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Abstract

Background

Many new biomedical research articles are published every day, accumulating rich informa-

tion, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text

mining on large-scale scientific literature can discover novel knowledge to better under-

stand human diseases and to improve the quality of disease diagnosis, prevention, and

treatment.

Results

In this study, we designed and developed an efficient text mining framework called Spark-

Text on a Big Data infrastructure, which is composed of Apache Spark data streaming and

machine learning methods, combined with a Cassandra NoSQL database. To demonstrate

its performance for classifying cancer types, we extracted information (e.g., breast, pros-

tate, and lung cancers) from tens of thousands of articles downloaded from PubMed, and

then employed Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to

build prediction models to mine the articles. The accuracy of predicting a cancer type by

SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took

more than 11 hours, SparkText mined the dataset in approximately 6 minutes.

Conclusions

This study demonstrates the potential for mining large-scale scientific articles on a Big Data

infrastructure, with real-time update from new articles published daily. SparkText can be

extended to other areas of biomedical research.
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Introduction

A large number of biomedical research articles are published every day, adding knowledge to
the scientific literature on various human diseases such as cancer. As a leading cause of mortal-
ity worldwide, cancer may occur due to various causes, including internal factors such as inher-
ited genetic mutations, hormones, and immune conditions, as well as external factors such as
tobacco exposure, infectious organisms, unhealthy diet, and physical activity [1–3]. Compared
to other human diseases, there have been an enormous number of scientific publications on
cancer [4–6]. In the past a few years, the number of published articles in cancer research has
grown consistently each year (Fig 1). The large amount of biomedical text data relevant to can-
cer studies is especially valuable for knowledge discovery related to cancer diagnosis, classifica-
tion, prevention, and treatment.

Data mining can be used to discover patterns in large-scale datasets using methods at the
intersection of artificial intelligence, machine learning, natural language processing (NLP), and
database systems [7]. Text mining is a specializeddata mining method that extracts informa-
tion (e.g., facts, biological processes, diseases) from text, such as scientific literature [8,9]. Liter-
ature mining can generate new hypotheses by systematically scrutinizing large numbers of
abstracts or full-text scientific articles [10,11]. Biomedical text mining and its applications have
been used to improve scientific discovery in various biomedical rubrics, particularly those rele-
vant to cancer [12–16]. Text mining strategies utilizing Big Data frameworks have the potential
to analyze the gigantic amount of biomedical articles published in cancer research to provide
operational information on cancer while providing real-time updates to incorporate newly
published articles.

Fig 1. The number of publications in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) over the last six

years obtained by submitting a query for “cancer” in the all fields.

doi:10.1371/journal.pone.0162721.g001
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In this work, we investigated large-scale text mining algorithms focusing on text classifica-
tion approaches for cancer research and developed an efficient and scalable framework that sat-
isfies the following objectives: (a) to extract cancer name/type and facts about cancer research
from abstracts as well as full-text articles downloaded from PubMed (http://www.ncbi.nlm.nih.
gov/pubmed/); (b) to utilize and adapt NLP, text mining, and machine learning strategies in a
large-scale fashion using a Big Data framework; and (c) to provide insights into this research
area by identifying challenges and possible enhancements in large-scale biomedical text
mining.

Materials and Methods

The basic framework of SparkText is shown in Fig 2. It includes computational technologies,
such as NLP, machine learning, Big Data infrastructure, and a distributed NoSQL Cassandra
database system for storing the raw text information and features selected and extracted from
biomedical text data. Here, we describe the design and development of SparkText to first
extract disease information (e.g., breast, prostate, and lung cancer types) and then develop pre-
diction models to classify information extracted from 19,681 abstracts and 29,437 full-text sci-
entific articles individually.

First, we converted abstracts and/or full-text articles into a format suitable for the machine
learning methods and classification tasks. A bag-of-words representation [17] using Term-Fre-
quency–Inverse Document Frequency (TF-IDF) scores [18–20] was employed to estimate
word importance for variable selection. To make the bag-of-words representation, the fre-
quency of occurrence of each individual word or Term-Frequency (TF) is multiplied by the
Inverse Document Frequency (IDF), and the TF-IDF scores are then utilized as feature vectors.
The TF-IDF weighting score (Wt,d) is computed by Eq (1) as follows:

Wt;d ¼ TFt;d

� �
� log

10

N=DFt

� �
ð1Þ

where TFt,d refers to the frequency of the term t occurring in article d, N is the number of arti-
cles in the dataset, and DFt refers to the number of articles containing the term t. Wt,d is widely
used in information retrieval and text mining systems. One potential advantage of using Wt,d is
the removal of irrelevant features (words). For instance, there are 1,000 articles in a dataset.
Assuming the frequency of the term “almost” in the first article is 56 and the term “almost”
appears in all of the 1,000 articles in the dataset, to assess the importance of the term “almost”
as a feature in the dataset, the TF-IDF weighting score is calculated by the following:

W}almost};1 ¼ 56ð Þ � log
10

1000=1000

� �
¼ 0

As W"almost",1 is 0, it means that the term “almost” is not an important feature in the dataset.
We used the TF-IDF weighting score to provide the bag-of-words representation as the feature
vectors for both training and testing procedures. We employed three different classification
algorithms, including Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression,
to individually build a prediction model [21–23] based on the abstracts as well as the full-text
articles downloaded from PubMed. The main functionality of the prediction model is to auto-
matically assign the abstracts/articles to one of the pre-defined categories, such as breast can-
cer, lung cancer, or prostate cancer. We compared the cancer categories predicted by the
model with the ones classified by Medical Subject Headings (MeSH) terms [24]. We acknowl-
edge that MeSH terms themselves are derived programmatically using more sophisticated algo-
rithms, but we are treating them as gold standard here to evaluate whether a Big Data
framework can reproduce predictions that match this gold standard. The proposed scalable
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framework was developed on a Big Data infrastructure, including an Apache Hadoop cluster,
Apache Spark components, and a Cassandra Database. The toolset was developed in Java pro-
gramming language. Use of SparkText to classify cancer types is detailed diagrammatically in
Fig 2 and further explained as follows.

Fig 2. The basic framework of SparkText: We first loaded structured and unstructured abstracts and/or

full-text articles into a Cassandra Database, which was then stored in multiple compute nodes. After that,

we started text preprocessing and feature extraction before building prediction models based on Apache Spark.

The Apache Spark Core contains the main functionalities and APIs for distributed Big Data solutions. As a part of

Apache Spark components, the MLlib is a scalable machine learning library that includes common machine

learning methods and utilities, such as classification, clustering, regression, collaborative filtering, dimensionality

reduction, and underlying optimization primitives. The Standalone Scheduler allows a standalone mode cluster,

which runs applications in first-in-first-out (FIFO) fashion, and each application is deployed at multiple compute

nodes. The Spark Streaming Real-Time handles real-time streaming of Big Data files based on a micro batch style

of processing.

doi:10.1371/journal.pone.0162721.g002
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Text preprocessing

The first step of SparkText was text preprocessing in which we applied several preprocessing
tasks on the raw text data (abstracts or full-text articles). This stage required a number of
optional text preprocessing tasks, such as: (a) replacing special symbols and punctuation marks
with blank spaces; (b) case normalization; (c) removing duplicate characters, rare words, and
user-defined stop-words; and (c) word stemming. To this end, we first parsed pre-categorized
(e.g., breast cancer, lung cancer, and prostate cancer by MeSH terms) abstracts or full-text arti-
cles into sentences. We then replaced special characters, such as quotation marks and other
punctuation marks, with blank spaces and marked all sentences in a lower case format to pro-
vide normalized statements. Afterwards, we parsed sentences into individual words (tokens).
Rare words and user-defined stop-words were removed, and the Porter Stemmer algorithm
[25,26] was then used to stem all words.

Feature extraction

In regards to computational linguistics [27,28], a N-gram is a contiguous sequence of N terms
from a given sentence. The N-gram model can be likened to putting a small window over a sen-
tence in which only N words are detectable at a time. Using a 2-gram strategy, all words of a
sentence are broken down into two different combinations including unigram (one word) and
bigrams (two consecutive words) [29,30]. An example of these combinations is shown in Fig 3.
We extracted a set of unigrams as well as bigrams from abstracts or full-text articles used to
train SparkText for a specific cancer type. In addition to these unigrams and bigrams, the num-
ber of abstracts or full-text articles where each word appeared in the text corpus was counted.
When the value of TF in an article was used as a feature value, a higher weight was assigned to
words that appeared frequently in a corpus. Hence, the IDF was a much better value, since it
assigned a lower weight to frequent terms. We calculated IDF as the log ratio of the number of
abstracts or full-text articles in the training set to the number of abstract or full-text articles
containing the term. Combining these numbers as a TF/IDF weighting is the best known
weighting scheme in text retrieval [30]. This weighting scheme was completely valid not only
for unigrams but also for bigrams, trigrams, and others. During the performance of these tasks,
we converted all abstracts or full-text articles into “equal-length” numeric feature vectors
where every feature presented the TF-IDF of a unigram and/or bigrams in a full-text article or
abstract instance. While using unigrams and/or bigrams in different datasets including abstract
and/or full-text, there were thousands to tens of thousands of features. All abstracts or full-text
articles along with their feature vectors were organized in a bag-of-words representation
model. A brief example of a bag-of-words representation is shown in Table 1.

Training and evaluating prediction models

Completion of the above steps resulted in conversion of all abstracts or full-text articles into a
representation module suitable for the machine learning methods. We applied three well-
known classification methods, namely Naïve Bayes, SVM, and Logistic Regression, to train and
build prediction models. We utilized the scalable Apache Spark MLlib classification compo-
nents, such as SVM, Logistic Regression, and Naïve Bayes classifiers that have been originally
developed by the Apache Foundation. In a classification problem, data are labeled by being
assigned to a class or category (e.g., “Breast Cancer” or “Lung Cancer”). Then the decisions
modeled are to assign labels to new unlabeled data. This can be thought of as a discrimination
problem, modeling the similarities or differences between groups. Many classification algo-
rithms can be formulated as a convex optimization problem, i.e., the task of finding a mini-
mizer of a convex function f that is associated with a variable vector w which has d number of
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Fig 3. An example of unigrams and bigrams extracted from the sentence “The purpose of this study was to examine the incidence of

breast cancer with triple negative phenotype. ” The sentence was chosen from an abstract downloaded from PubMed.

doi:10.1371/journal.pone.0162721.g003

Table 1. An example of a bag-of-words representation. The terms “biology”, “biopsy”, “biolab”, “biotin”, and “almost” are unigrams, but “cancer-surviv”,

and “cancer-stage” are bigrams. Using TF/IDF weighting scores, the feature value of the term “almost” equals to zero.

Article ID biolog biopsi biolab biotin almost cancer-surviv cancer-stage Article Class

00001 12 1 2 10 0 1 4 breast-cancer

00002 10 1 0 3 0 6 1 breast-cancer

00014 4 1 1 1 0 28 0 breast-cancer

00063 4 0 0 0 0 18 7 breast-cancer

00319 0 1 0 9 0 20 1 breast-cancer

00847 7 2 0 14 0 11 5 breast-cancer

03042 3 1 3 1 0 19 8 lung-cancer

05267 4 4 2 6 0 14 11 lung-cancer

05970 8 0 4 9 0 9 17 lung-cancer

30261 1 0 0 11 0 21 1 prostate-cancer

41191 9 0 5 14 0 11 1 prostate-cancer

52038 6 1 1 17 0 19 0 prostate-cancer

73851 1 1 8 17 0 17 3 prostate-cancer

doi:10.1371/journal.pone.0162721.t001

SparkText

PLOS ONE | DOI:10.1371/journal.pone.0162721 September 29, 2016 6 / 15



entries. We can briefly describe this expression as the optimization problem:

minfðwÞ w 2 Rd ð2Þ

where the objective function is as follows:

f wð Þ≔a R wð Þ þ
1

n

Xn

i¼1
Lðw; xðiÞ; yðiÞÞ ð3Þ

where the vectors x(i) 2 Rd are the training instances (1� i� n), and y(i) 2 R are theirs labels
(classes), which we would like to predict. We will call the method linear if L(w; x,y) could be ex-
press as a function of wTx and y. The objective function f has two parts: the regularizer (R(w))
that take cares of the complexity of the model, and the loss that measures the error of the
model on the training instances. The loss function L(w;.) is formally a convex function in w.
The fixed regularization parameter a� 0 defines the trade-off between the two objectives: (a)
minimizing the loss (i.e., training error), and (b) minimizingmodel complexity (i.e., to avoid
the problem of overfitting in which we will have small training error and large testing error).
Most of the Apache Spark classification components fall into this model. The Apache Spark
SVM component utilizes linear kernel and it can be trained with L1 (Eq (4)) and L2 regulariza-
tions (Eq (5)) [31]. By default, the Apache Spark SVM component uses L2 regularization as
Eq (5).

kwk1 ð4Þ

The Apache Spark SVM component can provide L1 regularization (30) as Eq (4):

1

2
kwk2

2
ð5Þ

Apache Spark Logistic Regression component also offers a linear kernel based on Eq (3)
along with a loss function given by the following expression:

Lðw; x; yÞ ¼ logð1þ expð� ywTxÞÞ ð6Þ

For a binary classification problem, the component outputs a binary logistic regression
model. Given a new data point, denoted by x, this model will make predictions using a logistic
function as Eq (7):

f zð Þ ¼
1

1þ e� z
ð7Þ

where z = wTx. By default, if wTx> 0.5, the outcome would be positive; otherwise, it would be
negative. By default, the first class 0 is chosen as the “pivot” class. For Logistic Regression, the L2
regularization (Eq (5)) was employed to control overfitting with a large amount of features in the
model building process [32], but it can support all three possible regularizations (none, L1, or
L2). For the Naïve Bayes model, the only assumption was that every pair of features is indepen-
dent as recommended for documentation classification by Apache Spark [33]. In the proposed
SparkText framework, we utilized the Apache Spark MLlib classification components including
SVM, Logistic Regression, and Naïve Bayes using their default parameters. To better experimen-
tally validate the proposed framework, we examine their attributes using both default and non-
default parameters as illustrated in the results. In our evaluation, ten 5-fold cross-validation
experiments were performed to assess the model performance using both abstracts and full-text
articles. For each of the experiments, the dataset was partitioned into five equal-sized subsamples
by random split. Of the five subsamples, one was retained as the testing dataset while the rest
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were used for model building as the training dataset. The cross-validation process was repeated
five times. Then the average accuracy of predictions across all experiments was computed.

Big Data processing using Apache Spark component and Cassandra

database

Biomedical text mining can generate new hypotheses by systematically examining a huge num-
ber of abstracts and/or full-text articles of scientific publications. With the use of large-scale data
published in biomedical literature, a key challenge is appropriate management, storage, and
retrieval of high volume data. When the data volume is in the terabyte range, the data must be
segmented them into chunks of manageable size in order to be retrieved and analyzed on distrib-
uted computation frameworks. To tackle the challenges of large-scale text classification, we devel-
oped the proposed toolset using Apache Spark (http://spark.apache.org/) and Apache Cassandra
database (http://cassandra.apache.org/). Apache Spark is an open source Big Data processing
framework built around speed, performance, scalability, reusability, and sophisticated analytics.
It provides simple and expressive programmingmodels that support a wide range of applications,
including ETL (Extract, Transform and Load),machine learning, stream processing, and graph
computation. It is also a scalable framework that provides a high-level application programming
interface (API) and a consistent architect model for Big Data management. Spark was originally
developed in the AMPLab at the University of California Berkeley in 2009, offering more than 80
high-level operators to make parallel applications. Cassandra database is an open source distrib-
uted database system that handles large amounts of data. SparkText supports scalability and high
availability with no single point of failure (Fig 2).

Results

To evaluate the performance, accuracy, and running time of SparkText, extensive experiments
were performed on the abstracts and full-text articles downloaded from PubMed. In the sec-
tions below, we first describe the testing dataset and the experimental setup, then report mea-
surement and comparison of the accuracy of SparkText using different machine learning
methods on three different datasets. We have utilized the Apache Spark MLlib components
using their default parameter values. To further examine the SparkText attributes, we also ana-
lyze the accuracy of the SparkText using non-default Apache Spark MLlib parameter values.
After that, we report comparison of the accuracy and runtime efficiencyof SparkText with two
open source toolsets,Weka Library [34,35] and TagHelper Tools[36].

Experimental setup

We downloaded abstracts and full-text articles from PubMed (Datasets in S1 File) to generate both
training and testing datasets. Datasets and their attributes are shown inTable 2. Separating a dataset
into “training data” and “testing data” is an important part of evaluating text classificationmodels.
In such a dataset, a training set is used to build up a predictionmodel, while a testing set is used to
evaluate the model built. To this end, for each dataset illustrated inTable 2, we employed 5-fold
cross validation, each time using 80% of the entities to train a predictionmodel and the remaining
20% to test it. We utilized 64-bit Linux CentOS operating system on a cluster platform built with 20
data nodes, each configuredwith 6 GB memory, two CPUs (2.6 GHz), and 1 TB of hard disk space.

Accuracy validation

We assessed the accuracy of the proposed prediction models using three common measures
including accuracy, precision, and recall. Accuracy describes the percent of predictions that are
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correct, precision (also called positive predictive value) refers to the percent of positive predic-
tions that are correct, and recall (also called sensitivity) describes the percent of positive cases
that are detected [21,22]. Given P positive instances and N negative instances in an experiment,
the four potential outcomes include true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). Then accuracy (ACC) = (TP + TN)/(P + N), precision (PPV) = TP/(TP
+ FP), and recall (true positive rate) (TPR) = TP/(TP + FN). Table 3 shows quantitative results
for accuracy, precision, and recall of SparkText. In this experiment, we employed three classifi-
cation methods on the three different datasets illustrated in Table 2. Results in Table 3 were
obtained by utilizing only default parameter values of the Apache Spark MLlib components
including SVM, Logistic Regression, and Naïve Bayes classifiers. Experimental results using
both default and non-default parameter values of the Apache Spark MLlib classifiers are pre-
sented in Table 4. We also assessed the Receiver Operating Characteristic (ROC) curves
[22,23] for quantitative comparison of the prediction models using the three different machine
learning methods. Fig 4 shows representative ROC curves generated in a typical experiment
using the “Full-text Articles II” data. The area under the curve for the SVM classifier repre-
sented a reasonable test, while the area for the Naïve Bayes classifier compared poorly to the
two other classification methods. The accuracy of SVM classifier on the dataset was better than
Naïve Bayes or Logistic Regression.

Comparing the proposed methods using abstracts and full-text articles, we found that the
accuracy of the prediction models using abstracts was better than that of full-text articles. This
is somewhat counter-intuitive, but a possible explanation might be related to the size of the fea-
ture space, which seems to be too large for full-text articles. For text classification purposes,
abstracts may work better than full-text scientific articles. However, to tackle the problem of
information retrieval and knowledge discovery, full-text articles are expected to provide a
richer source of information compared to abstracts alone. Therefore, future work will attempt
to take feature reduction strategies into account to improve prediction models based on full-
text articles.

Table 2. The datasets: all abstracts and full-text articles were downloaded from PubMed. The datasets included abstracts and full-text articles related

to three types of cancer, including breast, lung, and prostate cancer. For each dataset, we employed 80% of the entire dataset to train a prediction model

while the remaining 20% was used for testing.

Dataset Year Range # Instances # Breast Cancer # Lung Cancer # Prostate Cancer

Abstracts 2011–2016 19,681 6,137 6,680 6,864

Full-text Articles I 2011–2016 12,902 4,319 4,281 4,302

Full-text Articles II 2009–2016 29,437 9,787 9,861 9,789

doi:10.1371/journal.pone.0162721.t002

Table 3. The quantitative results for accuracy, precision, and recall of SparkText using three datasets. For each dataset, 80% was used to train a

prediction model and the remaining 20% for testing.

Dataset Classifier Accuracy Precision Recall

Abstracts SVM 94.63% 93.11% 94.81%

Abstracts Logistic Regression 92.19% 91.07% 89.49%

Abstracts Naïve Byes 89.38% 89.13% 90.82%

Full-text Articles I SVM 94.47% 92.97% 93.14%

Full-text Articles I Logistic Regression 91.05% 90.77% 89.19%

Full-text Articles I Naïve Bayes 88.02% 89.01% 90.68%

Full-text Articles II SVM 93.81% 91.88% 92.27%

Full-text Articles II Logistic Regression 90.57% 90.28% 91.59%

Full-text Articles II Naïve Bayes 86.44% 87.61% 89.12%

doi:10.1371/journal.pone.0162721.t003
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Quantitative comparisons of the prediction models

We also compared the accuracy, precision, and recall of SparkText with two open source tool-
sets, Weka Library and TagHelper Tools. Fig 5 shows quantitative comparisons of the predic-
tion models using Naïve Bayes, SVM, and Logistic Regression on different datasets including
abstracts and full-text articles. This experiment illustrates that the difference between accuracy
estimated by the SparkText framework and accuracy estimated by two well-known Weka
Library and TagHelper Tools is less than 1%. Therefore, the SparkText framework generates
reasonable results regarding the accuracy of the prediction models. The accuracy of SparkText
is promising, as Weka Library and Tag Helper tools have been in use for several years to solve
the problems of text data classification. In addition to having comparable accuracy, precision,
and recall as the two widely used text mining libraries, SparkText showed much better perfor-
mance as described below.

Performance comparison

Comparisons of running time among SparkText and the Weka Library and Tag Helper tools
are shown in Table 5. Using the dataset “Abstracts”, SparkText took approximately 3 minutes
to complete classification, while the Weka Library and TagHelper Tools took approximately
138 minutes and 201 minutes, respectively. Employing the dataset “Full-text Articles I”, Spark-
Text took approximately 4 minutes to complete classification, while the Weka Library and
TagHelper Tools took almost 309 minutes and 571 minutes, respectively. On the dataset “Full-
text Articles II”, SparkText took approximately 6 minutes to complete classification, while
Weka Library and TagHelper Tools both took more than 11 hours. The speed advantage of
SparkText becomesmore apparent as the input dataset becomes larger. For the largest dataset,
which included 29,437 full-text articles, the proposed scalable framework achieved a speed 132
times faster than that of commonly used text mining tools including Weka Library and
TagHelper Tools (Table 5).

Table 4. The quantitative results for accuracy using different regularization parameters. For each dataset, 80% was used to train a prediction model

and the remaining 20% for testing.

Classifier Dataset Regularization Parameter Accuracy

SVM Abstracts L2 (Default) 94.63%

SVM Abstracts L1 91.07%

SVM Abstracts None 89.72%

Logistic Regression Abstracts L2 (Default) 92.19%

Logistic Regression Abstracts L1 90.61%

Logistic Regression Abstracts None 88.54%

SVM Full-text Articles I L2 (Default) 94.47%

SVM Full-text Articles I L1 90.33%

SVM Full-text Articles I None 88.51%

Logistic Regression Full-text Articles I L2 (Default) 91.05%

Logistic Regression Full-text Articles I L1 88.19%

Logistic Regression Full-text Articles I None 87.04%

SVM Full-text Articles II L2 (Default) 93.81%

SVM Full-text Articles II L1 90.16%

SVM Full-text Articles II None 87.94%

Logistic Regression Full-text Articles II L2 (Default) 90.57%

Logistic Regression Full-text Articles II L1 87.63%

Logistic Regression Full-text Articles II None 86.71%

doi:10.1371/journal.pone.0162721.t004
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Discussion

This work focused on investigating large-scale biomedical text classification for massive data-
sets downloaded from PubMed. We utilizedNLP, machine learning strategies, and Big Data
infrastructure to design and develop a distributed and scalable framework to extract informa-
tion, such as cancer type for breast, prostate, and/or lung cancers, and then to develop predic-
tion models to classify information extracted from tens of thousands of abstracts and/or full-
text articles downloaded from PubMed by associated MeSH terms. The SparkText framework
was developed on a Big Data infrastructure, including an Apache Hadoop cluster, together with
an Apache Spark component and Cassandra database. The accuracy of predicting a cancer type
by SVM using the abstracts was 94.63%, while its accuracy using the 29,437 full-text articles
(Full-text II) was 93.81%. The developed toolset was more than 130 times faster than other exist-
ing methods for mining a large dataset, which included 29,437 full-text articles. This demon-
strates the potential of mining large-scale scientific articles on a Big Data infrastructure.The time
efficiencyand accuracy of SparkText are both promising, and this strategy will provide tangible
benefits to biomedical research. The package of the developed toolsets in this study is freely avail-
able for use by academic or non-profit organizations at http://sparktext.omicspace.org/. Source

Fig 4. The ROC curves for the dataset “Full-text Articles II”: the area under the curve for the SVM classifier represents a

better result compare to that of the Naïve Bayes and Logistic Regression algorithms.

doi:10.1371/journal.pone.0162721.g004
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Fig 5. Quantitative comparisons of the prediction models on text mining: (A) the accuracy, precision, and recall

obtained from 19,681 abstracts; (B) the accuracy, precision, and recall on 12,902 full-text articles; and (C) the accuracy,

precision, and recall on 29,437 full-text articles. Table 2 provides the details on these 3 datasets. Five-fold cross validation

was used in all analyses.

doi:10.1371/journal.pone.0162721.g005

SparkText

PLOS ONE | DOI:10.1371/journal.pone.0162721 September 29, 2016 12 / 15



code of the package can be downloaded after obtaining a license agreement from Marshfield
Clinic Applied Sciences.

This pilot study only leveraged three of the available machine learning methods imple-
mented in Apache Spark component and tens of thousands of articles downloaded from
PubMed to classify three cancer types. In this work, we did not analyze whether an article
focused on single cancer or multiple cancers (Overlapping of different cancer types in S1
File). In future studies, we plan to employ larger datasets, including hundreds of thousands
full-text articles, to assess the accuracy, scalability, and runtime efficiencyof SparkText. We
will focus on feature extraction and dimension reduction to provide noteworthy features;
hence, condensing the feature space for text classification methods. To provide better knowl-
edge and information to cancer research, we intend to work on multi-dimensional classifica-
tion tasks to classify information extracted from scientific articles not only on specific cancer
types, but also on cancer treatment, diagnosis, and prevention categories. Furthermore, besides
utilizing the available machine learning methods implemented in Apache Spark component
and available published articles on PubMed, we also plan to develop novel machine learning
approaches for discovering the associations between gene and disease/phenotype, gene and
drug dosage/use, and other associations to advance precision medicine.

Conclusions

This study demonstrates the potential for mining large-scale scientific articles on a Big Data
infrastructure,with real-time update from new articles published daily. SparkText can be
extended to other areas of biomedical research.
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