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Abstract: G-quadruplexes (G4s) are unusual secondary structures of DNA occurring in
guanosine-rich oligodeoxynucleotide (ODN) strands that are extensively studied for their relevance
to the biological processes in which they are involved. In this study, we report the synthesis of
a new kind of G4-forming molecule named double-ended-linker ODN (DEL-ODN), in which two
TG4T strands are attached to the two ends of symmetric, non-nucleotide linkers. Four DEL-ODNs
differing for the incorporation of either a short or long linker and the directionality of the TG4T
strands were synthesized, and their ability to form G4 structures and/or multimeric species was
investigated by PAGE, HPLC–size-exclusion chromatography (HPLC–SEC), circular dichroism (CD),
and NMR studies in comparison with the previously reported monomeric tetra-ended-linker (TEL)
analogues and with the corresponding tetramolecular species (TG4T)4. The structural characterization
of DEL-ODNs confirmed the formation of stable, bimolecular DEL-G4s for all DEL-ODNs, as well as
of additional DEL-G4 multimers with higher molecular weights, thus suggesting a way towards the
obtainment of thermally stable DNA nanostructures based on reticulated DEL-G4s.

Keywords: G-quadruplexes; double-ended linkers; DEL-ODNs; TEL-ODNs; supramolecular
G-quadruplexes; NMR; CD; size-exclusion chromatography

1. Introduction

Among the noncanonical secondary structures adopted by nucleic acids, the G-quadruplexes
(G4s) are one of the most extensively studied. G4s occur in guanosine-rich oligonucleotides (GRO)
and are characterized by the presence of two or more stacked G-tetrads, planar arrangements of
four guanosines held together by a cyclic array of eight Hoogsteen’s hydrogen bonds [1–3]. The π–π
interaction generated among the stacked G-tetrads greatly stabilizes the G4s and the presence of
cations, such as potassium or sodium, further contributes to the stability of G4 structures. Structural
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studies have demonstrated that GROs can form highly polymorphic G4 scaffolds that can differ by
the number of the strands (one, two, or four) and by their mutual orientation, which lead to parallel,
antiparallel, or mixed assemblies [4,5]. The wide polymorphism of G4s also arises from the length
and the base composition of GROs, from the glycoside conformation of the guanosines involved
in each tetrad, and from the cation species used to stabilize the complex [6–8]. G4 structures are
involved in several relevant biological processes, such as the expression of many protooncogenes
and the maintenance of telomeres length [9–15]. Furthermore, several aptamers, including the
thrombin-binding aptamer [16–20] and anti-HIV-1 aptamers [21–26], adopt a G4 scaffold in their
biologically active conformation. Recently, G4s emerged as interesting self-assembling scaffolds to be
used in supramolecular chemistry applications and in nanotechnology for the development of new
sensing probes or new materials. In addition, the G4 scaffold possesses a greater conductivity than the
DNA double helix, thus suggesting its use also in bioelectronics [27–30]. It is well documented that
the duplex DNA motif can be used to build supramolecular structures of various shapes and sizes by
a bottom-up process named DNA origami, which is controlled by the sequence and length of the DNA
strands [31–33]. Otherwise, supramolecular structures based on G4 building blocks are essentially
confined to G4 hybrid structures, such as duplex–quadruplex repetitions and the so-called G-wires.
G-wires are rod-shaped G4 superstructures in which the G4 motif can reach the length of thousands of
nanometres along the axis perpendicular to the G-tetrad planes [34–37]. G-wires can be formed by the
cooperative assembly of slipped G-rich ODN strands (interlocked G4s) or by the multimerization of
G4 building blocks held together by end-to-end π–π stacking interactions [38–43].

In light of the noteworthy chemical–physical properties of the G4s, the discovery and the
characterization of new supramolecular G4 assemblies represent a very interesting challenge, and
the formation of the G4 scaffold and its structuring in a linear and/or reticulated topology have
to be finely controlled. In fact, the main disadvantage in the design of G4-based supramolecular
assemblies is the low control over the structuring and aggregation process. For these reasons,
many efforts have been devoted to the design of G4-forming oligonucleotides bearing structural
modifications that could allow the obtainment of new, supramolecular assemblies in a controlled
fashion and that should go beyond the simple, linear rods. For example, GROs attached to the ends
of branched linkers have been described, and their propensity to form monomeric or polymeric
G4 structures has been investigated [44–46]. Several studies on branched GROs, carried out by
our research group and by others, have shown that the presence of a tetra-ended linker (TEL),
on which the GRO chains grow up, can positively influence the stability of the resulting G4
structures [47–50]. In particular, we demonstrated that the so-called TEL-G4s are provided with
higher thermal stability and more favourable kinetic and thermodynamic parameters compared
to the corresponding tetramolecular counterparts. Furthermore, we demonstrated that the TEL
analogues of the G4-forming, anti-HIV aptamer having the sequence 5′TGGGAG3′ can be successfully
used in place of the corresponding tetramolecular quadruplex to bind, with increased efficiency,
the HIV-1 glycoprotein gp120, thus resulting in a clear enhancement of the antiviral activity of the
aptamer [24–26].

Continuing our studies on branched GROs, we report here on the synthesis and structural
characterization of a new class of G4-forming oligonucleotides named double-ended-linker
oligodeoxynucleotides (DEL-ODNs). The structures of DEL-ODNs, in which two TG4T strands
are attached by either their 3′ end (D1L,S, Scheme 1) or 5′ end (D2L,S) to a symmetric, long (L) [51]
or short (S) bifunctional linker, are shown in Scheme 1. As the oligonucleotide (ON) sequence,
we chose TG4T because it forms a stable tetramolecular G-quadruplex that has been structurally
characterized in detail [52,53]. Moreover, the use of the TG4T sequence allowed us to compare the
structural properties of the here-reported DEL-G4s with those of the tetramolecular (TG4T)4 and the
monomolecular TEL-(TG4T)4 (TEL1L,S and TEL2L,S, Scheme 1) corresponding G4s. The formation
and properties of DEL-G4s formed by DEL-(TG4T)2 were investigated by circular dichroism (CD),



Molecules 2019, 24, 654 3 of 15

native polyacrylamide gel electrophoresis (PAGE), HPLC size-exclusion chromatography (HPLC–SEC),
and 1H-NMR experiments.

The results reported here demonstrate that all the synthesized DEL-(TG4T)2 fold into thermally
stable, parallel quadruplexes (DEL-G4s, Figure 1), regardless of the polarity of the two ON strands and
the length of the linker. Furthermore, we anticipate here that D2L showed a remarkable propensity to
form DEL-G4 multimers with higher molecular weights, which were isolated and investigated.

2. Results and Discussion

2.1. Synthesis and Purification of DEL-(TG4T)2 (D1L,S and D2L,S)

For the synthesis of D1L,S and D2L,S (Scheme 1), we used the solid-phase phosphoramidite
chemistry protocols previously optimized by us for the synthesis of TEL-ODNs [47–49]. The synthetic
strategy uses the commercially available controlled pore glass (CPG)-sulphone-resin 1 (Scheme 1) and
the phosphoramidite linkers 4 and 5 (Scheme 1), having symmetrical dimethoxytrityl (DMT)-protected
ends and differing for the length of the alkyl arms to obtain the bifunctional supports 2. Starting
from 2, D1L,S and D2L,S were obtained using 3′ or 5′ nucleotide phosphoramidite building blocks,
respectively. After detachment from the solid support, the crude ON material was purified by HPLC
and analyzed by analytical techniques. Support 1 was also used to obtain the tetrabranched support 3,
from which TEL1L,S and TEL2L,S were obtained following the previously reported strategy [47–49].

Scheme 1. General synthetic route for compounds D1L,S, D2L,S and TEL1L,S, TEL2L,S. (i) Coupling
with the phosphoramidite linker 4 or 5; (ii) two sequential couplings with the phosphoramidite linker
4 or 5; (iii) solid-phase DNA synthesis by phosphoramidite chemistry; iv) annealing procedure in Na+-
or K+-containing buffer.
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2.2. CD and CD Thermal Analyses

CD spectroscopy is a well-established technique that provides essential information on the
formation and topology of G4s. The greater part of published reports indicates that parallel G4s exhibit
a maximum at around 265 nm and a minimum at around 240 nm, whereas the antiparallel ones display
a maximum at around 295 nm and a minimum at around 260 nm [54–57]. All G4s analysed in this study
were obtained by (i) dissolving D1L,S and D2L,S in 100 mM Na+- or K+-containing buffer at 1.0 mM
ON concentration, (ii) heating the solutions at 95 ◦C for 5 min and finally (iii) by rapidly cooling them
at 4 ◦C. All samples were stored at 4◦ C for 24 h before analyses. In Figure 1, we report the CD profiles
recorded at 5 ◦C of D1L,S and D2L,S dissolved in 100 mM K+ buffer. We observed similar profiles for
the four DEL-ON species, with a well-defined positive maximum centred at 263 nm and a negative
minimum centred at 240 nm. These data indicate that in K+ buffer D1L,S and D2L,S prevalently form
parallel-oriented G4 structures independently of the orientation of the ON strands and the length of
the linker. This behaviour was already observed for the TEL-(TG4T)4 G-quadruplexes, which showed
CD profiles almost superimposable with those reported in Figure 1 [49,50]. The CD spectra of D1L,S
and D2L,S recorded at 5◦ in 100 mM Na+ buffer (Supplementary Materials, Figure S1), essentially
matched those obtained in K+ buffer. Taken together, the CD data of all DEL-(TG4T)2 analogues
account for the formation of parallel, bimolecular DEL-G4s, both in Na+- and K+-containing buffer
(Figure 1). This hypothesis was also confirmed by the PAGE and HPLC–SEC analyses (see below) that
confirmed the bimolecularity of the main complex formed by all DEL-G4s. Furthermore, to evaluate
the influence of DEL moiety on the stability of the resulting DEL-G4s, CD thermal denaturation
experiments were performed to monitor the CD263 nm value in the temperature range 5–80 ◦C at
a heating rate of 0.5 ◦C/min. In 100 mM K+ buffer, all DEL-G4s were stable up to 80 ◦C, as indicated by
the irrelevant variation of the CD263 nm values up to this temperature. On the contrary, in the presence
of 100 mM Na+ buffer, the increase in temperature led to a significant reduction of the CD263 nm value
and reliable melting temperatures (T 1

2
, Table 1) were calculated from the resulting sigmoidal melting

curves (Figure S2). These data indicated that DEL-G4s formed by D1L and D1S have almost the same
T 1

2
values (55 and 54 ◦C, respectively) as their tetramolecular counterpart (TG4T)4 (58 ◦C) recorded in

the same conditions. On the other hand, the T 1
2

values of DEL-G4s formed by D2L and D2S (64 ◦C
for both) were about 10 ◦C higher than those of D1L and D1S, indicating that the attachment of the
DEL moiety at the 5′ end of the TG4T strand results in DEL-G4s provided with higher thermal stability.
Furthermore, the invariance of T 1

2
values between DEL-G4s incorporating either the long or short DEL

disclosed that the length of the DEL arms does not affect the thermal stability of the resulting DEL-G4s.
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Figure 1. Circular dichroism spectra recorded at 5 ◦C of D1L,S and D2L,S annealed in 100 mM
K+ buffer.

Table 1. Melting temperatures (T 1
2

values in ◦C) of DEL-(TG4T)2 and TG4T ODNs annealed in 100 mM
K+- or Na+-containing buffer (λ = 263 nm, 0.5 ◦C/min heating rate).

ODN
T 1

2

(K+)
T 1

2
(Na+)

D1L >80 55
D1S >80 54
D2L >80 64
D2S >80 64

TG4T >80 58

2.3. Electrophoretic Gel Mobility Studies

To obtain information about the propensity of DEL-ODNs to fold into DEL-G4s and also on the
molecularity of DEL-G4s, we performed PAGE analyses of D1L,S and D2L,S. Figure 2A displays the
electrophoretic gel mobility of each complex in comparison with that of the tetramolecular G4 formed
by TG4T. All DEL-(TG4T)2 ODNs showed a very similar PAGE running behaviour, characterized by an
intense, well-defined band which migrated slightly slower than the band of the (TG4T)4 G-quadruplex
and by a consistent smearing phenomenon (Figure 2A). This behaviour suggests that all DEL-ODNs
formed mainly the bimolecular G4 complexes depicted in Scheme 1 and that the presence of traces of
higher MW complexes cannot be ruled out. The slight reduction in the mobility of the main band can
be attributed to the presence of the two DEL linkers in each DEL-G4 complex. In the PAGE reported in
Figure 2B, the mobility of the complexes formed by DEL-ODNs was compared to that of TEL-ODNs
depicted in Scheme 1. DEL and TEL complexes produced bands having almost the same mobility
and both produced excessive smearing. The smearing is considerably marked for D1L and D2L and
additional slower bands are visible. Conversely, the DEL-ODNs which were built using the short linker
(D1S and D2S) migrated as better-defined bands and with a reduced smearing phenomenon. Taken
together, the PAGE analyses indicated that: (i) all the here-presented DEL-ODNs fold primarily into
the target bimolecular parallel DEL-G4s depicted in Scheme 1; (ii) the consistent smearing observed for
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all DEL and TEL complexes can be attributed to the presence of additional supramolecular structures
(likely based on parallel G4 scaffolds, in agreement with CD and NMR evidence); (iii) D1L and D2L
incorporating the longer linker have the highest propensity to form supramolecular G4 species.

Figure 2. PAGE analyses of complexes formed by DEL-(TG4T)2 ODNs (D1L,S and D2L,S) in
comparison with the (TG4T)4 G4 (A) and with the complexes formed by TEL-(TG4T)4 ODNs (TEL1L,S
and TEL2L,S) (B). All samples were annealed in 100 mM K+ buffer.

2.4. Size-Exclusion Chromatography Studies

After annealing in 100 mM K+ buffer, DEL- and TEL-ODNs were also analysed by HPLC–SEC at
room temperature (Figure 3) with the aim of further investigating the molecularity of the resulting
complexes. The tetramolecular G4 formed by the TG4T sequence (see (TG4T)4 in Scheme 1) and
the G4 multimers formed by the 5′CGG3′ -3′TGGC5′ sequence (Qn in Figure 3) [42] were used as size
markers for monomeric (Q1) and multimeric G4 building blocks (Q2–n), respectively. The HPLC–SEC
analysis of both size markers indicated that in the used column and conditions the monomeric Q1

scaffolds (containing 24 or 28 nucleotides, respectively) had retention times (tR) in the range 14.3–14.5
min, and the Qn multimers had tR lower than 13.5 min (corresponding to the Q2 complex for the Qn

marker). The HPLC–SEC analysis of DEL-ODNs analogues confirmed that they fold primarily into
a Q1 complex (tR centred at 14.00 min). The slightly reduced tR observed for DEL-G4s compared to
those of the Q1 size markers can be attributed to the presence of the two DEL moieties in the Q1-like
DEL-G4 complexes. Differently from what observed by PAGE, the HPLC–SEC profiles of all but D2L
DEL-ODNs did not show additional peaks attributable to higher MW complexes, such as DEL-G4
multimers or other polymeric species. As anticipated, only D2L showed an intense shoulder peak at
tR 13.68 min as well as a defined peak eluted at min 12.38, likely attributable to DEL-G4 multimers as
those depicted in Figure 4.
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Figure 3. HPLC–SEC chromatograms of the complexes formed by DEL-(TG4T)2 (D1L,S, D2L,S) and
TEL-(TG4T)4 (TEL1L,S and TEL2L,S) in comparison with the (TG4T)4 G4 (Q1) and with the Qn G-wires.

Figure 4. Schematic representation of the parallel G4s obtainable from the self-assembly of DEL-ODNs.
The first three complexes, having the least MW, are shown on the left. The hypothetical topology of G4
supramolecular nanostructures based on reticulated parallel DEL-G4s is shown on the right.

The tR of all peaks corresponding to TEL-G4 monomers (Q1), obtained by performing
the HPLC–SEC separation of the annealed TEL-ODNs (Figure 3, right column), were almost
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superimposable with those of the corresponding peaks obtained from the annealed DEL-ODNs.
This result indicated that the size of the linker and the polarity of the linkages have a negligible effect
on the tR of the corresponding DEL- and TEL-G4s, thus implying that the two classes of modified G4s
have a similar 3D conformation. However, the comparison of the whole HPLC–SEC profiles evidenced
a higher propensity of all TEL-ODNs to form higher molecular weight (MW) complexes (in particular
for TEL1L and TEL2L), probably due to more favourable entropic parameters.

2.5. 1H-NMR Studies

The formation of G4s from G-rich oligonucleotides and their analogues is usually confirmed by
the observation in the downfield region (10–13 ppm) of water-suppressed 1H-NMR spectra of signals
belonging to the exchange-protected N-1 imino protons of guanosines involved in the formation of
G-tetrads. When guanosines are involved in the formation of a G-tetrad, their N-1 imino proton
is engaged in the formation of a Hoogsteen-type hydrogen bond with the O-6 oxygen atom of
flanking guanosine and does not exchange with the protons of bulk water [54,58]. For example,
the water-suppressed 1H-NMR spectrum of the highly symmetric (TG4T)4 quadruplex is characterized
by the presence of four sharp imino proton signals, one signal for each of the four G-tetrads
(Figure S3) [52,53], whereas four signals are expected for antiparallel and 3+1 mixed G4s [59].

The aromatic and imino protons region of the water-suppressed 1H-NMR spectra recorded at
25, 45 and 85 ◦C of the studied DEL-ODNs are reported in Figure 5. The presence of strong imino
proton signals (10.7–11.8 ppm) in all recorded spectra confirmed that the four new DEL-ODNs fold
into DEL-G4s when annealed in K+-containing buffer. The imino proton regions of the NMR spectra of
the four DEL-ODNs were very similar to that of the tetramolecular parallel (TG4T)4 G4 (Figure S3) and
those of the corresponding TEL-G4s [49], both concerning the number and the resonance frequencies
of the imino protons peaks. These signals were detectable up to 85 ◦C, in agreement with the CD
melting results reported in Table 1. Only in the case of D1L at 25 and 45 ◦C, we did not observe any
well-resolved imino proton signal but only very broad signals resonating at the expected frequencies.
This behaviour could be explained with the concomitant presence in solution of small amounts of less
stable, rapidly interconverting, bimolecular G4s having different topology (e.g., antiparallel and/or
3+1), as suggested by the presence of a weak positive CD signal at around 290 nm and by the unusually
weaker negative CD signal at around 240 nm (Figure 1).
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Figure 5. Downfield region of the water-suppressed NMR spectra of D1L,S and D2L,S annealed in
100 mM K+ buffer and recorded at 25, 45 and 85 ◦C.

2.6. Isolation and Analyses of Higher Molecular Weight Species Produced by D2L

To obtain further structural information on the higher MW complexes formed by D2L, we collected
in a single fraction the least retained peaks of the HPLC–SEC fractionation of D2L, as indicated in
Figure 6A, and reinjected them on the same column 24 h after storage at 4 ◦C. The resulting HPLC
profile (Figure 6B) presented four partially resolved peaks, which we attributed to the bimolecular
DEL-G4 (Q1, tR = 13.7 min) and to the DEL-G4 multimers incorporating two (Q2, tR = 12.9 min), three
(Q3, tR = 12.1 min), and four (Q4, tR = 11.4 min) G4 scaffolds. To confirm the G4 architecture of the
higher MW complexes, we collected them, as indicated in Figure 6B, and recorded their CD spectrum,
which resulted almost superimposable to that of the isolated Q1 species (Figure 7). We attributed
the small amount of Q1 detected in Figure 6B to the partial recovery of this species during the first
HPLC–SEC fractionation and not to the dissociation of higher MW DEL-G4 multimers. This hypothesis
was corroborated by the HPLC–SEC profile shown in Figure 6C (obtained by injecting the Q1 peak
isolated from the first HPLC fractionation of D2L), which, not showing any trace of least retained
peaks attributable to DEL-G4 complexes belonging to DEL-Q>2 types, confirmed that, once isolated,
the DEL-Qn multimers do not interconvert one into the other. The latter observation agrees in full
with the formation of G4 multimers based on reticulated G4 building blocks (Figure 4), rather than
on end-to-end stacked G4 building blocks (like the Qn species reported in Figure 3). These results
suggest that DEL-G4 multimers comprising more than four G4 scaffolds, similar to the G4 reticulated
polymer shown in Figure 4, could also be obtainable by using higher concentrations of DEL-ONs
and/or potassium ions and by optimizing the annealing procedure.
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Figure 6. HPLC–SEC chromatograms of: (A) complexes formed by D2L; (B) reinjection of the higher
MW species formed by D2L collected as shown in panel A; (C) reinjection of the purified DEL-Q1

complex formed by D2L collected as shown in panel A.

Figure 7. CD spectra of DEL-Q1 and higher MW species obtained by HPLC–SEC fractionation of D2L
(100 mM K+-containing buffer, 5 ◦C).

3. Materials and Methods

3.1. Reagents and Equipment

Chemicals and solvents were purchased from Sigma-Aldrich (Milan, Italy). Reagents and
phosphoramidites for DNA syntheses were purchased from Glen Research (Sterling, VA, USA).
The DEL linker 2, the TEL linker 3 and all the ODNs were assembled on a PerSeptive Biosystems
(Framingham, MA, USA) Expedite DNA synthesizer using standard phosphoramidite chemistry.
HPLC analyses and purifications were performed with a Jasco (Jasco Europe Srl, Cremella, LC,
Italy) PU2089 pump system equipped with an UV detector model 2075 Plus. CPG-resin 1 and the
linkers 4 and 5 were purchased from Glen Research. UV spectra were registered using a Jasco V-530
spectrophotometer. CD spectra and thermal denaturation experiments were obtained with a Jasco
1500 CD spectrophotometer equipped with a Jasco PTC-348-WI temperature controller unit. NMR
spectra were recorded either on a Varian (Palo Alto, CA, USA) Unity Inova 500 MHz spectrometer
equipped with a broadband inverse probe with z-field gradient, or on a Varian Unity INOVA 700 MHz
spectrometer equipped with a triple resonance cryoprobe. All NMR spectra were processed using the
Varian VNMR and iNMR (http://www.inmr.net) software packages. PAGE bands were visualized on
a Bio-Rad Laboratories (Segrate, MI, Italy) Gel DocTM XR+ image system.

3.2. Syntheses and Purifications of DEL-ODNs (D1L,S and D2L,S)

50 mg of controlled pore glass (CPG) support 1 (0.18 mmol/g) were used for each synthesis in the
automated DNA synthesizer following standard phosphoramidite chemistry. 45 mg/mL solutions
of phosphoramidite 4 or 5 (both in anhydrous CH3CN) were used for the synthesis of 2L or 2S,
respectively. This step was followed by reactions with 3′-phosphoramidite (for D1L and D1S) or
5′-phosphoramidite (for D2L and D2S) nucleotide building blocks (six cycles, 45 mg/mL in anhydrous
CH3CN). The coupling yields were consistently higher than 98% (by DMT spectrophotometric

http://www.inmr.net
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measurements). The solid support was then treated with concentrated aqueous ammonia solution
for 7 h at 55 ◦C. The filtered solution and washings were concentrated under reduced pressure and
purified by HPLC with an anion exchange column (Macherey–Nagel, 1000-8/46, 4.4 × 50 mm, 5 µm)
eluted with a linear gradient from 0 to 100% B in 30 min; buffer A: 20 mM NaH2PO4, pH 7.0 containing
20% CH3CN; buffer B: 1 M NaCl, 20 mM NaH2PO4, pH 7.0, containing 20% CH3CN; flow rate
1 mL/min. The collected products were desalted by gel filtration on a BioGel P2 column eluted with
H2O/ethanol (9:1, v/v) to obtain, after lyophilisation, pure D1L,S and D2L,S (92, 85 and 80, 88 OD260

units, respectively). The ON concentrations were determined spectrophotometrically in water at
λ = 260 nm and 90 ◦C using the molar extinction coefficient ε = 28,900 cm−1 M−1 for DEL-(TG4T)2 and
ε = 57,800 for TEL-(TG4T)4 calculated for the unstacked ODNs by the nearest-neighbour method.

3.3. Preparation of the G-Quadruplexes (Annealing)

All G4s were formed by dissolving DEL-ODNs, TEL-ODNs, or TG4T in the K+ buffer (90 mM
KCl, 10 mM KH2PO4, pH 7.0) or Na+ buffer (90 mM NaCl, 10 mM NaH2PO4, pH 7.0) and heating to
95 ◦C for 5 min and then rapidly cooling at 4 ◦C (annealing). All samples were stored at 4 ◦C for 24 h
before analyses. The solutions were equilibrated at 25 ◦C for 2 h before performing the experiments.

3.4. PAGE Experiments

Native gel electrophoresis experiments were performed on 12% polyacrylamide gels containing
1× TBE buffer, pH 7.0 with 30 mM KCl, at 4 ◦C, 120 V for 2 h. Samples were loaded at a final ON
concentration of 100 µM; glycerol was added (10% final) to facilitate sample loading in the wells.
The bands were finally visualized by UV shadowing or by SYBR Green staining.

3.5. CD Experiments

CD spectra and CD melting profiles were recorded in 0.1 cm optical path quartz cuvettes
(100 nm/min scanning speed, 1 s response time). The spectra were recorded in triplicate at 5 ◦C
from 200 to 320 nm. CD samples were prepared in the above reported 0.1 M K+ or Na+ buffer at the
final single-strand concentration of 20 µM. The buffer baseline was subtracted from each spectrum.
The CD melting experiments were performed by monitoring the CD value (mdeg) at 263 nm in the
temperature range 5–95 ◦C at 0.5 ◦C/min heating rate.

3.6. HPLC–SEC Analyses

HPLC–SEC analyses and purifications were performed using a Phenomenex (Bologna, Italy) Yarra
SEC-2000 column (300 × 7.8 mm, 3 µm) eluted with 90 mM KCl and 10 mM KH2PO4/CH3CN (80:20,
v/v), flow rate 0.6 mL/min, UV-detector at 260 nm. The analyses were performed at room temperature.

3.7. NMR Experiments

NMR samples were prepared at 1.8 mM single strand concentration in 200 mL of 100 mM K+

solution (90 mM KCl, 10 mM KH2PO4, pH 7.0, 9:1 H2O/D2O). Water suppression was achieved by
including a double pulsed-field gradient spin-echo (DPFGSE) module [60,61] in the pulse sequence
prior to acquisition. NMR spectra were acquired as 16,384 data points with a recycle delay of 1.0 s at
25, 45, and 85 ◦C, and the spectra were apodized with a shifted sine bell squared window function.

4. Conclusions

In this study, we reported the synthesis and the structural characterization of a new kind of G4
forming G-rich oligonucleotides, named DEL-ODNs, in which two TG4T strands are attached either
by their 5′ or 3′ end to the two ends of a bifunctional linker. A total of four DEL-(TG4T)2 ODNs
were synthesized using two linkers of different length, and their propensity to form DEL-G4s was
investigated by CD, NMR, PAGE and HPLC–SEC analyses. CD and NMR spectroscopies confirmed the
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formation of the target bimolecular parallel G4s for all the four DEL-ODNs, regardless of the polarity
of the two ON strands and the length of the linker. All four DEL-G4s were provided with extremely
high thermal stability, especially in 100 mM K+-containing solution (T 1

2
> 80 ◦C). The here-described

DEL-G4s were also compared with the corresponding G4s formed by the unmodified TG4T sequence
and by the previously reported TEL-(TG4T)4 analogues, with the aim of adding useful information on
the effect of DEL and TEL linkers on the formation of supramolecular structures based on the parallel
(TG4T)4 G4 scaffold. HPLC–SEC and PAGE analyses, used to obtain information on the molecularity
of the complexes, confirmed that all DEL-(TG4T)2 ODNs formed the target bimolecular DEL-G4s
primarily. However, detectable amounts of higher molecular-weight species were detected, especially
for D2L, which was obtained by linking the 5′ end of two TG4T strands to the longer linker. Looking at
the whole picture, our results indicate that: i) TEL-ODNs have a higher propensity to fold into higher
MW G4 complexes than the corresponding DEL-ODNs, likely because of the entropy gain; ii) DEL-
and TEL-ODNs incorporating the longer linker have the higher propensity to fold into multimeric G4
complexes; iii) the direction of the TG4T synthesis on the four TEL arms plays only a marginal role on
the molecularity of the resulting TEL-G4s, whereas for DEL-ODNs, clear evidence of the formation of
multimeric DEL-G4s was observed just for D2L. At the studied concentration of D2L and potassium
ions, the formation of higher MW G4 complexes comprising up to four parallel G4 scaffolds was
confirmed by HPLC–SEC. Taken together, the here-reported results suggest that the synthetic strategy
based on DEL and TEL linkers could be further exploited to obtain new supramolecular biomaterials
based on the reticulated G4 scaffolds depicted in Figure 4.

Supplementary Materials: The following are available online, Figure S1: CD spectra of samples annealed in
100 mM Na+-containing buffer, Figure S2: CD melting curves of samples annealed in 100 mM Na+-containing
buffer, Figure S3: imino protons region of 1H-NMR spectrum of (TG4T)4 G-quadruplex.
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