-stage ones. More recently, Wang et al.29,30 proposed a contagion model with reinforcement 
derived from nonredundant information memory. They used a spreading threshold model as a specific example 
to understand the memory effect. Ruan et al.31 considered individual conservativeness and studied Watts’ model 
with mechanisms of spontaneous adoption and complete reluctance to adoption.

Most of these previous studies have assumed that whether or not a node gets activated depends on the states 
of its neighbours, ignoring the asymmetry of social interactions. During the diffusion of an entity or influence 
among individuals, however, transmission depends on both the probability of giving it and the probability of 
catching it, which are usually distinct. Although the adoption threshold, which represents the catching probabil-
ity, has stimulated a rapid acceleration of research work, little attention has been paid to the giving probability. 
In reality, an individual surrounded by many active neighbours is easier to become a supporter of the issue and 
has a tendency towards convincing others that are insensitive32–34. In accordance with the catching dynamics, we 
introduce a persuasion threshold to the giving dynamics; that is, an activated individual can convince her inacti-
vate friends if the active fraction among her friends is larger than a critical fraction. Based on this, we propose a 
(φ, φ′ )-threshold model, where φ and φ′  denote the adoption and persuasion thresholds, respectively. We study 
analytically and numerically the model on Poisson and power-law networks. As found earlier in the φ-threshold 
model4,10,35, a global cascade is not triggered when the average degree z of nodes is either too low or too high. 
However, large cascades are realized within an intermediate range of z, which is referred to as the cascade win-
dow. When the persuasion threshold is taken into consideration, the cascade window becomes wider and the 
low-degree transition may be discontinuous in certain parameter regimes. We also investigate the impact of het-
erogeneous degrees and thresholds on the system dynamics, revealing that both of the heterogeneities make the 
dynamics much richer because of the ambiguous role of φ′ . To the best of our knowledge, such dynamics could 
not be observed in single threshold models.

Results
In the (φ, φ′ )-threshold model, each node of a network can be in one of the two discrete states: inactive and active. 
Initially a fraction ρ0 of nodes are chosen randomly from the network to be active, and the others are inactive. At 
each time step, an inactive node i will be activated in either of the following two cases: i) the active fraction of the 
neighbours of node i is larger than its adoption threshold φi, which is defined as the adoption dynamics; or ii) the 
adoption dynamics does not occur, but there is at least one active neighbour j of the node i being a persuader, i.e., 
the active fraction in the neighbourhood of j is larger than the persuasion threshold φ′j . We call it the persuasion 
dynamics. Once a node is activated, it remains unchanged. The system evolves according to above rules until no 
further activation occurs. Both φ and φ′  are random variables drawn from probability distribution functions f(φ) 
and g(φ′ ) with ∫ φ φ =f d( ) 1

0

1
 and ∫ φ φ′ ′ =g d( ) 1

0

1
, respectively. In the context of innovation diffusion or opin-

ion spreading, the (φ, φ′ )-threshold model can be described as follows. Consider a population of users to adopt a 
new product or idea, a small fraction of users are the initial spreaders. For a user in the rest part of population, if 
the adopted fraction of her friends is larger than her adoption threshold, she will use the product. Meanwhile, a 
friend of the user with many adopted neighbours may tend to be more committed and thus has a good chance to 
convince her. As shown in Fig. 1, the activated sizes are different with or without persuasion.

The impact of persuasion. The persuasion threshold φ′  represents the situation that a persuader activates 
her inactive friends. Therefore it gives rise to global cascades. According to the model definition, the higher φ′ , 
the lower the persuasion possibility is. In the extreme case φ′  =  1, our model reduces to Watts’ model4. In this 
scenario, the cascade condition in random networks for one seed is ∑ kk(k −  1)ρ(k)P(k) =  z, where ρ(k) represents 
the distribution of vulnerable nodes and P(k) is the distribution of all the nodes. While the network is sparse, the 
criterion of the cascade is φ <  1/z. But if the number of initiators is sufficiently large, large cascades will occur 
despite of φ.

In Fig. 2 we plot the normalized size of the final giant component of inactive nodes ηc as a function of the seed 
fraction ρ0. Both the adoption and persuasion thresholds are uniform. Simulations are performed on Erdős-Rényi 
(ER)36 and scale-free (SF) networks37, respectively. The adoption threshold is fixed at φ =  0.5, and two different 
values of the persuasion threshold φ′  =  0.7 and 0.8 are considered, representing different extents of persuasion 
respectively. From left to right, the values of the average degree of nodes are z =  2, 3, and 10, respectively. All 
the symbols correspond to numerical results of the model. The solid lines represent analytical results based on 
Eq. (6) in the methods section. For ER networks, one notices smooth curves separating two phases for z =  2 
(see Fig. 2(a)), which defines the transition point ρc. Global cascades are observed when ρ0 >  ρc. As z increases 
to 3 (see Fig. 2(b)), different behaviours can be observed: the curve is still smooth without persuading effect for 
φ =  0.5. While the persuasion is considered and of a high value (φ′  =  0.7), the curve drops abruptly from a finite 
size to zero at ρc, indicating a discontinuous transition. For z =  10 (see Fig. 2(c)), the system exhibits discontin-
uous transitions for all the parameter values. Thus, the addition of the persuasion mechanism not only causes ρc 
to be smaller but also changes transition behaviour. These conclusions hold in SF networks as well (see the lower 
panel of Fig. 2). We also studied ηc for φ =  0.6 and obtained similar phenomena (see Supplementary Fig. S1).

Next, we investigate the persuading effect on the cascade window which delineates the region where global 
cascades can occur. We carry out simulations on ER and SF networks for the uniform threshold with seed fraction 
ρ0 =  10−4. In Fig. 3 the color-coded values are analytical results of the final fraction of activated nodes ρ (= 1 −  η) 
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for φ′  =  0.5, where η is the stable fraction of inactive nodes (see Equation (1) in the methods section). For a given 
φ, ρ becomes smaller as z decreases, since the network connectivity is low which limits cascade propagation. For 
the ER networks the cascade boundaries are in good agreement with numerical results (open circles). While for 
the SF networks the fluctuation of the numerical results occurs (not shown) because of the degree heterogene-
ity. The solid lines in Fig. 3(a,b) correspond to the results of Watts’ model on the ER and SF networks, respec-
tively. One notices that the persuasion mechanism makes both networks more vulnerable. However, the influence 
is weakened as z increases, since the possibility for a node being a persuader is low when it is surrounded by 
many inactive neighbors. We also calculated ρ for ρ0 =  10−3. Again, similar phenomena can be observed (see 
Supplementary Fig. S2).

The impact of heterogeneity. Although SF networks show qualitatively the same behaviour as those of 
ER networks with the persuasion threshold, i.e, the decrease of φ′  results in a larger cascade window. However, 
they are quantitatively different. We compare cascade windows for both networks in Fig. 4, where the upper 
and lower panels correspond to ρ0 =  10−4 and 10−3, respectively. Under weak persuading effect (φ′  =  0.9), the 
cascade windows in the SF networks are smaller than those in the ER networks (see Fig. 4(b,e)), which is similar 
to the φ-threshold model (see Fig. 4(a,d)), implying that heterogeneous networks are more robust against ran-
dom shocks than homogeneous networks with the same connectivity. While the persuading effect is enhanced 
(φ′  =  0.5), the SF networks are much more impacted than the ER networks: when the connectivity is sufficiently 
sparse (z <  10 in Fig. 4(c) and z <  9 in Fig. 4(e)), the systemic stability of the SF networks is still better than that 
of the corresponding ER networks with the same connectivity; but when it is sufficiently dense (z >  10 in Fig. 4(c) 
and z >  9 in Fig. 4(e)), the SF networks tend to become less stable than the ER networks. We conclude that heter-
ogeneous networks are more vulnerable to perturbations when the persuading effect is strong enough.

To get a clear inspection on this point, we have calculated average degrees of newly activated nodes in ER 
and SF networks with z =  10. The values of the persuasion threshold are φ′  =  1.0 (without persuading effect) 
and 0.5 (with persuading effect), respectively. For the ER network (see Fig. 5(a)), both plots display the same 
trend, implying that the persuading effect does not change the cascade order of the network. Therefore, low- and 
average-degree nodes are still responsible for triggering large cascades4. By contrast, there is a big difference for 
the SF network with and without persuasion (see Fig. 5(b)). While the persuasion dynamics is considered, the 
cascade invades high-degree nodes quickly and then spans the whole network.

We now turn to the effect of the threshold heterogeneity on the cascade dynamics. Figure 6(a,b) show cascade 
windows for ER networks with the adoption and persuasion thresholds respectively following the Gaussian dis-
tribution. The standard deviation is σ =  0.1 representing fluctuations. For both cases, the active fraction increases 
with the network connectivity for a given φ inside the cascade window. Figure 6(c) shows the comparison of the 
cascade windows. It is clear that the threshold heterogeneity appears to increase the likelihood of global cascades. 
Especially for networks with dense connectivity, the adoption threshold has an overwhelming influence com-
pared to that of the persuasion threshold. Such difference can be understood: when the persuasion threshold φ′  
is Gaussian distributed, there is a higher probability for the active fraction of a adopter’s neighbors exceeds the 
persuasion threshold than the uniform case, which results in a stronger inducing effect on cascade propagation. 
While the network connectivity increases, an adopter is surrounded by many inactive neighbors, which leads to 
a lower chance for her to be a persuader. Hence the number of persuaders is reduced, leading to a less significant 
inducing effect. On the contrary, when the adoption threshold φ follows the Gaussian distribution, the increase of 
the network connectivity brings about more early adopters with lower adoption thresholds and relatively higher 

Figure 1. Illustration of cascade clusters for φ- and (φ, φ′)-threshold models. (a) The initial network 
has one active seed and the rest nodes are inactive. The adoption and persuasion thresholds are φ =  0.3 and 
φ′  =  0.4, respectively. (b) The final activated nodes for the φ-threshold model. Since the activated fractions in 
the neighbourhoods of nodes k and l are 1/5 and 1/4, respectively, which are less than the adoption threshold 
φ =  0.3, both of them are not activated. (c) The final activated nodes for the (φ, φ′ )-threshold model. Although 
the adoption rule is unsatisfied for k and l, the activated fractions in the neighbourhoods of i and j are 2/3 and 
1/2 (see Fig. 1(b)), respectively, both of which are larger than the persuasion threshold 0.4. According to the 
persuasion rule, i and j can activate k and l, respectively.
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degrees, which accelerates cascade propagation. This conclusion is valid for a wider range of the seed fraction (see 
Supplementary Fig. S3).

Finally, we examine the threshold heterogeneity on the transition behaviour. Figure 7 shows the normalized 
size of the giant component of inactive nodes ηc as a function of the seed fraction ρ0 in ER networks. The upper 
and lower panels correspond to φ′  =  0.8 and 0.6, respectively. When the network connectivity is sufficiently sparse 
(z =  3) and the persuading effect is sufficiently weak (φ′  =  0.8), the system exhibits the continuous transition for 
σ =  0 (see Fig. 7(a)). When the adoption heterogeneity is allowed but of a relatively small value (σφ =  0.1), the 
transition becomes discontinuous. For larger adoption heterogeneity (σφ =  0.2) the system exhibits the contin-
uous transition again. This is qualitatively the same as the φ-threshold model38. On the contrary, the increase of 

Figure 2. Normalized size of the giant component of inactive nodes ηc in the stable states as a function of 
the seed fraction ρ0. Both the adoption and persuasion thresholds are uniform. Symbols represent simulation 
results on ER (upper panel) and SF (lower panel) networks of N =  104 nodes and average degree z =  2 (left 
column), 3 (middle column) and 10 (right column), respectively. All the results are averaged over 50 realizations 
of the model, each of which is performed on 50 network configurations. Error bars are the standard deviations 
of the means. Solid lines are theoretical predictions by Eq. (6).

Figure 3. Effect of the persuasion threshold on the cascade window in ER (a) and SF (b) networks. Color-coded 
values represent analytical results of the final fraction of active nodes ρ based on Eq. (1) with seed fraction 
ρ0 =  10−4. The persuasion threshold is φ′  =  0.5. Circles correspond to simulation results of the present model. 
Solid lines are cascade boundaries of Watts’ model on the ER and SF networks, respectively.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:23766 | DOI: 10.1038/srep23766

the persuasion heterogeneity σφ′ results in the monotonic change in the phase transition: the transition is always 
discontinuous in dense networks or in networks with strong persuasion (see Fig. 7(b–f)).

Discussion
In spite of its simplicity, the threshold model has attracted much attention from social, mathematical, physical, 
and biological communities. Although there is a rapid acceleration of work on this topic, very few studies have 
considered the asymmetry of social interactions. In this paper, we decomposed the spread of an entity or influ-
ence as a combination of giving and catching operations, with chances of happening ruled by persuasion and 
adoption probabilities, respectively. Based on this, we proposed the (φ, φ′ )-threshold model.

The focus of the present work is to identify the effects of the adoption and persuasion thresholds. We first 
studied the stable giant component of inactive nodes as a function of initiators for uniform thresholds. The 

Figure 4. Comparison of the systemic stability of ER and SF networks. Both the adoption and persuasion 
thresholds are uniform. The seed fractions are N =  10−4 (upper panel) and 10−3 (lower panel), respectively. 
The values of the persuasion threshold are φ′  =  1.0 (left column), 0.9 (middle column) and 0.5 (right column), 
respectively.

Figure 5. Temporal plots of the average degree of newly activated nodes for ER (a) and SF (b) networks. The 
seed fraction is ρ0 =  10−4 and the adoption threshold is φ =  0.1. Squares and circles correspond to simulation 
results of the model without and with persuasion, respectively.
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introduction of the persuasion threshold not only facilitates global cascades, but also may turn the transition from 
continuous to discontinuous, even when the network connectivity is low. This local mechanism is expected to 
explain abrupt breakdown of real systems. We also explored the effect of the persuasion threshold on the cascade 
window. When the persuading effect is weak, heterogeneous networks are more robust against random shocks 
than homogeneous networks; when the persuading effect is strong, however, homogeneous networks are more 
stable. Thus, the uniform persuasion threshold has stronger effects on the transmission dynamics than the uni-
form adoption threshold. Finally, we studied the effect of threshold heterogeneity on systemic stability. Although 
both heterogeneities give rise to the cascade, the adoption heterogeneity has an overwhelmingly stronger influ-
ence than the persuasion heterogeneity for the networks that are sufficiently dense: the higher the network con-
nectivity is, the less significant effects the persuasion threshold has on the cascade dynamics, since the local 
stability of nodes suppresses the persuading effect. These striking results indicate that the persuasion dynamics is 

Figure 6. Effect of heterogeneous thresholds on the cascade window in ER networks. Cascade windows 
on the (φ, z) plane with seed fraction ρ0 =  10−4 in the ER networks where the adoption threshold is normally 
distributed with a mean φ and a standard deviation σ =  0.1 (a) and the persuasion threshold is normally 
distributed with a mean φ′  =  0.5 and a standard deviation σ =  0.1 (b), respectively. The color codes represents 
analytical predictions of the final fraction of active nodes ρ based on Eq. (1). (c) Comparison of the cascade 
windows for both thresholds. The solid line corresponds to the result of Watts’ model with the uniform adoption 
threshold.

Figure 7. Effect of heterogeneous thresholds on the size of the giant component of inactive nodes ηc in ER 
networks. Symbols represent simulation results of the ER networks of size N =  104 and an average degree z =  3 
(left column), 5 (middle column) and 10 (right column), respectively. The values of the persuasion threshold are 
φ′  =  0.8 (upper panel) and 0.6 (lower panel), respectively. Error bars are the standard deviations of the means. 
Lines are theoretical predictions by Eq. (6).
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important for understanding contagion processes on social networks with asymmetry. It is interesting to incorpo-
rate more structural characteristics in asymmetric contagion models, such as direction, weights, and correlations.

Methods
Given an uncorrelated network of N nodes following the degree distribution P(k), a fraction ρ0 of nodes are 
chosen randomly to be active. According to the model definition, we obtain the stable fraction of inactive nodes:

∑ ∑η ρ α β β= − − −
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where F(x) denotes the probability that the adoption threshold φ of a node is no less than x. α represents the 
probability that a random neighbor j of the inactive node i is active and the active fraction in the neighbourhood 
of j is larger than the persuasion threshold φ′j . β represents the probability that a random neighbor j of the inactive 
node i is active and the active fraction in the neighbourhood of j is less than the persuasion threshold φ′j . 
Following the ideas of refs 10,33, we obtain the self-consistent equations for the two probabilities:
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where γ refers to the critical case separating α and β, and δ describes the probability that a random neighbor j of 
the active node i is active, written as
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G(x) denotes the probability that the persuasion threshold φ′  of a node is no less than x. Q(k) ≡  (k +  1)P(k +  1)/z 
is the excess degree distribution. One can solve the above equations using a simple iterative scheme, and finally 
get the stable size of the giant component of the inactive nodes:
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where θ is the probability that a random neighbor j of the inactive node i is inactive but not belonging to the giant 
component of the inactive nodes, given by
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