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Background controlled QTL mapping in pure-line genetic
populations derived from four-way crosses

S Zhang1, L Meng1, J Wang1 and L Zhang

Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility
to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait
loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way
crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal
variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in
the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional
scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using
different genetic models demonstrated that the new method is efficient when considering high detection power, low false
discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method
was applied in a reported wheat four-way recombinant inbred line population.
Heredity (2017) 119, 256–264; doi:10.1038/hdy.2017.42; published online 19 July 2017

INTRODUCTION

Pure-line development is a major task in plant breeding for both self-
pollinated and cross-pollinated species. Populations consisting of pure
lines can be planted repeatedly in multiple years and locations so as to
improve the detection power of quantitative trait loci (QTL) and
conduct QTL by environment interaction analysis. Many genetic
researches have been conducted on biparental pure lines (such as
doubled haploids (DH) and recombinant inbred lines), where only
two alleles are involved per locus, opportunities for genetic cross-over
and recombination are limited and QTL mapping resolution is low
(Holland, 2007). To save time in population development and identify
more alleles at one locus, association mapping has been employed for
genetic studies with natural populations in many species of plants. It
relies on population-wide marker-phenotype associations and histor-
ical recombination events, and may suffer from issues caused by
unknown population substructure and cryptic relatedness, thereby
distorting the relationship between markers and traits (Verbyla et al.,
2014a). As a result, association mapping in plants has so far failed to
identify a single major QTL allele that has been of value in public
breeding programs (Bernardo, 2016).
Multiparental pure-line populations are becoming important in

genetic studies. Each locus may contain multiple alleles in multi-
parental populations. Kinship in the progenies is clear; therefore,
population structure issue does not exist. Greater opportunities for
recombination increase the mapping accuracy, and the abundant
genetic variation allows the detection of more genes and alleles (Kover
et al., 2009). Multiparent advanced generation inter-cross (MAGIC)
populations in crop was first advocated by Cavanagh et al. (2008), and

the designs have been applied in a number of species. Bandillo et al.
(2013) developed four MAGIC populations in rice, and genome-wide
association mapping was used for QTL identification. Würschum et al.
(2014) performed QTL mapping by genome-wide association map-
ping in a six-parental DHs triticale population. Mackay et al. (2014)
created a set of eight-parental recombinant inbred lines (RIL) of
winter wheat and identified a diagnostic marker for morphological
character ‘awn presence/absence’ by association mapping. Sannemann
et al. (2015) incorporated multilocus QTL analysis and cross-
validation for flowering time in the first eight-way MAGIC DH
population of barley.
For QTL detection in multiparental populations, software packages

R/HAPPY (Mott et al., 2000), R/qtl (Broman et al., 2003), MCQTL
(Jourjon et al., 2005) and R/mpMap (Huang and George, 2011) have
implemented interval mapping (IM; Lander and Botstein, 1989) and
composite interval mapping (CIM; Zeng, 1994). IM and CIM were
first proposed in biparental populations and then extended to multi-
parental populations. Under the assumption that there was at most
one QTL located in each chromosome, IM calculated likelihood of
odd (LOD) scores at scanning positions, and QTL were supposed to
be located at the LOD profile peaks above a threshold value (Lander
and Botstein, 1989). Estimates of QTL positions and effects were
biased when QTL were linked. CIM combines IM with marker
regression to control the QTL effects outside the scanning interval
(Zeng, 1994). But the arbitrariness of cofactor selection complicated
the application of CIM (Li et al., 2007; Wang et al., 2016; Wei and Xu,
2016). Verbyla et al. (2014a) proposed the whole-genome average
interval mapping method for multiparental populations
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(MPWGAIM). Wei and Xu (2016) showed that MPWGAIM was
time-consuming if the number of markers and QTL were large, and
presented four mixed models for QTL mapping. Two models called
FIXED-B and RANDOM-B were proven by the authors to have higher
powers and lower false discovery rate (FDR) than MPWGAIM.
Background control algorithm of QTL mapping was first proposed

by Zeng (1993) and Jansen (1993). In previous studies, inclusive CIM
(ICIM) has been developed for additive, dominance and epistatic
mapping in biparental populations (Li et al., 2007, 2008; Zhang et al.,
2008, 2012; Wang, 2009), and then extended to clonal F1 and four-
way cross F1 populations (Zhang et al., 2015). The background control
algorithm used in ICIM results in sharp and clear peaks around the
QTL locations, which helps the separation of linked QTL. QTL
mapping methodology is less investigated in multiparental pure-line
populations compared with biparental populations. In this study, we
developed an ICIM-based new QTL mapping method for pure-line
populations derived from four-way crosses, compared our method
with others by simulation studies and demonstrated its efficiency in
one wheat four-way RIL population.

MATERIALS AND METHODS
Two single crosses are first made from four homozygous inbred parents. Four-

way cross F1 population is then generated from the two single crosses. Finally,

pure lines consisting of DHs can be produced by pollen culture technology, or

RILs produced by repeated selfing (Figure 1).

Linear regression model in pure-line populations of four-way
crosses
Assume Aq, Bq, Cq and Dq were the four alleles at one QTL. Genotypic value of

an individual with known QTL genotype was written in the one-locus model,

that is, Equation (1), where μ was the mean of the four homozygous QTL

genotypes; μk (k= 1, 2, 3, 4) was the kth genotypic value of QTL; ak (k= 1, 2, 3,

4) was the kth genotypic effect and wk (k= 1, 2, 3, 4) was the indicator of QTL

genotype valued at 1 for the kth genotype, and 0 for the other genotypes.

mk ¼ mþ akwk ð1Þ
From Equation (1), mean and the four genotypic effects were calculated and

shown in equation (2).

m ¼ 1

4
m1 þ m2 þ m3 þ m4ð Þ; a1 ¼ 1

4
3m1 � m2 � m3 � m4ð Þ;

a2 ¼ 1

4
3m2 � m1 � m3 � m4ð Þ; a3 ¼ 1

4
3m3 � m1 � m2 � m4ð Þ; and

a4 ¼ 1

4
3m4 � m1 � m2 � m3ð Þ

ð2Þ

When there was no segregation distortion, the genetic variance contributed
by the QTL was given in Equation (3).

VQ ¼ 1
4 m21 þ m22 þ m23 þ m24
� �� 1

4 m1 þ m2 þ m3 þ m4ð Þ� �2
¼ 1

4 a21 þ a22 þ a23 þ a24
� � ð3Þ

One restriction has to be made so as to estimate the five genetic parameters
(that is, μ, a1, a2, a3 and a4) in Equation (1), that is, sum of the four genotypic
effects was equal to 0. To avoid the complexity caused by the restricted
condition in parameter estimation, one orthogonal model equivalent to
Equation (1) but without restriction was built in Equation (4), where d1=
(a1+a2)/2, d2= (a1+a3)/2, d3= (a1+a4)/2; u and v were the orthogonal
indicators of QTL genotypes valued at 1 and 1 for AqAq, 1 and − 1 for BqBq, − 1
and 1 for CqCq and − 1 and − 1 for DqDq. Letting X represent the 4× 4 design
matrix in Equation (4), it can be easily seen that XTX is a diagonal matrix,
indicating its orthogonality.

mk ¼ mþ d1uk þ d2vk þ d3ukvk ð4Þ
Assume that A1, B1, C1 and D1 were the four alleles at the left-flanking

marker of the QTL, and A2, B2, C2 and D2 were the four alleles at the right-
flanking marker of the QTL. One-meiosis recombination frequency and
accumulated recombination frequency during the repeated selfing generations
were denoted as r and R, respectively, where the relationship between them was
R ¼ 2r

1þ2r (Haldane and Waddington, 1931). In total, there were 16 identifiable
marker classes (Table 1 for DH population and Table S1 for RIL population).
For each marker locus, two indicators were defined and denoted by x and y,
respectively, similar to indicators u and v of QTL genotypes. In Equation (4), x1

Figure 1 Diagram of a set of pure lines derived from four inbred lines A, B, C and D. The double strands represent the chromatid. Different colors represent
the four parental types.
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and y1 were the indicators for the left marker, valued at 1 and 1 for marker type
A1A1, 1 and − 1 for B1B1, − 1 and 1 for C1C1 and − 1 and − 1 for D1D1; x2 and
y2 were the indicators for the right marker, valued at 1 and 1 for marker type
A2A2, 1 and − 1 for B2B2, − 1 and 1 for C2C2 and − 1 and − 1 for D2D2. Similar
to QTL effects in Equation (4), left marker effects were denoted by D1L, D2L

and D3L, and right marker effects were denoted by D1R, D2R and D3R.
Interaction effects between the two markers were denoted by DDij, i, j= 1, 2
and 3, where i represented the left marker and j represented the right marker.
Relationship between marker class means and marker effects was shown in
Equation (5), where μM was the mean of the 16 marker classes.

mA1A1A2A2

mA1A1B2B2

mA1A1C2C2

mA1A1D2D2

mB1B1A2A2

mB1B1B2B2
mB1B1C2C2

mB1B1D2D2

mC1C1A2A2

mC1C1B2B2

mC1C1C2C2

mC1C1D2D2

mD1D1A2A2

mD1D1B2B2

mD1D1C2C2

mD1D1D2D2

2
666666666666666666666666664

3
777777777777777777777777775

¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 �1 �1 1 �1 �1 1 �1 �1 1 �1 �1
1 1 1 1 �1 1 �1 �1 1 �1 �1 1 �1 �1 1 �1
1 1 1 1 �1 �1 1 �1 �1 1 �1 �1 1 �1 �1 1
1 1 �1 �1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1
1 1 �1 �1 1 �1 �1 1 �1 �1 �1 1 1 �1 1 1
1 1 �1 �1 �1 1 �1 �1 1 �1 1 �1 1 1 �1 1
1 1 �1 �1 �1 �1 1 �1 �1 1 1 1 �1 1 1 �1
1 �1 1 �1 1 1 1 �1 �1 �1 1 1 1 �1 �1 �1
1 �1 1 �1 1 �1 �1 �1 1 1 1 �1 �1 �1 1 1
1 �1 1 �1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1
1 �1 1 �1 �1 �1 1 1 1 �1 �1 �1 1 1 1 �1
1 �1 �1 1 1 1 1 �1 �1 �1 �1 �1 �1 1 1 1
1 �1 �1 1 1 �1 �1 �1 1 1 �1 1 1 1 �1 �1
1 �1 �1 1 �1 1 �1 1 �1 1 1 �1 1 �1 1 �1
1 �1 �1 1 �1 �1 1 1 1 �1 1 1 �1 �1 �1 1

2
666666666666666666666666664

3
777777777777777777777777775

´

mM
D1L

D2L

D3L

D1R

D2R

D3R

DD11

DD12

DD13

DD21

DD22

DD23

DD31

DD32

DD33

2
666666666666666666666666664

3
777777777777777777777777775
ð5Þ

Based on the expected frequencies of QTL genotypes in each marker class
(Table 1 and Supplementary Table S1), expectations of QTL indicators and
mean performance of each marker class can be calculated and shown in
Supplementary Table S2 for DH population and Supplementary Table S3 for
RIL population. From Equation (5) and Supplementary Tables S2 and S3, the
relationship between marker effects and QTL effects was derived and given in
Equation (6) for DH population and Equation (7) for RIL population.

ForDH; mM ¼ m;D1L ¼ F1d1;D2L ¼ F2d2;D3L ¼ F2d3;D1R

¼ F3d1;D2R ¼ F4d2;D3R ¼ F4d3;DD12 ¼ F5d3;DD13

¼ F5d2;DD21 ¼ F6d3;DD31 ¼ F6d2;DD11 ¼ DD22

¼ DD23 ¼ DD32 ¼ DD33 ¼ 0 ð6Þ

where F1 ¼ f 1�f 2
2 , F2 ¼ f 3þf 4þf 5þf 6

4 , F3 ¼ f 1þf 2
2 , F4 ¼ f 3�f 4þf 5�f 6

4 ,
F5 ¼ f 3�f 4�f 5þf 6

4 , F6 ¼ f 3þf 4�f 5�f 6
4 , and f1, f2, …, and f6 were functions of

recombination frequencies defined in Supplementary Table S2.

ForRIL; mM ¼ m;D1L ¼ G1d1;D2L ¼ G2d2;D3L ¼ G2d3;D1R ¼ G3d1;
D2R ¼ G4d2;D3R ¼ G4d3;DD12 ¼ G5d3;DD13 ¼ G5d2;DD21 ¼ G5d3;
DD23 ¼ G6d1;DD31 ¼ G5d2;DD32 ¼ G6d1;DD11 ¼ DD22 ¼ DD33 ¼ 0

ð7Þ
where G1 ¼ g1þg2þ2g3

4 , G2 ¼ 2g3þg4þg5
4 , G3 ¼ g1þg2�2g3

4 , G4 ¼ �2g3þg4þg5
4 ,

G5 ¼ g4�g5
4 , G6 ¼ g1�g2

4 , and g1, g2, …, and g5 were functions of recombination
frequencies defined in Supplementary Table S3.
From Equations (6) and (7), if there was one QTL between two flanking

markers, the QTL effects caused both main effects and interactions of markers.
This phenomenon was similar to that reported in biparental F2 populations
(Zhang et al., 2008). However, coefficients of marker interactions were much
smaller than those of marker main effects; that is, F5 and F6 were much smaller
than F1 to F4, and G5 and G6 were much smaller than G1 to G4. For example,
when the recombination frequencies between the left marker and QTL, and
between QTL and the right marker, that is, r1 and r2, were 0.1 and 0.15, F1 to F4
were equal to 0.37, 0.54, 0.59 and 0.32, but F5 and F6 were equal to 0.04 and
0.05; G1 to G4 were equal to 0.53, 0.52, 0.33 and 0.32, but G5 and G6 were equal
to 0.04 and 0.02. From Equations (6) and (7), it can be seen that marker
interaction effects were also much smaller than marker main effects. Most
variations of the QTL could be absorbed by main effects of neighboring
markers, and therefore marker interactions were ignored in this study.
For simplicity, we assumed m QTL were located at m intervals defined by m

+1 markers. Genotypic value of an individual in one DH or RIL population
derived from four-way cross was defined in Equation (8).

G ¼ mþ
Xm
j¼1

d1juj þ d2jvj þ d3jujvj
� � ð8Þ

where uj and vj were indicators for genotypes at the j
th QTL, having the same

meaning as given in Equation (4). The inclusive linear model containing all
markers simultaneously was given in Equation (9).

P ¼ E Gð Þ þ ε ¼ mþ
Xmþ1

j¼1

ajxj þ bjyj þ tjxjyj
� �

þ ε ð9Þ

where P was the phenotypic value of the trait of interest; ε was the random
error assumed to be normally distributed and αj, βj and τj were the effects of the
jth marker. For large-size populations, it can be shown that the coefficients of
individual markers in Equation (9) were only affected by the QTL located at

Table 1 Frequency of QTL genotype under each marker class in a DH population derived from four-way cross. r1, r2 and r are one-meiosis

recombination frequencies between the left marker and QTL, between QTL and the right marker and between two flanking markers on the

linkage map, respectively

Left marker Right marker Freq. QTL genotype

AqAq BqBq CqCq DqDq

A1A1 A2A2 1
4 1� rð Þ2 1

4 1� r1ð Þ2 1� r2ð Þ2 1
4r1 1� r1ð Þr2 1� r2ð Þ 1

8r1r2 1� rð Þ 1
8r1r2 1� rð Þ

A1A1 B2B2
1
4r 1� rð Þ 1

4 1� r1ð Þ2r2 1� r2ð Þ 1
4r1 1� r1ð Þ 1� r2ð Þ2 1

8r1r2r
1
8r1r2r

A1A1 C2C2 1
8r

1
8 1� r1ð Þ2r2 1

8r1 1� r1ð Þr2 1
8r1 1� r2ð Þ2 1

8r1r2 1� r2ð Þ
A1A1 D2D2

1
8r

1
8 1� r1ð Þ2r2 1

8r1 1� r1ð Þr2 1
8r1r2 1� r2ð Þ 1

8r1 1� r2ð Þ2
B1B1 A2A2 1

4r 1� rð Þ 1
4r1 1� r1ð Þ 1� r2ð Þ2 1

4 1� r1ð Þ2r2 1� r2ð Þ 1
8r1r2r

1
8r1r2r

B1B1 B2B2
1
4 1� rð Þ2 1

4r1 1� r1ð Þr2 1� r2ð Þ 1
4 1� r1ð Þ2 1� r2ð Þ2 1

8r1r2 1� rð Þ 1
8r1r2 1� rð Þ

B1B1 C2C2 1
8r

1
8r1 1� r1ð Þr2 1

8 1� r1ð Þ2r2 1
8r1 1� r2ð Þ2 1

8r1r2 1� r2ð Þ
B1B1 D2D2

1
8r

1
8r1 1� r1ð Þr2 1

8 1� r1ð Þ2r2 1
8r1r2 1� r2ð Þ 1

8r1 1� r2ð Þ2
C1C1 A2A2 1

8r
1
8r1 1� r2ð Þ2 1

8r1r2 1� r2ð Þ 1
8 1� r1ð Þ2r2 1

8r1 1� r1ð Þr2
C1C1 B2B2

1
8r

1
8r1r2 1� r2ð Þ 1

8r1 1� r2ð Þ2 1
8 1� r1ð Þ2r2 1

8r1 1� r1ð Þr2
C1C1 C2C2 1

4 1� rð Þ2 1
8r1r2 1� rð Þ 1

8r1r2 1� rð Þ 1
4 1� r1ð Þ2 1� r2ð Þ2 1

4r1 1� r1ð Þr2 1� r2ð Þ
C1C1 D2D2

1
4r 1� rð Þ 1

8r1r2r
1
8r1r2r

1
4 1� r1ð Þ2r2 1� r2ð Þ 1

4r1 1� r1ð Þ 1� r2ð Þ2
D1D1 A2A2 1

8r
1
8r1 1� r2ð Þ2 1

8r1r2 1� r2ð Þ 1
8r1 1� r1ð Þr2 1

8 1� r1ð Þ2r2
D1D1 B2B2

1
8r

1
8r1r2 1� r2ð Þ 1

8r1 1� r2ð Þ2 1
8r1 1� r1ð Þr2 1

8 1� r1ð Þ2r2
D1D1 C2C2 1

4r 1� rð Þ 1
8r1r2r

1
8r1r2r

1
4r1 1� r1ð Þ 1� r2ð Þ2 1

4 1� r1ð Þ2r2 1� r2ð Þ
D1D1 D2D2

1
4 1� rð Þ2 1

8r1r2 1� rð Þ 1
8r1r2 1� rð Þ 1

4r1 1� r1ð Þr2 1� r2ð Þ 1
4 1� r1ð Þ2 1� r2ð Þ2
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their left and right intervals. In other words, six variables of the two closest
markers could almost completely absorb the QTL effects. The linear model
defined by Equation (9) explained the effects of all QTL, and therefore it can be
used to control background genetic variation in QTL mapping.

Background-controlled one-dimensional scanning
Similar to biparental and four-way cross F1 populations (Li et al., 2007; Zhang
et al., 2008, 2015), a two-stage strategy was considered in QTL mapping. First,
significant marker variables in Equation (9) were selected only once by stepwise
regression. Coefficients of those variables not retained by stepwise regression
were set at 0. Second, during the one-dimensional scanning, the phenotypic
values were adjusted and subsequently used in interval mapping, that is,
Equation (10).

DPi ¼ Pi �
X

je t;tþ1f g
âjxij þ b̂jyij þ t̂jxijyij

� �
ð10Þ

where t and t+1 represented the two flanking markers of the current scanning
position, i (i ¼ 1;?; n) representing ith line in the population and the hat
symbol meant ‘estimated’. The adjusted phenotypic value DPi contained QTL
information of the current interval and did not change until the testing position
moved to the next interval. At a testing position in interval [t, t+1], phenotypes
of individuals having the four QTL genotypes followed normal distributions,
that is, N mk;s

2ð Þ, k= 1, 2, 3 and 4. Existence of QTL at the current scanning
position was tested by the following hypotheses:
H0: μ1=μ2=μ3=μ4 vs
HA: at least two of μ1, μ2, μ3 and μ4 were not equal.
The log-likelihood function under the alternative hypothesis HA was

LA ¼
X16
j¼1

X
iASj

log
X4
k¼1

pjkf DPi;mk; s
2

� �" #
ð11Þ

where Sj denoted individuals belonging to the jth marker class (j= 1, 2, …, 16);
πjk (k= 1, 2, 3, 4) was the proportion of the kth QTL genotype in the jth marker
class (Table 1 and Supplementary Table S1) and f �;mk; s2ð Þ represented the
density function of normal distribution N mk;s

2ð Þ.
EM algorithm (Dempster et al., 1977) was used for maximum likelihood

estimation in Equation (11). Most individuals in marker classes 1, 6, 11 and 16
had QTL genotypes AqAq, BqBq, CqCq and DqDq, respectively. Hence, the initial
values of parameters used in the EM algorithm were defined as follows, where

ni:j represented the summation from ni to nj.

m 0ð Þ
1 ¼ 1

n1

Xn1
i¼1

DPi; m
0ð Þ
2 ¼ 1

n6

Xn1:6
i¼n1:5þ1

DPi;

m 0ð Þ
3 ¼ 1

n11

Xn1:11
i¼n1:10þ1

DPi;m
0ð Þ
4 ¼ 1

n16

Xn
i¼n1:15þ1

DPi; and

s2ð0Þ ¼ 1
n1þn6þn11þn16

Xn1
i¼1

DPi � mð0Þ1

� �2
þ

Xn1:6
i¼n1:5þ1

DPi � mð0Þ2

� �2

þ
Xn1:11

i¼n1:10þ1

DPi � m 0ð Þ
3

� �2
þ

Xn
i¼n1:15þ1

DPi � m 0ð Þ
4

� �2

2
666664

3
777775

In the E-step, posterior probability of the ith individual belonging to the kth

QTL genotype was calculated by the following equation, where i∈ Sj.

wik
0ð Þ ¼

pjkf DPi;m
0ð Þ
k ;s2

0ð Þ
� �

P4
l¼1

pjl f DPi; m
0ð Þ
l ; s2 0ð Þ

� �
In the M-step, parameters in the log-likelihood function were updated by,

m 1ð Þ
k ¼

Pn
i¼1

w 0ð Þ
ik DPi

Pn
i¼1

w 0ð Þ
ik

k ¼ 1; 2; 3; 4ð Þ; and

s2 1ð Þ ¼ 1
n

Xn
i¼1

X4
k¼1

w 0ð Þ
ik DPi � m 1ð Þ

k

� �2

Under the null hypothesis, the four QTL genotypes followed the same
normal distribution, denoted by N m0;s

2
0

� �
. Parameters under H0 were

calculated as follows:

m̂0 ¼ 1
n

Xn
i¼1

DPi; and ŝ2
0 ¼ 1

n

Xn
i¼1

DPi � m̂0ð Þ2

LOD score between HA and H0 was calculated from the maximum
likelihoods under the two hypotheses. To better understand the equations
above, Supplementary Table S4 showed the definition of parameters used in
this study.

QTL models in simulation
RIL populations of four-way crosses were simulated for power analysis and
comparison with other methods to illustrate the efficiency of ICIM. The
simulated genome consisted of five chromosomes, each of which was 110 cM in
length with 12 evenly distributed markers. One independent and two linkage
genetic models were considered. In model I, four independent QTL with
different effects were located on the first four chromosomes (Table 2). The four

Table 2 Chromosomal positions and genotypic effects of four independent QTL in genetic model I, and two linked QTL in models II and III in

simulation studies for RIL populations derived from four-way crosses

Model QTL Chrom. Pos.(cM) Genotypic effect VQa VGb Vεc H2d

a1 a2 a3 a4

I Q1 1 25 1 2 −1 −2 2.5

Q2 2 55 −0.93 −1.94 −0.94 3.81 5 25 30.5 0.45

Q3 3 25 0.9 1.9 1.9 −4.7 7.5

Q4 4 55 −1.1 −1.1 −3.1 5.3 10

II Q1 1 25 −0.93 −1.94 3.81 −0.94 5 5.93 18.5 0.24

Q2 1 55 1.1 1.1 −5.3 3.1 10

III Q1 1 25 0.93 1.94 0.94 −3.81 5 24.14 18.5 0.57

Q2 1 55 1.1 1.1 3.1 −5.3 10

Abbreviations: RIL, recombinant inbred lines; QTL, quantitative trait loci.
aGenetic variance of each QTL.
bGenetic variance of all QTL.
cRandom error variance.
dHeritability in broad sense.
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QTL were represented by Q1–Q4, whose genetic variances were 2.5, 5, 7.5 and
10, respectively. Total genetic variance from the four QTL was equal to 25. The
random error variance was set at 30.5, resulting in a broad-sense heritability
at 0.45.
Models II and III both had two QTL (that is, Q1 and Q2), located at 25 and

55 cM on chromosome 1 (Table 2) with genetic variances at 5 and 10,
respectively. Q1 and Q2 were linked in repulsion phase in model II, effects of
which were set at opposite directions. Q1 and Q2 were linked in coupling phase
in model III, effects of which were set at same directions (Table 2). Calculated
from theoretical genotypic frequencies in Table 1 and Supplementary Table S1,
total genetic variances explained by the two QTL were 5.93 and 24.14 in models
II and III, respectively. For better comparison between the two linkage models,
random error variance was set equally at 18.5, resulting in heritability values at
0.24 and 0.57 for the two models, respectively (Table 2).
Two population sizes were considered, that is, 200 and 500. For each genetic

model and each population size, one thousand simulated populations were
generated by the genetics and breeding simulation tool of QuLine (Wang et al.,
2003). IM and ICIM were implemented in the GAPL software, an integrated
tool for linkage map construction and QTL mapping in multiparental pure-line
populations (freely available from http://www.isbreeding.net). Two probabilities
of entering and removing variables for the stepwise regression in ICIM were set
at 0.001 and 0.002, respectively. For comparison, QTL mapping by CIM was
conducted in the R/mpMap package (Huang and George, 2011). The method
used for selecting cofactors in CIM was backward selection with P-value at
0.001, and the number of cofactors retained in the model was set at 10 for
background control. QTL mapping by FIXED-B and RANDOM-B methods
was conducted in the MagicQTL package (Wei and Xu, 2016).
Additional one thousand populations with a size of 200 were simulated for

the null QTL model to estimate the empirical distribution of the test statistics
for different mapping methods, that is, LOD score for ICIM and IM, and
LOGP score (namely –log10(P)) for the other methods. The largest LOD (or
LOGP) score in each simulated population was recorded, and the 95% quantile
of the largest LOD (or LOGP) scores was adopted as the threshold value to
control type I error under 0.05 across the whole genome.
Detection power and FDR were computed and then used to compare

different mapping methods. Each predefined QTL was assigned to a support
interval of 10 cM centered at the true QTL location. Power of each QTL was the
proportion of simulation runs where significant peaks were higher than the
threshold in the support interval. QTL identified out of the support interval
were treated as false positives, and FDR was defined as a proportion of false
positives to the total number of significant discoveries (that is, true positives
plus false positives, Li et al., 2010). Positions and effects at the significant peaks
in the support interval were used for calculating their averages.

One actual RIL population in wheat
As an example, the actual population used in this study was derived from four
Australian wheat cultivars (Yitpi, Baxer, Chara and Westonia; Huang et al.,
2012). A total of 1063 pure lines were generated by single seed descent, and
sequenced with SNPs, DArTs and microsatellites. 1000-kernel weight (TKW)
was evaluated in field at Yanco, New South Wales in 2009. The broad-sense
heritability of TKW in the population was estimated at 0.85 (Verbyla et al.,
2014b). The linkage map constructed by Verbyla et al. (2014a) was used in QTL
mapping.

RESULTS

Thresholds of different mapping methods
Distributions of the test statistics in different methods were obtained
by running these methods on simulated populations from the null
QTL model, by which the thresholds were determined to control the
genome-wide type I error at an equal level of 0.05. The threshold LOD
score thus obtained was 3.776 for ICIM and IM. The threshold LOGP
values were 5.498 for CIM, 3.111 for FIXED-B method and 2.521 for
RANDOM-B method.
In the actual population, the LOD threshold was set at 5.00 for

ICIM, which was derived from the empirical formula under the
genome-wide type I error at 0.05 (Sun et al., 2013). For comparison
with results from Verbyla et al. (2014b) where LOGP was used as the
test statistic, LRT was calculated from LOD score (LRT= 2ln(10)
LOD≈4.61×LOD) and then a P-value was obtained from the χ2

distribution with df= 3. Consequently, the LOGP threshold was set
at 4.399. In other words, LOD threshold at 5.00 and LOGP threshold
at 4.399 both can control the genome-wide type I error under 0.05.

Power analysis and mapping results in simulated populations of
size 200
Detection powers and FDR for population size 200 were shown in
Table 3 for the three simulated models and five mapping methods. In
unlinked model I, ICIM had substantially higher power and lower
FDR than CIM, FIXED-B and RANDOM-B. Taking Q1 as an
example, detection powers were 20.0, 8.7, 3.2 and 3.0% from ICIM,
CIM, FIXED-B and RANDOM-B, respectively; and the respective FDR
were 27.43, 33.45, 34.02 and 33.81% (Table 3). Compared with IM,
ICIM had higher powers for two smallest QTL, but slightly lower
powers for two largest QTL. Q1 was one of the smallest, and Q3 was

Table 3 Detection powers and FDR from different mapping methods in models I, II and III for population size 200, calculated from 1000

simulated populations

Model Power or FDR (%) QTL VQb Method

ICIM IM CIM FIXED-B RANDOM-B

I (Unlinked) Powers Q1 2.5 20.0 13.9 8.7 3.2 3.0

Q2 5 52.4 50.2 31.7 21.7 20.8

Q3 7.5 78.0 79.8 53.6 51.6 51.1

Q4 10 89.6 94.1 75.7 78.1 77.6

FDRa 27.43 27.77 33.45 34.02 33.81

II (Repulsion) Powers Q1 5 43.5 13.2 48.7 21.2 20.9

Q2 10 93.1 95.4 92.1 93.9 93.9

FDR 17.86 17.66 27.35 34.53 34.51

III (Coupling) Powers Q1 5 79.9 94.3 53.3 83 82.6

Q2 10 97.6 98.7 90.1 99.0 99.0

FDR 25.23 48.83 36.93 54.51 54.41

Abbreviations: CIM, composite interval mapping; FDR, false discovery rate; ICIM, inclusive composite interval mapping; IM, interval mapping; QTL, quantitative trait loci.
aProportion of false positives to the total number of significant discoveries.
bGenetic variance of QTL given in Table 2.
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one of the largest. Their detection powers were 20.0 and 78.0% from
ICIM and 13.9 and 79.8% from IM. When summing up powers of all
the four QTL in model I, ICIM had higher powers than IM. Both
methods had similar FDR (Table 3).
In linked model II of repulsion phase, ICIM achieved much higher

power for the smaller QTL (that is, Q1), similar power for the larger
QTL (that is, Q2) and similar FDR compared with IM. Compared
with CIM, ICIM achieved similar powers for both QTL and much
lower FDR. Compared with FIXED-B and RANDOM-B, ICIM
achieved much higher power for Q1, similar power for Q2 and much
lower FDR (Table 3).
In linked model III of coupling phase, detection powers from ICIM

were similar or lower than those from IM, FIXED-B and RANDOM-
B. However, FDR from ICIM was much lower. For example, powers
of Q2 were 97.6, 98.7, 90.1, 99.0 and 99.0% from ICIM, IM, FIXED-B
and RANDOM-B, respectively. FDR from ICIM was 25.23%. FDR
from IM, FIXED-B and RANDOM-B were 48.83, 54.51 and 54.41%,
respectively (Table 3), approximately twice of that from ICIM. CIM
had lower power and higher FDR than ICIM. For instance, powers of
Q1 and Q2 were 79.9 and 97.6% from ICIM, respectively, but 53.3
and 90.1% from CIM. FDR from CIM was 36.93%, 11.70% higher
than that from ICIM (Table 3). Considering its higher detection power
and lower FDR compared with other methods, we conclude that ICIM
is an efficient mapping method.
For all mapping methods, detection powers were lower in repulsion

linkage model II than those in coupling linkage model III. Absolute
values of QTL effects were the same for the two models. Due to
different linkage phases, total genetic variance in model II was much
lower than that in model III (Table 2). As the error variance was the
same, heritability of model II was also much lower than that in model
III. Higher genetic variance and heritability is the reason for the higher
detection power for coupling linkage.
QTL positions and effects estimated by ICIM, IM, FIXED-B and

RANDOM-B for population size 200 were shown in Supplementary
Figure S1. For estimates of QTL positions, ICIM achieved the smallest
biasness at 5 out of the 8 positions in the three models, IM achieved at
3, FIXED-B and RANDOM-B achieved at 0. The average biasness was
0.34, 0.69, 0.58 and 0.55 for the four methods, respectively. For
estimates of QTL effects, ICIM achieved the smallest biasness at 19 out
of the 32 effects in the three models, IM achieved at 4, FIXED-B

achieved at 5 and RANDOM-B achieved at 4. The average biasness
was 0.28, 0.61, 0.65 and 0.43 for the four methods, respectively.
Obviously, ICIM gave the most accurate estimates of QTL positions
and effects.

Power analysis and mapping results in simulated populations of
size 500
Detection powers and FDR for population size 500 were shown in
Table 4. In all the three models, ICIM had either similar or higher
powers for each QTL, and substantially lower FDR than the other four
mapping methods. Except Q1 in model I, powers from ICIM were
close to 100%. Compared with population size 200 (Table 3),
detection powers of all QTL were increased from all mapping methods
in all models. FDR from all methods were decreased as the increase in
population size in model I. So were FDR from ICIM, CIM, FIXED-B
and RANDOM-B in models II and III. However, FDR from IM were
even larger for population size 500 in models II and III.
QTL positions and effects estimated by ICIM, IM, FIXED-B and

RANDOM-B for population size 500 were shown in Supplementary
Figure S2. For estimates of QTL positions, ICIM achieved the smallest
biasness at 5 out of the 8 positions in the three models, IM achieved at
2, FIXED-B achieved at 1 and RANDOM-B achieved at 0. The average
biasness was 0.22, 0.76, 0.40 and 0.40 for the four methods,
respectively. For estimates of QTL effects, ICIM achieved the smallest
biasness at 14 out of the 32 effects in the three models, IM achieved at
11, FIXED-B achieved at 4 and RANDOM-B achieved at 3. The
average biasness was 0.16, 0.51, 0.42 and 0.24 for the four methods,
respectively. Once again, ICIM provided the most accurate estimates
of QTL positions and effects. Compared with population size 200,
deviations of QTL positions and effects from ICIM, FIXED-B and
RANDOM-B were decreased as the increase in population size.
Deviations of QTL effects from IM were also decreased, but deviations
of QTL positions from IM were similar when the three models were
considered together.

QTL for TKW identified in the actual wheat population
Profile of LOD score from ICIM in the actual wheat population was
shown in Figure 2, using TKW as the phenotypic trait. Profiles of
estimated effects were shown in Supplementary Figure S3. Under LOD
threshold of 5.00, a total of eight QTL were identified by ICIM, one

Table 4 Detection powers and FDR from different mapping methods in models I, II and III for population size 500, calculated from 1000

simulated populations

Model Power or FDR (%) QTL VQb Method

ICIM IM CIM FIXED-B RANDOM-B

I (Unlinked) Powers Q1 2.5 78.5 64.0 41.6 15.7 15.2

Q2 5 97.4 97.0 88.9 69.3 68.5

Q3 7.5 99.1 99.2 96.2 96.3 96.1

Q4 10 99.8 99.8 99.6 99.8 99.8

FDRa 13.74 22.21 23.33 28.56 28.44

II (Repulsion) Powers Q1 5 97.9 52.9 96.2 89.2 89.1

Q2 10 99.8 99.7 99.8 99.9 99.9

FDR 8.34 18.83 25.33 23.22 23.14

III (Coupling) Powers Q1 5 99.5 99.6 95.9 98.1 98.1

Q2 10 99.9 99.9 99.7 99.9 99.9

FDR 15.54 58.44 36.16 50.15 50.10

Abbreviations: CIM, composite interval mapping; FDR, false discovery rate; ICIM, inclusive composite interval mapping; IM, interval mapping; QTL, quantitative trait loci.
aProportion of false positives to the total number of significant discoveries.
bGenetic variance of QTL given in Table 2.
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each on chromosomes 2 A and 7 A, four on chromosome 2B and two
on chromosome 2D (Table 5). Seven of them were located on
homologous chromosome group 2, where a large number of yield-
related QTL have been reported by Zhang et al. (2010). PVE by each
QTL varied from 1.83 to 4.44%. qTKW2B-4 had the largest LOD
score (that is, 12.50) and explained the highest PVE (that is, 4.44%).
qTKW2D-1 had a LOD score at 9.40 and PVE at 3.39%, which was
the second largest by LOD and PVE. Its confidence interval was
estimated from 27.5 to 38.5 cM. In this region, Williams and Sorrells
(2014) have reported a QTL affecting TKW, and the QTL position was
near gene Ppd-D1 located around 34 cM on chromosome 2D and
involved in photoperiod insensitivity to long days.
Under LOGP threshold of 4.399, MPWGAIM detected three QTL,

two on chromosome 2B and one on chromosome 2D (Table 5,
adapted from Supplementary Table S2 in Verbyla et al. (2014b)).
q2B-2 had the largest LOGP of 5.63 and was located on chromosome
2B. When a confidence interval at 10 cM was considered, qTKW2B-2
and qTKW2D-2 from ICIM were overlapped with q2B-1 and q2D
from MPWGAIM, respectively (Table 5). For the two common QTL,
estimated effects from the two methods were at the same directions
(Table 5). ICIM gave similar LOD score with MPWGAIM for one
common QTL (that is, qTKW2D-2 and q2B-1), but significant higher
LOD score for the other one (that is, qTKW2B-2 and q2D). LOD
score is the statistic indicating the existence of QTL. Due to the
efficient background control, ICIM resulted in high LOD score and
sharp peaks around QTL positions. Higher LOD score helped QTL
detection, and sharper peaks helped separate genetic linkage, which

explained the larger number of QTL detected by ICIM in the actual
population.
Kernel weight has high heritability, which has been efficiently

improved by conventional phenotypic selection in wheat breeding. It
is understandable that a significant amount of genotypic variation on
TKW is due to additive effects. Under the same significance level at
0.05, ICIM detected more QTL than MPWGAIM (Table 5). Total PVE
was 20.75% for the eight QTL from ICIM. Total genotypic variation
explained was 15.6% for the three QTL from MPWGAIM (Verbyla
et al., 2014b). PVE is the proportion of genetic variance caused by one
QTL to the whole phenotypic variance, whereas genotypic variation
explained is the proportion to the genotypic variance. If given, total
PVE of the three QTL from MPWGAIM should be smaller than
15.6% and thus smaller than the total PVE from ICIM. More QTL
identified by ICIM explained larger PVE, better illustrating the genetic
architecture of TKW.

DISCUSSION

Handling of incomplete and missing markers
In the four parental lines, some markers may have four identifiable
alleles, but others may have fewer. Based on the number of identifiable
alleles in parents, 14 marker categories were defined and denoted as
ABCD, AACD, ABCC, ABAD, ABCA, ABBD, ABCB, AACC, ABAB,
ABBA, ABBB, ABAA, AACA and AAAD. For markers belonging to
category ABCD (also called complete markers), parents had four
identifiable alleles, denoted by A, B, C and D. In their DHs or RILs,
four distinctive genotypes were represented by AA, BB, CC and DD,
following the Mendelian ratio of 1:1:1:1 when no distortion occurred.

Figure 2 LOD score of 1000-kernel weight from ICIM in the actual wheat population consisting of 1403 RILs derived from one four-way cross.

Table 5 Detected QTL affecting the weight of 1000 kernels by ICIM and MPWGAIM under the LOD threshold at 5.00 and LOGP threshold at

4.399

Method QTL Pos. (cM) Left Pos.a Right Pos.a LOGPb LOD PVE (%)c a1 a2 a3 a4

ICIM qTKW2A 170 167.50 171.50 5.02 5.64 2.01 −0.69 0.45 −0.41 0.65

qTKW2B-1 0 0.00 0.50 5.74 6.38 2.14 −0.54 0.33 0.79 −0.58

qTKW2B-2 108 106.50 108.50 8.10 8.81 3.00 0.72 −0.40 −0.90 0.58

qTKW2B-3 189 187.50 190.50 5.35 5.98 2.11 0.78 −0.55 0.41 −0.63

qTKW2B-4 296 293.50 298.50 11.72 12.50 4.44 1.36 −1.00 −0.12 −0.24

qTKW2D-1 32 27.50 38.50 8.68 9.40 3.39 −0.87 0.40 −0.52 0.99

qTKW2D-2 128 127.50 129.50 4.72 5.33 1.83 −0.82 0.69 −0.23 0.35

qTKW7A 223 221.50 224.50 4.60 5.20 1.83 0.51 −0.41 −0.65 0.56

MPWGAIM q2B-1 –d 117.41 118.42 5.33 5.97 4.70 1.08 −1.79 −0.37 0.67

q2B-2 – 140.39 141.91 5.63 6.28 5.60 1.34 −2.05 0.11 0.08

q2D – 109.85 123.57 4.66 5.27 5.30 −0.32 0.52 −1.48 0.98

Abbreviations: ICIM, inclusive composite interval mapping; LOD, likelihood of odd; MPWGAIM, whole-genome average interval mapping method for multiparental population; QTL, quantitative trait loci.
aFor ICIM, the left and right positions of confidence interval with one-LOD drop, that is, the two positions where LOD scores were decreased by one from the QTL. For MPWGAIM, positions of the
left and right markers of QTL interval.
bAbbreviation of the test statistic –log10(P), obtained from the χ2 distribution of LRT with df=3.
cPercentage of variance explained by individual QTL, calculated under the assumption that the frequencies of four QTL genotypes are all equal to 0.25.
dNo estimated QTL positions from MPWGAIM.

QTL mapping for four-way cross pure lines
S Zhang et al

262

Heredity



Markers belonging to the other 13 categories cannot completely
distinguish the four alleles in parents, which were called incomplete
markers. For example, if alleles A and B were not identifiable, the
corresponding genotypes were denoted as AA+BB, and the marker
category was denoted as AACD. When no distortion occurred, the
three genotypes AA+BB, CC and DD followed the Mendelian ratio
of 2:1:1.
After linkage map construction, incomplete markers and missing

marker types were imputed for QTL mapping by conditional
probabilities calculated from genotypic frequencies in Table 1 or
Supplementary Table S1. For example, for markers belonging to
category AACD, genotype AA+BB was imputed to either AA or BB.
For markers belonging to category AAAD, genotype AA+BB+CC was
imputed to either AA, BB or CC. Completely missing genotype was
imputed into either AA, BB, CC or DD. After imputation, all markers
belonged to category ABCD. Therefore, in this study, all markers were
assumed to have four identifiable alleles and there were no missing
marker types.

Advantages of ICIM compared with other methods
ICIM was first proposed for QTL mapping in biparental populations
and has been widely applied in QTL mapping researches, for example,
in wheat (Zhu et al., 2016), soybean (Li et al. (2016)), maize (Mahuku
et al. (2016)) and rice (Fiyaz et al. (2016)). ICIM has been extended to
Nested Association Mapping (NAM) populations (Li et al., 2011) and
clonal F1 and four-way cross F1 populations (Zhang et al., 2015).
Extensive simulations showed that ICIM is an efficient mapping
method with higher detection power, lower FDR and less-biased
estimation of QTL effects and positions in these populations (Li et al.,
2007, 2008; Zhang et al., 2008, 2015; Wang, 2009).
In this study, orthogonal variables were defined for each marker in

an inclusive regression model to build the relationship between
phenotype and markers. Phenotype was adjusted by estimated
regression model and then used in interval mapping. The design
matrix X in Equation (4) was similar to the design matrix H in Xu
(1998) for four-way cross population, where HTH was a diagonal
matrix, but the absolute values of elements from the last column of H
were twice of those from the first two columns. The diagonal elements
of XTX were equal, but the diagonal elements of HTH were not equal.
Obviously, one mapping method is more powerful for detecting

QTL with relatively larger effects. However, considering that major
QTL may have been fixed after many years of selection, small-effect
genes may be more important for future breeding. Meanwhile,
multiple genes contribute together to one complex trait. Therefore,
linkage becomes a common phenomenon, but closely linked QTL are
still difficult to separate. For two QTL linked in the coupling phase,
one ghost QTL may be declared in the middle of the two QTL
positions. While for QTL linked in the repulsion phase, neither of
them may be detected. Five mapping methods were compared in this
study, that is, IM, CIM, FIXED-B, RANDOM-B and ICIM. IM
behaved the worst in detecting small-effect QTL, especially when two
QTL were linked in repulsion. Wei and Xu (2016) showed that CIM
behaved poorly when the number of cofactor markers were larger than
10 and then proposed the FIXED-B and RANDOM-B methods.
However, neither method had sufficient power to detect small-effect
QTL (Wei and Xu, 2016). Similar results were observed in this study.
Simulations based on various genetic models and the application in
one actual wheat population demonstrated that most advantages of
ICIM were maintained when extended to QTL mapping in four-way
cross pure-line populations. Compared with other methods, ICIM had

higher power for detecting small-effect QTL, less-biased estimation of
QTL locations and effects and better separation of linked QTL.

Strength and weakness of four-way cross pure-line populations in
QTL mapping
One major advantage of four-way cross pure-line populations is to
detect QTL with multiple alleles. Taking Q2 in simulated model II for
example, a1 and a2 had the same value at 1.1, indicating equal
genotypic values of the first two parents at the QTL position. In the
biparental population derived from the first two parents (not
considering dominance effect), Q2 cannot be detected. But in four-
way cross pure-line populations, it will be detected because of the
unequal effects of the other two alleles.
For QTL having same PVE, detection power may be lower in four-

way cross pure-line populations than that in biparental populations
due to the increased number of genetic effects and degree of freedom
of the test statistic. There were two classes at each marker locus in
biparental pure-line populations, but four classes in four-way cross
pure-line populations. Assuming that the population size was fixed,
the sample size of each marker class was smaller in four-way cross
pure-line populations. Therefore, it is understandable that QTL
detection power in four-way cross pure-line populations may be
lower. A larger size is needed to achieve similar power.
In biparental pure-line populations, only one variable was needed

for each marker. In biparental F2 or F3 populations, two orthogonal
variables were needed. However, in four-way cross pure-line popula-
tions, three orthogonal variables were needed for each marker.
Obviously, more variables were included in the linear regression
model (Equation (9)), and overfitting problem may be more serious.
The overfitting problem can be reduced by choosing a smaller
probability of variables entering the model in stepwise regression.

Wider applications of the proposed mapping method
In a four-way cross represented by (A×B)× (C×D), if parent C is the
same as A, and D is the same as B, it is equivalent to a biparental F2
population of single cross A×B. Thus, a biparental pure-line popula-
tion can be treated as a special case of four-way cross, where all
markers belong to category ABAB. If D is the same as C, the four-way
cross is equivalent to top cross (A×B)×C, where all markers belong
to category ABCC. If D is the same as A, the four-way cross only has
three parents, where all markers belong to category ABCA. Therefore,
the QTL mapping method proposed in this study can be directly used
for pure-line populations derived from biparental F2, three-way cross
F1 and three-parental four-way cross F1.
To use multienvironmental phenotyping trials in genetic studies of

quantitative traits, ICIM has been extended as well for QTL by
environment interaction analysis in biparental populations (Li et al.,
2015). Pure lines derived from multiple parents allow multienviron-
ment replicated trials. There is a need for QTL by environment
interaction analysis for such populations. Epistasis is an important
source of variation for complex traits, which could maintain additive
variance and assure the long-term genetic gain in breeding (Zhang
et al., 2012). To our knowledge, epistatic mapping method in
multiparental populations has not been studied yet. ICIM has been
applied for mapping epistatic QTL in biparental populations (for
example, Lu et al., 2009; Alves et al., 2012). We are considering
epistatic QTL mapping for multiparental pure-line populations. In
addition, we are also considering mapping methods for pure lines
derived from more parental lines. Once developed, the corresponding
methods will be implemented in our software package GAPL.
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