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Background. BCG vaccination of infants is thought to provide good protection in all settings. This study

investigated whether Malawian infants made weaker responses across a cytokine panel after BCG vaccination,

compared with UK infants.

Methods. Diluted whole-blood samples were cultured with Mycobacterium tuberculosis purified protein

derivative for 6 days from BCG-vaccinated infants 3 months (n 5 40 Malawi, 28 UK) and 12 months (n 5 34

Malawi, 26 UK) after vaccination, and also from UK unvaccinated infants (n5 9 at 3 months, n5 10 at 12 months).

Forty-two cytokines were measured in supernatants using a multiplex bead array assay. Principal component

analysis was used to summarize the overall patterns in cytokine responses.

Results. We found differences in median responses in 27 of the 42 cytokines: 7 higher in the UK and 20 higher

in Malawi. The cytokines with higher responses in the UK were all T helper 1 related. The cytokines with higher

responses in Malawi included innate proinflammatory cytokines, regulatory cytokines, interleukin 17, T helper 2

cytokines, chemokines, and growth factors. Principal component analysis separated the BCG-vaccinated infants

from Malawi from the UK vaccinated infants and from the unvaccinated infants.

Conclusions. Malawian infants make cytokine responses following BCG vaccination, but the cytokine profile is

different from that in the UK. The different biosignatures following BCG vaccination in the 2 settings may indicate

variability in the protective efficacy of infant BCG vaccination.

Interferon-c (IFN-c) has an essential role in protective

cell-mediated immunity against Mycobacterium tuber-

culosis disease, but other cytokines, such as tumor ne-

crosis factor a (TNF-a) and interleukin 12 (IL-12), are

also required [1]. Concerted efforts to find new bio-

markers for tuberculosis are focusing on tuberculosis

in developing countries where new vaccines are most

needed [1].

Clinical trials of the BCG vaccine show variable effi-

cacy against pulmonary tuberculosis in adults between

populations [2]. Good efficacy was shown in infants

against the severe forms of childhood tuberculosis, al-

though none of the trials were conducted in Africa [3].

BCG vaccination induces strong T helper 1 (Th1) re-

sponses in Gambian infants [4–6], although the number

of multifunctional T cells making IFN-c, TNF-a, and
interleukin 2 (IL-2) did not correlate with protection

against disease in South Africa [7, 8].

Population differences in infant immune responses

following BCG vaccination were observed in studies

comparing the UK and Malawi. Although all BCG-

vaccinated infants in the UK made IFN-c (.62 pg/mL)

responses to M. tuberculosis purified protein derivative

(PPD) in 6-day whole-blood cultures, only 53% of
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Malawians made such responses, and the magnitude of the re-

sponse in those who responded was lower in Malawi [9]. Ma-

lawian infants also made low skin test responses and smaller

BCG scars than did UK infants [9].

A promising method that may help to identify new biomarkers

is the ‘‘multiplex’’ fluorescent bead–based cytokine assay [10],

which we have used to show that BCG vaccination induces

a complex profile of cytokines in BCG-vaccinated UK infants,

including proinflammatory cytokines, T helper 2 (Th2) cytokines,

interleukin 17 (IL-17), chemokines, and growth factors [11].

Because Malawian infants produced less IFN-c to M. tuber-

culosis PPD following BCG vaccination than UK infants, we

investigated whether Malawian infants made weaker responses

across a large cytokine panel, compared with UK infants. We

aimed to characterize population differences following BCG

vaccination, by measuring a panel of 42 cytokines in super-

natants from diluted blood cultures stimulated with M. tuber-

culosis PPD for 6 days. To investigate long-term memory

responses, blood specimens were obtained from infants at 3 and

12 months after BCG vaccination.

MATERIALS AND METHODS

Recruitment and Study Design
Infants living in Waltham Forest Primary Care Trust, London,

UK and Karonga District, Malawi participating in a large BCG

vaccination study were selected for additional cytokine analysis

[9]. Infants receiving BCG vaccination at comparable times

(between 3 and 13 weeks of age) provided blood samples at 3 and

12 months after vaccination. Infants from the UK were matched

as closely as possible on age at vaccination, but on average UK

infants were older (median age, 7 weeks; range, 3–13 weeks) than

Malawian infants (median age, 5 weeks; range, 3–11 weeks) at the

time of vaccination as a result of different vaccination policies

in the 2 countries. Unvaccinated control infants were recruited

in the UK from the adjacent Redbridge Primary Care Trust.

Unvaccinated infants were matched for age to the vaccinated

infants. Seventy-seven infants were studied 3 months after

vaccination (n 5 40 Malawi, n 5 28 UK, n 5 9 unvaccinated

UK), and 70 infants 12 months after vaccination (n 5 34

Malawi, n 5 26 UK, n 5 10 unvaccinated UK). Children of

human immunodeficiency virus–positive mothers in Malawi

were excluded. The study was approved by the Redbridge

and Waltham Forest Health Authority Local Research Ethics

Committee, the National Health Sciences Research Council

in Malawi, and the Ethics Committee of the London School of

Hygiene and Tropical Medicine.

Whole-Blood Assay
Heparinized whole blood was diluted 1 in 10 with Roswell Park

Memorial Institute (RPMI) medium containing L-glutamine

and cultured on the day of collection with M. tuberculosis PPD

(Statens Serum Institut, Copenhagen, RT49, lot 204) at a con-

centration of 5 lg/mL or medium alone (unstimulated). Cul-

tures were incubated at 37�C with 5% CO2; supernatants were

harvested on day 6 and stored at 270�C until assayed in single

25-lL samples by multiplex assay.

Multiplex Assay
The Malawian samples were shipped to London in dry ice and

tested simultaneously with UK samples in London. The assay

measured 42 cytokine and chemokine concentrations: interleukin

1b (IL-1b), IL-2, interleukin 4 (IL-4), interleukin 5 (IL-5), in-

terleukin 6 (IL-6), interleukin 7 (IL-7), interleukin 8 (IL-8), in-

terleukin 10 (IL-10), interleukin 12p70 (IL-12p70), interleukin

13 (IL-13), interleukin 15 (IL-15), IL-17, interleukin 1a (IL-1a),
IFN-c, granulocyte colony-stimulating factor (G-CSF), granulo-

cyte macrophage colony-stimulating factor (GM-CSF), TNF-a,
eotaxin, monocyte chemotactic protein 1 (MCP-1), macrophage

inflammatory protein 1a (MIP-1a), IFN-c–inducible protein 10
(IP-10), soluble IL-2 receptor a (sIL-2Ra), interferon a2 (IFN-

a2), tumor necrosis factor b (TNF-b), interleukin 1 receptor

antagonist (IL-1RA), soluble CD40 ligand (sCD40-L), FMS-like

tyrosine kinase 3 ligand (Flt3-L), interleukin 7 (IL-7), in-

terleukin 12p40 (IL-12p40), regulated upon activation, normal

T cell expressed and secreted (RANTES), macrophage-derived

chemokine (MDC), macrophage inflammatory protein 1b
(MIP-1b), fractalkine, monocyte chemotactic protein 3 (MCP-3),

growth regulated oncogene (GRO), vascular endothelial growth

factor (VEGF), platelet derived growth factor AA (PDGF-AA),

platelet derived growth factor AB/BB (PDGF-AB/BB), fibro-

blast growth factor 2 (FGF-2), epidermal growth factor (EGF),

transforming growth factor a (TGF-a), interleukin 3 (IL-3),

and interleukin 9 (IL-9) using a human ‘‘Milliplex’’ pre-

mixed kit according to the manufacturer’s instructions

(no. MPXHCYTO60KPMX42, Millipore). Cytokines were mea-

sured in single 25-lL samples of unstimulated andM. tuberculosis

PPD–stimulated supernatants from diluted whole blood cul-

tured for 6 days. Multiplex plates were read on the Biorad

Luminex reader using Bioplex Manager 4.1 software. For each

cytokine the standard curve ran from 3.2 to 10 000 pg/mL.

Statistical Analysis
Unstimulated cytokine response values were subtracted from

antigen-stimulated results. Multiplex data values ,3.2 pg/mL

were assigned as 1.6 pg/mL; some values for PDGF-AA, PDGF-

AB, and RANTES were lower in value than the unstimulated

cytokine response and were set to 1.6 pg/mL. Some values for

MCP-1, IL-8, MDC, RANTES, IP-10, and MCP-3 were above the

detection limit and were assigned 15,000 pg/mL for MDC and

MCP-3, 30 000 pg/mL for MCP-1 and IP-10, and 100000 pg/mL

for IL-8 and RANTES, assessed by looking at the highest ex-

trapolated values measured. The magnitude of response could

not be analyzed for IL-8 and MCP-1, because many were out
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of range; samples were not diluted and retested because of

cost restraints. Median fold differences between UK and Mala-

wian cytokine responses were calculated, and nonparametric

Mann-Whitney tests were used to compare cytokine responses

between Malawian and UK infants at each time point. Associa-

tions between different cytokines were assessed with Spearman

rank correlation coefficients.

Principal component analysis (PCA) summarizes data by

reducing their dimensionality, in the example here from 42

cytokines measured to 2 or 3. This is achieved by identifying

a few ‘‘principal components,’’ each of which is defined as a

weighted sum of the individual cytokine values, that together

explain most of the variation in the profile of cytokine responses.

The value of each principal component is then calculated for

each infant; these values are referred to as ‘‘scores’’ and can be

represented graphically to summarize the variation in the data.

The principal components were identified through analysis of

the log-transformed cytokine data from the UK and Malawi

together, using ‘‘standardized’’ log cytokine measurements

(mean response subtracted from observed value, then divided by

standard deviation) by implementing the PCA on the 42 by 42

correlation matrix that summarizes the correlations among all

pairs of cytokines.

RESULTS

Of the 42 cytokines and chemokines tested, there was strong ev-

idence of a difference between responses in UK BCG-vaccinated

infants, compared with BCG-vaccinated Malawian infants for

27 cytokines 3months after BCG vaccination, and for 26 cytokines

12 months after BCG vaccination (Table 1).

Cytokine Responses
Three months after BCG vaccination, 4 of the 10 proinfla-

mmatory cytokines, IFN-c (P , .001), IL-2 (P , .001), TNF-b
(P 5 .02), and IL-6 (P 5 .01), had higher median responses

in the UK than in Malawi, whereas for 4 cytokines, sIL-2Ra
(P , .001), IFN-a2 (P , .001), IL-1a (P 5 .01), and IL-1RA

(P5 .009), median responses were higher in Malawian infants.

For the remaining 2 proinflammatory cytokines, there was no

evidence of a difference in TNF-a (P5 .25) or IL-1b (P5 .79)

between UK andMalawian infants. There was also strong evidence

of a higher median response in Malawian infants, compared with

UK infants, in the T helper 17 (Th17) proinflammatory cytokine

IL-17 (P 5 .02). Differences were maintained at 12 months for

IFN-c, IL-2, sIL-2Ra, IFN-a2, and IL-17. There was still evi-

dence of a difference in median responses to IL-1a, but with
higher responses in the UK (P 5 .03) (Figure 1; Table 1).

For all Th2 cytokines tested, IL-4 (P5 .001), IL-5 (P, .001),

IL-13 (P, .001), and IL-9 (P, .001), responses were higher in

Malawi 3 and 12 months after vaccination than in the UK

(Figure 1; Table 1). There was strong evidence of greater T cell

regulation in Malawi than in the UK, with higher median IL-10

responses at both 3 and 12 months after BCG vaccination

(P5 .003 and .009, respectively). Whereas there was evidence of

higher median IL-12p40 responses (P 5 .03, 3 months) in the

UK, compared with Malawi, there was evidence of higher IL-

12p70 responses inMalawian infants at both 3months (P5 .007)

and 12 months (P 5 .001) after vaccination. There was no

evidence of a difference in responses in sCD40-L at 3 months

after vaccination (P 5 .25), whereas there was evidence of

higher sCD40-L responses in Malawian infants at 12 months

after BCG vaccination (P5 .046). (Figure 1; Table 1). IL-15 was

not detectable in any infant at any time point.

Chemokine Responses
UK infants had higher median MIP-1a responses (P, .001) and

IP-10 responses (P , .001), whereas Malawian infants had

higher medianMCP-3 responses (P, .001) andMDC responses

(P 5 .004) at both 3 and 12 months after vaccination (P values

for 3 month time point). Malawian infants made higher median

GRO responses 12 months after vaccination (P 5 .003), and

UK infants made higher median eotaxin responses 12 months

after vaccination (P5 .01). There was no evidence of a difference

in responses between the UK and Malawi in RANTES (P5 .21, 3

months), MIP-1b (P5 .17, 3 months), or fractalkine (P5 .24, 3

months) at either time point (Figure 1; Table 1). Because many of

the IL-8 and MCP-1 responses were above the limit of detection

of the assay in both groups, it was not possible to compare the

magnitude of responses between the UK and Malawi.

Growth Factors
The growth factors IL-3 (P , .001), PDGF-AA (P , .001),

PDGF-AB/BB (P , .001), and GM-CSF (P 5 .01) had higher

median responses in Malawi than in the UK at 3 and 12 months

after vaccination (P values for 3 month time point). TGF-a,
G-CSF, and Flt3-L median responses were higher in Malawian

infants at 3 months (P 5 .002, .049, and .002, respectively) but

not at 12 months after BCG vaccination (P 5 .33, .39, and .91,

respectively). There was no evidence of a difference in median

FGF-2 (P 5 .57) or VEGF (P 5 .55) responses between the UK

andMalawi 3 months after BCG vaccination, but responses were

higher in UK infants at 12 months (P 5 .02 and .03, re-

spectively). There was no evidence of a difference in median IL-7

or EGF responses at either time point (P 5 .95 and .61, re-

spectively, at 3 months) (Figure 1; Table 1).

Comparison of Responses at 3 and 12 Months
There was no evidence of a difference in the median response of

any of the measured cytokines between 3 and 12 months after

BCG vaccination in Malawian infants, although in general, re-

sponses were slightly lower at 12 than at 3 months. In the UK,

responses were higher in IL-12p40, MIP-1a, MCP-3, and MIP-

1b 3 months after vaccination, compared with 12 months after

vaccination. At 12 months, responses were higher in IFN-a2,
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Table 1. Multiplex Results from United Kingdom and Malawian Infants 3 and 12 Months After BCG Vaccination

Cytokine

3 months after BCG 12 months after BCG

Unvaccinated

UK

Vaccinated

Unvaccinated

UK

Vaccinated

UK Malawi

Fold

differencea P a UK Malawi

Fold

differencea P a

Proinflammatory

IFN-c 1.6 902 76 12 ,.001 4 598 44 14 ,.001

IL-2 1.6 10 1.6 6 ,.001 1.6 16 1.6 10 ,.001

TNF-b 6 14 4 4 .02 1.6 9 7 1 .29

IL-6 200 1881 954 2 .01 423 1561 1498 1 .24

sIL-2Ra 4 227 1400 6 ,.001 3 170 847 5 ,.001

IFN-a2 1.6 22 108 5 ,.001 24 54 104 2 ,.001

IL-1a 13 399 1173 3 .001 29 2472 1178 2 .03

IL-1RA 63 116 222 2 .009 115 256 213 1 .73

TNF-a 6 111 139 1 .25 13 87 125 1 .45

IL-1b 1.6 27 17 1 .79 5 17 16 1 .85

Th17

IL-17 1.6 26 60 2 .02 1.6 32 53 2 .02

Th2

IL-13 1.6 47 1434 30 ,.001 1.6 14 1021 74 ,.001

IL-5 1.6 7 75 11 ,.001 1.6 4 107 31 ,.001

IL-9 1.6 1.6 10 6 ,.001 1.6 1.6 10 6 ,.001

IL-4 1.6 1.6 4 3 .001 1.6 1.6 1.6 1 .002

T cell regulation

IL-10 1.6 23 95 4 .003 1.6 26 55 2 .009

T cell activation

IL-12p40 11 63 27.5 2 .03 1.6 47 17 3 .002

IL-12p70 1.6 1.6 6 4 .007 1.6 3 6 2 .001

sCD40-L 1.6 153 186 1 .25 1.6 341 194 2 .046

Chemokine

MIP-1a 13 623 64 10 ,.001 1.6 161 38 4 .003

IP-10b 158 12798 3758 3 ,.001 45 30000 3546 0 ,.001

MCP-3b 84 860 3065 4 ,.001 85 494 3004 6 ,.001

MDC 34 1415 2216 2 .004 15 358 1985 6 ,.001

GRO 148 936 2171 2 .16 126 527 1673 3 .003

RANTESb 1.6 611 1093 2 .21 1.6 1549 1129 1 .99

MIP-1b 49 961 567 1 .17 62 466 298 2 .32

Eotaxin 10 29 34 1 .31 15 46 36 1 .01

Fractalkine 25 272 254 1 .24 105 255 274 1 .38

Growth factor

IL-3 1.6 1.6 49 31 ,.001 1.6 1.6 38 24 ,.001

PDGF-AA 34 108 507 5 ,.001 1.6 63 337 5 ,.001

PDGF-AB/BB 1.6 106 381 4 ,.001 1.6 119 192 2 .01

TGF-a 1.6 1.6 4.5 3 .002 1.6 3 5 2 .33

GM-CSF 22 376 717 2 .01 22 337 666 2 .06

G-CSF 1.6 13 19.5 2 .049 4 16 14 1 .39

Flt3-L 1.6 17 30.5 2 .02 1.6 26 22 1 .91

FGF-2 7 99 111 1 .57 20 145 109 1 .02

VEGF 1.6 106 89 1 .55 16 127 107 1 .03

IL-7 15 89 85 1 .95 53 122 95 1 .12

EGF 1.6 16 15 1 .61 1.6 13 12 1 .99
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IL-1a, IL-1RA, sCD40L, IP-10, eotaxin, FGF2, and TGF-a
(Supplementary Table 1).

Timing of BCG Vaccination
The infants were vaccinated over a wide age range, and the me-

dian age of vaccination was younger in Malawi than in the UK.

After stratification into earlier (3–7 weeks) and later (8–13 weeks)

vaccination, the strong evidence of differences between the

2 countries persisted (Supplementary Table 2).

Correlations Between Cytokines and Chemokines
There was a positive association between IFN-c and many of the

other cytokines. In Malawi, 28 of the 38 cytokines (IL-15, IL-8,

and MCP-1 not included) had strong correlations with IFN-c
(correlation coefficients of $0.6), whereas in the UK only 10 of

38 had strong correlations (Table 2). InMalawi, IFN-c positively
correlated with many proinflammatory cytokines, such as TNF-

b, IL-6, sIL-2Ra, IL-1a, IL-1b, TNF-a, and IL-17, but also with

the Th2 cytokine IL-13 and the regulatory cytokine IL-10. There

was a different pattern of correlation in the UK andMalawi, with

production of such cytokines as IL-17 and IL-10 positively

correlating strongly with that of IFN-c in Malawians but not in

the UK. At 12 months after BCG vaccination, associations be-

tween IFN-c and other cytokines were similar to those at 3

months (Supplementary Table 3).

Principal Component Analysis
PCA of UK BCG-vaccinated and Malawian BCG-vaccinated

infants 3 months after BCG vaccination showed that 55% of the

variation could be explained with the first 3 components. Using

the first 3 components shows that all 39 cytokines except IP-10

(IL-15, IL-8, and MCP-1 not included) are essential to explain

the variation among the vaccinated infants in the UK and Ma-

lawi, because it was only for IP-10 that its weight in all of the first

3 principal components was so small that it could be equated

approximately to zero (Table 2). Using the first 2 components to

explain the variation within the 39 cytokines included, the UK

unvaccinated, UK vaccinated, and Malawian vaccinated infants

clearly separated into 3 groups, and the variation among in-

dividuals who were vaccinated was much more simply sum-

marized (Figure 2). At 12 months after BCG vaccination, PCA

showed similar results, with the first 3 components showing that

all 39 cytokines were essential to explain the variation among the

vaccinated infants (data not shown).

DISCUSSION

BCG vaccination provides variable protection against pulmo-

nary tuberculosis, protecting UK adolescents but not Malawian

adults [2]. It is thought that BCG vaccination offers similar

protection in all settings in infants, although none of the clinical

trials were conducted in Africa [12]. Given our earlier finding

that IFN-c production in response to M. tuberculosis PPD was

lower in BCG-vaccinated Malawian infants, compared with UK

vaccinated infants [9], we investigated a more comprehensive

infant cytokine profile expecting that cytokine responses in

Malawian infants would be lower overall than in UK infants. We

now show that the immune responses induced by BCG vacci-

nation differ in both profile and magnitude between the 2 set-

tings. There was evidence of differences in median responses in

Table 1. Continued

Cytokine

3 months after BCG 12 months after BCG

Unvaccinated

UK

Vaccinated

Unvaccinated

UK

Vaccinated

UK Malawi

Fold

differencea P a UK Malawi

Fold

differencea P a

Unable to assay

IL-15 1.6 1.6 1.6 1 1.6 1.6 1.6 1

IL-8b 4059 15892 100000 6 50 394 100000 100000 1

MCP-1b 8415 9816 30000 3 30 000 30000 30000 1

Data are median cytokine responses, pg/mL, measured by 42-multiplex assay in supernatants from diluted whole-blood cultures that were stimulated with

Mycobacterium tuberculosis purified protein derivative for 6 days unless otherwise indicated. Boldface text represents values for which there is statistical evidence

of higher median values compared with median values from the other country. Abbreviations: EGF, epidermal growth factor; FGF-2, fibroblast growth factor 2;

Flt3-L, FMS-like tyrosine kinase 3 ligand; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; GRO, growth

regulated oncogene; IFN-a, interferon a; IFN-c, interferon-c; IL-1a, interleukin 1a; IL-1b, interleukin 1b; IL-1RA, interleukin 1 receptor antagonist; IL-2, interleukin 2;

IL-3, interleukin 3; IL-4, interleukin 4; IL-5, interleukin 5; IL-6, interleukin 6; IL-7, interleukin 7; IL-8, interleukin 8; IL-9, interleukin 9; IL-10, interleukin 10; IL-12p40,

interleukin 12p40; IL-12p70, interleukin 12p70; IL-13, interleukin 13; IL-15, interleukin 15; IL-17, interleukin 17; IP-10 (IFN-c inducible protein 10); MCP-1, monocyte

chemotactic protein 1; MCP-3, monocyte chemotactic protein 3; MDC, macrophage-derived chemokine; MIP-1a, macrophage inflammatory protein 1a; MIP-1b,
macrophage inflammatory protein 1b; PDGF-AA, platelet derived growth factor AA; PDGF-AB/BB, platelet derived growth factor AB/BB; RANTES, regulated upon

activation, normal T cell expressed and secreted; sCD40-L, soluble CD40 ligand; sIL-2Ra, soluble IL-2 receptor a; TGF-a, transforming growth factor a; Th2, T helper

2; Th17, T helper 17; TNF-a, tumor necrosis factor a; TNF-b, tumor necrosis factor b; VEGF, vascular endothelial growth factor.
a Comparisons are between vaccinated UK infants and vaccinated Malawi infants.
b Some values out of range. Note that for fold difference, the reference group is the one with the lower response.
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27 of the 42 cytokines and chemokines tested between the UK

and Malawi, 7 of which were higher in the UK and 20 of which

were higher in Malawi.

The 7 cytokines and chemokines that were higher in the UK

than in Malawi 3 months after BCG vaccination are all Th1

related: IFN-c, IL-2, TNF-b, IL-6, IL-12p40, MIP-1a, and IP-10,

Figure 1. Cytokine responses measured by 42-multiplex assay. A, Proinflammatory cytokines; B, T helper 2, regulatory, and T cell activation cytokines; C,
Chemokines; and D, Growth factors in supernatants from diluted whole-blood cultures that were stimulated with Mycobacterium tuberculosis purified
protein derivative for 6 days were measured using a 42-multiplex assay 3 months and 12 months after BCG vaccination in UK and Malawian infants (3
months: UK n 5 28, Malawi n 5 40; 12 months: UK n 5 26, Malawi n 5 36). Line represents median response. EGF, epidermal growth factor; FGF-2,
fibroblast growth factor 2; Flt3-L, FMS-like tyrosine kinase 3 ligand; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-
stimulating factor; GRO, growth regulated oncogene; IFN-a, interferon a; IFN-c, interferon-c; IL-1a, interleukin 1a; IL-1b, interleukin 1b; IL-1RA, interleukin
1receptor antagonist; IL-2, interleukin 2; IL-3, interleukin 3; IL-4, interleukin 4; IL-5, interleukin 5; IL-6, interleukin 6; IL-7, interleukin 7; IL-9, interleukin 9;
IL-10, interleukin 10; IL-12p40, interleukin 12p40; IL-12p70, interleukin 12p70; IL-13, interleukin 13; IL-17, interleukin 17; IP-10 (IFN-c inducible protein 10);
MCP-3, monocyte chemotactic protein 3; MDC, macrophage-derived chemokine; MIP-1a, macrophage inflammatory protein 1a; MIP-1b, macrophage
inflammatory protein 1b; PDGF-AA, platelet derived growth factor AA; PDGF-AB/BB, platelet derived growth factor AB/BB; RANTES, regulated upon
activation, normal T cell expressed and secreted; sCD40-L, soluble CD40 ligand; sIL-2Ra, soluble IL-2 receptor a; TGF-a, transforming growth factor a;
TNF-a, tumor necrosis factor a; TNF-b, tumor necrosis factor b; VEGF, vascular endothelial growth factor.
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Figure 1. Continued
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Table 2. Spearman Rank Correlation Coefficients (r) of Cytokines and Chemokines With Interferon g (IFN-g), and Principal Component
Analysis as Measured by 42 Multiplex Assay in Supernatants Stimulated with Mycobacterium tuberculosis Purified Protein Derivative
for 6 Days, in UK and Malawian Infants 3 Months After BCG Vaccination

IFN-c Spearman rank

correlation coefficients

Contributions of principal

component analysis

Cytokine UK Malawi Component 1 Component 2 Component 3

Proinflammatory

IFN-c 1.0 1.0 0.11 20.26 20.03

IL-2 0.4 0.3 0.10 20.24 0.10

TNF-b 0.6 0.8 0.19 20.23 20.02

IL-6 0.6 0.8 0.21 20.15 20.01

sIL-2Ra 0.9 0.8 0.19 0.19 20.24

IFN-a2 0.2 0.2 0.02 0.19 0.16

IL-1a 0.2 0.8 0.17 0.15 0.18

IL-1RA 0.3 0.6 0.18 0.08 0.11

IL-1b 0.7 0.8 0.18 0.00 20.34

TNF-a 0.8 0.9 0.25 20.02 20.14

Th17

IL-17 0.1 0.7 0.09 0.07 20.30

T cell activation

IL-12p40 0.7 0.7 0.22 0.04 20.03

IL-12p70 0.4 0.7 0.19 0.00 0.05

sCD40-L 0.5 0.8 0.20 0.05 0.07

T cell regulation

IL-10 0.3 0.7 0.09 0.22 20.10

Th2

IL-13 0.4 0.8 0.11 0.34 20.03

IL-5 0.4 0.3 0.03 0.31 0.12

IL-9 0.2 0.5 0.05 0.22 0.10

IL-4 0.0 0.5 0.07 0.21 0.05

Chemokine

MIP-1a 0.6 0.4 0.17 20.20 20.13

IP-10 0.0 0.8 20.05 20.07 20.05

MCP-3 0.3 0.7 0.12 0.09 0.17

MDC 0.3 0.7 0.12 20.04 0.16

RANTES 0.0 0.8 0.12 20.11 0.20

MIP-1b 0.4 0.6 0.21 20.05 20.12

GRO 0.3 0.6 0.19 0.12 20.09

Eotaxin 0.3 0.7 0.21 0.03 0.22

Fractalkine 0.6 0.7 0.22 20.04 0.11

Growth factor

IL-3 20.2 0.5 0.04 0.32 0.13

PDGF-AA 0.1 0.7 0.15 0.10 20.26

PDGF-AB/BB 0.0 0.2 0.06 0.12 0.18

TGF-a 0.0 0.3 0.05 0.04 0.17

GM-CSF 0.8 0.9 0.23 0.12 20.18

G-CSF 0.2 0.7 0.19 0.05 20.27

Flt3-L 0.3 0.7 0.19 0.00 0.05

IL-7 0.5 0.8 0.24 20.09 0.16

FGF-2 0.3 0.8 0.20 20.02 0.18

EGF 0.2 0.1 0.11 20.14 0.23

VEGF 0.6 0.8 0.22 20.12 0.18

Boldface values represent ‘‘major’’ positive ($0.10) and negative (#-0.10) contributions to the principal component analysis.

Abbreviations: EGF, epidermal growth factor; FGF-2, fibroblast growth factor 2; Flt3-L, FMS-like tyrosine kinase 3 ligand; G-CSF, granulocyte colony-stimulating

factor; GM-CSF, granulocyte macrophage colony-stimulating factor; GRO, growth regulated oncogene; IFN-a, interferon a; IFN-c, interferon-c; IL-1a, interleukin 1a;
IL-1b, interleukin 1b; IL-1RA, interleukin 1receptor antagonist; IL-2, interleukin 2; IL-3, interleukin 3; IL-4, interleukin 4; IL-5, interleukin 5; IL-6, interleukin 6; IL-7,

interleukin 7; IL-9, interleukin 9; IL-10, interleukin 10; IL-12p40, interleukin 12p40; IL-12p70, interleukin 12p70; IL-13, interleukin 13; IL-17, interleukin 17; IP-10 (IFN-c
inducible protein 10); MCP-3, monocyte chemotactic protein 3; MDC, macrophage-derived chemokine; MIP-1a, macrophage inflammatory protein 1a; MIP-1b,
macrophage inflammatory protein 1b; PDGF-AA, platelet derived growth factor AA; PDGF-AB/BB, platelet derived growth factor AB/BB; RANTES, regulated upon

activation, normal T cell expressed and secreted; sCD40-L, soluble CD40 ligand; sIL-2Ra, soluble IL-2 receptor a; TGF-a, transforming growth factor a; Th2, T helper

2; Th17, T helper 17; TNF-a, tumor necrosis factor a; TNF-b, tumor necrosis factor b; VEGF, vascular endothelial growth factor.

1082 d JID 2011:204 (1 October) d Lalor et al



which have been shown to be involved in immunity to tuber-

culosis. TNF-b, IL-12p40, and MIP-1a have been shown to be

involved in granuloma formation [13–15], and IL-6 and IP-10

are produced in greater amounts in tuberculosis patients than in

controls, although their role is uncertain [16–18].

The 20 cytokines and chemokines produced in greater con-

centrations in Malawian infants, compared with UK infants,

include innate proinflammatory cytokines, regulatory cytokines,

IL-17, Th2 cytokines, chemokines and 7 growth factors. Many of

these cytokines, such as the T cell–derived Th2 cytokines and the

regulatory cytokine IL-10, are not considered to be protective in

immunity to tuberculosis, because they inhibit IFN-c responses,
although they may be important in regulating pathology [19].

The full role of IL-17 is not known; however, it is not thought to

aid development of protective immune responses against tu-

berculosis when produced during a primary immune response

[20, 21]. The higher IL-17 responses seen in Malawi following

BCG vaccination may represent suboptimal responses.

The greatest fold difference in cytokine responses between the

UK and Malawi was in IL-13 at both time points. Malawian

infants made higher cytokine responses in all the Th2 cytokines

tested and in IL-9 than did UK infants. IL-9 was until recently

considered to be a Th2 cytokine, but a distinct Th9 subset

producing IL-9 has now been described [22]. A recent study in

BCG-vaccinated Gambian infants using a whole-blood assay

also showed that PPD induced IL-13 secretion [23].

The Malawian infants also produced higher IL-10 and sIL-

2Ra than did UK infants 3 months after vaccination, pro-

viding evidence of increased T cell regulation in Malawian

infants, compared with UK infants. Interleukin 2Ra pro-

duction may reflect increased T cell activation or T cell reg-

ulation [24].

Overproduction of Th2, T regulatory cytokines, and IL-9 may

impair Th1 immune responses and impede induction of anti-

mycobacterial immunity [25, 26]. Notably, however, in both

countries, it was the individuals who produced high Th2 re-

sponses who made high IFN-c responses (also seen in adoles-

cents [G. Black et al, in preparation]), suggesting that some

individuals make stronger cytokine responses in general fol-

lowing vaccination.

Higher concentrations of IL-4 and IL-13 together with lower

concentrations of IFN-c in Malawian infants, compared with

UK infants, could result in alternative macrophage activation,

which may negatively influence protective immunity against

tuberculosis [27]. Alternative activation of macrophages results

in a different macrophage phenotype including increased en-

docytosis and macrophage fusion, decreased autophagy, and

altered phagocytic receptor repertoire and cytokine and che-

mokine secretion (including reduced IL-1b, IL-12, TNF-a, and
IP-10 and increased IL-1RA) [27].

Malawian BCG-vaccinated infants had higher innate proin-

flammatory cytokine responses for IFN-a2, IL-1a, and IL-12p70,
compared with UK vaccinees. It remains unclear whether IFN-a
is protective or detrimental in M. tuberculosis immunity; it may

lead to the development of dendritic cells with altered pheno-

type, ‘‘immunoprivileged macrophage-like cells’’ that synthesize

TNF-a and IL-10 but not IL-12 [28–30].

Malawian infants made higher responses for 7 growth factors,

which could indicate that Malawian infants’ immune systems

are more active in the development and differentiation of new

cell types, compared with the immune systems of UK infants,

following BCG vaccination. Adolescents in Malawi have also

been found to have a lower proportion of naive T cells and

a greater proportion of memory T cells than do UK adolescents,

perhaps in part due to the higher burden of such infections as

cytomegalovirus in Malawi [31]. The higher concentrations of

IFN-a in the Malawian infants, compared with UK infants,

following BCG vaccination could in turn result in increased

inhibition of telomerase activity [32, 33], which may contribute

to increased telomere erosion, expansion of T cells, and altered

memory T cell responses.

Growth factors have been suggested for use as adjuvants in

new vaccines in the hope that they would boost Th1 responses

[34, 35]. This study suggests that even in the presence of high

concentrations of growth factors, Th1 responses are low in Ma-

lawian infants, and suggests that such vaccine strategies may not

be beneficial in Malawian infants with a Th2-polarized immune

profile. Future tuberculosis vaccine strategies could be tailored to
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Figure 2. Score values for components 1 and 2 from the principal
component analysis of multiplex responses. Score values are shown for
UK BCG-vaccinated infants (triangles) and Malawian BCG-vaccinated
infants (circles) 3 months after vaccination and unvaccinated UK infants
(diamonds) for components 1 and 2 from the principal component analysis
of the 42-multiplex data.
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inhibit, before vaccination, cytokines that suppress the protective

cytokine induction, or to strengthen induction of protective cy-

tokines while not inducing those that inhibit protection.

This study identified that 27 cytokines and chemokines were

differentially expressed in the UK and Malawi following BCG

vaccination. Measuring such secreted analytes at a single time

point is not ideal, because the optimal time for measurement

will vary, but the advantage of measuring so many products

simultaneously outweighs any potential loss of sensitivity. It is

not yet clear how much cytokine or which combination of cy-

tokines are required for protection, and perhaps the absolute

concentrations of cytokines and chemokines are not as impor-

tant as the overall pattern of cytokines, for example, the ratio of

Th1 to Th2 or Th1 to regulatory T cells, that could determine the

level of protection BCG vaccination provides. Larger studies are

needed to assess the protection BCG offers to infants while si-

multaneously looking at the cytokines and chemokines induced

by vaccination [36], in order to identify the pattern of cytokine

expression required for successful induction and maintenance of

protection.

Given the large population differences observed in the im-

mune responses to BCG vaccination in the UK and Malawi, it is

probable that BCG vaccination does not offer equal protection

to infants across such different settings. The infants studied here

were vaccinated between 3 and 13 weeks of age, rather than at

birth. Despite the recommended policy that BCG be given at or

shortly after birth, many infants in developing countries are

vaccinated late. A local survey revealed that only 22% of infants

were vaccinated in the first week of life [37]. It is unknown when

Malawian infants are first exposed to environmental mycobac-

teria. IFN-c responses to M. tuberculosis PPD were higher in

infants vaccinated at birth than in those with delayed vaccina-

tion, although the confidence intervals were wide and the dif-

ferences were not statistically significant (A. Ben-Smith et al, in

preparation), whereas Gambian infants vaccinated at 4.5

months had lower IFN-c, IL-6, and IL-17 responses, compared

with those vaccinated at birth [23]. Stratified analysis of in-

fants in this study showed that there was no evidence of

a difference in cytokine responses in those vaccinated between

3 and 7 weeks of age and those who were vaccinated between

8 and 13 weeks of age, although the study power for these com-

parisons was low. We plan to compare the cytokine profiles

in Malawian infants vaccinated at birth or with delayed vacci-

nation and to assess the cytokine profile to nonspecific stimuli,

as well as mycobacterial antigens, to assess whether Malawian

infants vaccinated at birth have a similarly skewed cytokine pro-

file. It was not possible to perform intracellular flow cytometry on

the samples from these infants, because of the small blood vol-

umes available, but studies in the UK have indicated that IFN-c
is produced by both CD4 T cells, most of which do not produce

other cytokines, and natural killer cells (M. K. Lalor, un-

published data; [38]).

The results from this study have given a new perspective on

the variable protection provided by BCG in adults. Previously,

evidence pointed toward prior exposure to environmental my-

cobacteria resulting in BCG vaccination failing to provide pro-

tection in such countries as Malawi. Here we have shown that

immunologically naive infants produce an entirely different

cytokine profile following BCG vaccination in the UK and

Malawi. We propose that the pattern of cytokines that Malawian

infants produce following vaccination, and after contact with

infectious diseases, is already predetermined in utero, at birth, or

within the first few months of life. This may be due to maternal

factors, genetic factors, epigenetic factors, nutritional factors,

and/or environmental factors, such as burdens of infectious

diseases within the population as a whole. Additional studies to

examine cytokine profiles of mothers and their infants prior to

and after vaccination are required. Such population-specific

differences in immune profiles may have wider implications for

both immunity against tuberculosis and the protective efficacy

of other vaccines.
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