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Abstract Affective responses depend on assigning value to environmental predictors of threat

or reward. Neuroanatomically, this affective value is encoded at both cortical and subcortical levels.

However, the purpose of this distributed representation across functional hierarchies remains

unclear. Using fMRI in mice, we mapped a discrete cortico-limbic loop between insular cortex (IC),

central amygdala (CE), and nucleus basalis of Meynert (NBM), which decomposes the affective

value of a conditioned stimulus (CS) into its salience and valence components. In IC, learning

integrated unconditioned stimulus (US)-evoked bodily states into CS valence. In turn, CS salience in

the CE recruited these CS representations bottom-up via the cholinergic NBM. This way, the CE

incorporated interoceptive feedback from IC to improve discrimination of CS valence.

Consequently, opto-/chemogenetic uncoupling of hierarchical information flow disrupted affective

learning and conditioned responding. Dysfunctional interactions in the IC$CE/NBM network may

underlie intolerance to uncertainty, observed in autism and related psychiatric conditions.

Introduction
Brains learn about environmental predictors to adapt future behavioral choices (LeDoux, 2000). For

instance, in Pavlovian learning, the brain updates the CS with its predictive value for unconditioned

reward or threat events (Groessl et al., 2018; Schultz and Dickinson, 2000). Previous research has

successfully identified regions, neuronal populations, and mechanisms underlying this form of asso-

ciative learning (Grewe et al., 2017; LeDoux, 2000). Essentially, Pavlovian learning relies on associ-

ating a CS with basic physiological stimuli (unconditioned stimuli, US) that indicate reward or

punishment (Belova et al., 2007). The interoceptive insular cortex (IC) plays a fundamental role in

sensing these stimuli (Avery et al., 2017; Craig, 2002; Critchley et al., 2004; Livneh et al., 2020;

Segerdahl et al., 2015). In this regard, limbic cortices, in particular the IC, are at the apex of sensory

integration and thus represent interoceptive models and associated states in their most abstracted

form (Chanes and Barrett, 2016; Pezzulo et al., 2018). Since IC activity is intricately linked to affect

(Dolensek et al., 2020), these representations may generate CS value from interoception. Interest-

ingly, the human IC couples to the central amygdala (CE) in resting state functional MRI

(fMRI) (Gorka et al., 2018; Schultz et al., 2012), with neurons in both areas acquiring CS responses

over the course of Pavlovian learning (Shabel and Janak, 2009; Vincis and Fontanini, 2016). As the

CE serves as a major gate for conditioned behavior (Goosens and Maren, 2001; Haubensak et al.,

2010; Li et al., 2013), the IC and CE may constitute components of a dedicated cortico-limbic net-

work for affective decision-making and Pavlovian learning. Indeed, recent studies have established

IC and CE circuitry as a hub for encoding and controlling affective states (Gehrlach et al., 2019;

Schiff et al., 2018; Venniro et al., 2017). However, how this circuitry integrates these affective
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states into CS value for Pavlovian learning and the mechanisms that gate this integration remain

unknown.

Given the prominent functional hierarchical organization of cortico-limbic networks in general,

these functions might emerge from top-down and bottom-up interactions between IC and CE. Nota-

bly, the CE exhibits cytoarchitectural (McDonald, 1982) and functional (Kim et al., 2017) properties

of the striatum, and analogies in hierarchical organization between the motor and limbic system

have been recognized (Barrett and Simmons, 2015; Shipp et al., 2013). Therefore, as in cortico-

striatal motor processing (Turner and Desmurget, 2010), hierarchical interactions might be essential

for affective learning (Karalis et al., 2016; Likhtik et al., 2014; Saez et al., 2017). Importantly, aber-

rations in hierarchical processing may underlie the affective aspects of conditions like autism, due to

dysfunctional network integration (Hong et al., 2019).

So, how could hierarchical interactions integrate affective states into CS value and recruit this

information to Pavlovian learning? On the one hand, Pavlovian learning theories posit that the

updating of CS value is gated, depending on the uncertainty about its affective consequences

(Pearce and Hall, 1980; Rescorla and Wagner, 1972). In the context of IC–CE circuitry, the basal

forebrain, in particular the nucleus basalis of Meynert (NBM), is a likely gate, given its established

role in modulating cortical arousal and plasticity (Puckett et al., 2007). On the other hand, CS value

can be constructed from its underlying salience and valence dimensions (Cooper and Knutson,

2008; Kahnt and Tobler, 2017; Lin and Nicolelis, 2008), analogous to affective states

(Calder et al., 2001). Importantly, signatures of salience and valence are found across both IC and

CE (Shabel and Janak, 2009; Uddin, 2015). We therefore hypothesized that IC, CE, and the NBM

constitute a discrete network for Pavlovian learning. Therein, hierarchical interaction between IC and

CE assembles interoceptive CS value from salience and valence dimensions, which is internally gated

by the NBM.

In general, such emergent functions are difficult to study in isolated cortical and subcortical net-

work elements, so they remain largely uncharted. Therefore, we here mapped the network-wide

organization of CS and US features in IC$CE/NBM circuitry and explored the hierarchical informa-

tion flow underlying affective associations.

Results

IC and CE are functionally coupled and acquire CS information
Given the known anatomical connectivity between IC and CE, we first explored whether the IC and

CE also form a discrete functional unit in brain networks. To this end, small animal resting state fMRI

emerges as an effective technology for monitoring global brain states and their interactions with

local circuitry (Gozzi et al., 2010; Griessner et al., 2018). Seed-based brain-wide correlation of the

IC blood oxygenation level dependent signal in wild-type mice revealed functional coupling of the

IC to the CE (Figure 1Ai top, n = 4; see Figure 1—figure supplement 1A, B for seed placement/

correlation matrix). Conversely, CE seed-based analysis showed coupling with the anterior (aIC) and

the posterior (pIC) portion of the IC (Figure 1Ai bottom). This brain-wide, unbiased approach delin-

eated a network that functionally couples the IC with the CE. Intriguingly, this network includes the

NBM as a potential relay between CE and IC (Figure 1Aii, Figure 1—figure supplement 1C).

These data suggest that the IC$CE/NBM network could operate as a functional unit. We next

set out to deconstruct functional interactions of key elements in this network. The IC can be function-

ally parcellated into anterior and posterior domains (aIC and pIC) (Geuter et al., 2017). In humans,

such rostro-caudal gradients correlate with abstract rule learning and cognitive control (Badre and

D’Esposito, 2007; Bahlmann et al., 2015; Koechlin and Jubault, 2006). Within CE, somatostatin+

(SST::Cre, CESST), protein kinase C-d+ (PKCd::Cre, CEPKCd), and CEm neurons are critical components

for affective learning and behavioral gating (Fadok et al., 2018; Haubensak et al., 2010; Kim et al.,

2017; Li et al., 2013). Taken together, these individual elements might constitute a hierarchical net-

work encoding Pavlovian stimuli to control conditioned responding.

To access the IC elements in behaving animals, extracellular recordings are well suited due to its

anatomical position (particularly the aIC portion of the IC, which is rather inaccessible with other

methods). Using this technology, we could sample from 113 neurons in aIC (n = 6 mice) and 98 neu-

rons in pIC (n = 7 mice) per session (Figure 1B top, Figure 1—figure supplement 2). Conversely,
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Figure 1. IC and CE are coupled and acquire information on task stimuli. (A) (i) Seed-based functional connectivity of the bilateral IC (top) showed

coupling to CE and NBM. Seeding the CE (bottom) showed coupling to the aIC, pIC and NBM (radiological view). Significant z-scored correlations to

seed nodes are displayed in orange (positive) and blue (negative). (ii) Bottom-view of region-based functional connectivity of ROIs (see correlation

matrix in Figure 1—figure supplement 1B). Edge thickness depicts connectivity strength. Only nodes and edges with significant correlations to IC and

CE are shown. Edges between IC, CE, and NBM are highlighted in black. (B) Schematic depiction of experimental recordings. Top, left: mice were

chronically implanted with single-site silicon or multi-site tetrode probes in aIC and pIC. Top, right: SST::Cre, PKCd::Cre, or wild-type mice were

chronically implanted with a GRIN lens above CE in animals injected with AAVs carrying GCaMP6. Bottom: Experimental timeline of the four-stage

discriminatory Pavlovian learning paradigm. (C) (i) Decoder accuracy (Da) of a multi-layer perceptron (MLP) classifier trained to detect CS information in

the activity of 200 random draws of 40 neurons per IC subregion for each CS and stage. Mean of both CSs is shown (significant stage x subregion

interaction in a two-way ANOVA F9,6384=13.69, p<0.0001). * Indicates significant differences from the respective habituation stage. (ii) MLP, trained on

400 random draws of neurons as in (i), to detect R(F)-CS, but applied on F(R)-CS within the habituation and recall stages (significant stage x subregion

interaction in a two-way ANOVA, F3,6392=42.10, p<0.0001). * Indicates significant differences from the habituation stage. (iii) Mean Da of an MLP trained

on the activity of 400 random draws of 40 neurons per IC subregion to detect R-US or F-US applied on R-CS or F-CS, respectively, within the Cearly and

Clate stages (significant stage x subregion interaction in a two-way ANOVA F3,6392=50.14, p<0.0001). * Indicates significant differences from the Cearly

stage. (D) (i) Da of an MLP trained to detect CS information in the activity of 200 random draws of neurons for each CE population (30 neurons for each

CESST and CEPKCd and seven neurons for CEm), CS and stage. Mean of both CSs is shown (significant stage x population interaction in a two-way

ANOVA F15,9576=9.30, p<0.0001). * Indicates significance as in Ci. (ii) MLP, trained on 400 random draws of neurons as in (i), to detect R(F)-CS, but

applied on F(R)-CS within the habituation and recall stages (significant stage x population interaction in a two-way ANOVA, F5,9588=30.40, p<0.0001). (iii)

Mean Da of an MLP trained on the activity of 400 random draws of neurons (30 neurons each for CESST and CEPKCd, and 10 from CEm) to detect R-US

or F-US and applied on R-CS or F-CS, respectively, within the Cearly and Clate stages (significant stage x population interaction in a two-way ANOVA

F5,9588=339.60, p<0.0001). Holm-Sidak post hoc for all analyses, ****p<0.0001. Only non-significant differences to shuffled data are explicitly indicated

(‘ns’). All data presented as mean ± SEM. Full statistical report in Appendix 1—table 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Decoding accuracy of an MLP classifier on iterative draws of neurons from IC and CE populations.

Figure supplement 1. ROI-based functional connectivity of the control group.

Figure 1 continued on next page
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Ca2+ imaging is an efficient technology to record from genetically identified neuronal populations in

CE. We thus recorded 48 units in CESST (n = 4), 54 units in CEPKCd (n = 5), and 29 units in CEm

(n = 4) per session from the right hemisphere, with genetically encoded calcium indicators

GCaMP6f/m (Figure 1B top, Figure 1—figure supplement 3) and extracted calcium events from

calcium traces (Figure 1—figure supplement 4). Electrophysiological spikes and calcium events

were down-sampled to 1 s bins to streamline analyses of neural activity within and across IC and CE

elements.

For Pavlovian learning, mice were water-deprived and subjected to a discriminatory auditory

reward-fear Pavlovian learning paradigm. After habituation in Context A, a CS (CS1; 10 s, 50 ms

white-noise pips at 0.9 Hz) was paired with an appetitive US (R-US, water reward) in reward condi-

tioning sessions (RC) in Context A (R-CS). The same mice then underwent fear conditioning (FC),

which paired a second conditioned stimulus (CS2; 10 s, 3kHz-constant tone) with an aversive US (F-

US; foot-shock) in Context B (F-CS), followed by a non-reinforced recall stage in Context A

(Figure 1B bottom). Importantly, this discriminatory Pavlovian learning approach allowed us to

deconstruct stimulus value into its underlying valence and salience components, which is not possi-

ble using single-valenced fear/reward-only designs.

We propose that encoding task stimuli (CS, US) across cortico-limbic hierarchies is shaped by

associating CS-US contingencies, which gradually assigns value to the CS. Consistent with this idea,

we found CS- and US-bound responses in population activity, as well as significant single neuron

responses to CS and US in both, the IC (Figure 1—figure supplement 5) and CE (Figure 1—figure

supplement 6) in all Pavlovian learning stages. Because learning links CS and US states, information

related to the affective value of CSs should increase with learning. Therefore, we probed for CS

information within the IC–CE network by training a classifier to decode R-CS and F-CS across Pavlov-

ian learning stages (see ‘Single-region decoding’ in Materials and methods). By iteratively drawing

random neurons from each population and stage, we found that information on CSs increased in IC

and CE over time compared to shuffled data (Figure 1Ci, Di for mean decoder accuracy of R- and

F-CS within each stage and neuronal population; see Figure 1—figure supplement 7A for valence-

resolved decoding).

For this information to be meaningful, learning systems should differentiate between R- and F-CS

based on their predicted outcomes. We probed this with CS-specific classifiers trained to separate

R-CS and F-CS-correlated neuronal activity in IC and CE (see ‘Discrimination of neural activity’ in

Materials and methods). IC subregions, CESST and CEm discriminated both CSs at habituation, which

improved further after conditioning for the IC (lower accuracy – lower similarity, Figure 1—figure

supplement 7Bi, ii). In contrast, CEPKCd did not initially differentiate between CSs, but acquired dis-

crimination after learning (Figure 1—figure supplement 7Bii).

In this experimental setting, the decoder trained to discriminate R-CS and F-CS is more tuned to

differences in sensory representations, as CSs are discriminated throughout the paradigm. Con-

versely, decoding R-CS or F-CS from the opposite CS is tuned to shared features among CS repre-

sentations. This way the decoder becomes more sensitive in the temporal domain and thus primarily

reports affective modulation. So, we next trained a classifier on one CS and applied it to the other

CS (see ‘Similarity of neural activity’ in Materials and methods). Indeed, we found that the IC shows

overlapping CS representations at habituation, which separate after conditioning at recall for IC and

CEPKCd (Figure 1Cii, Dii).

In associative learning, affective features in CS representations should originate from and mirror

US states. Thus, these affective CS features should include bodily responses to the primary US

Figure 1 continued

Figure supplement 1—source data 1. fMRI cross-correlation matrix of CESHAM in Figure 1—figure supplement 1B.

Figure supplement 2. Raw data and histological assessment of IC recordings.

Figure supplement 3. Histology of calcium imaging cohorts.

Figure supplement 4. Representative FOVs and activity from CE calcium imaging.

Figure supplement 5. Responses to Pavlovian learning task stimuli in IC.

Figure supplement 6. Responses to Pavlovian learning task stimuli in CE.

Figure supplement 7. Valence-specific mapping of CS and US features in IC–CE circuitry.

Figure supplement 8. Performance-dependent responses to Pavlovian learning task stimuli in IC and CE.
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experience. To test this, we trained a classifier on US responses (Figure 1—figure supplement 7Ci)

and used it to decode CS-evoked neuronal activity. We found that the IC projected US properties

onto the respective CS (higher accuracy – higher similarity, Figure 1Ciii), potentially endowing CS

representations with value. Conversely, CE subpopulations mapped US properties differentially.

While CESST explicitly transferred US properties onto the CS, US and CS features in CEPKCd did not

share representations, and CEm remained neutral with learning (Figure 1Diii; this pattern is consis-

tent across valences, see valence-resolved transfer in Figure 1—figure supplement 7Cii).

Interestingly, IC subregions dissociated the primary valence of both USs, as indicated by differen-

tial population responses to R-US and F-US in aIC and pIC (Figure 1—figure supplement 5B). This

result highlights a positive to negative valence gradient along the IC antero-posterior axis. Impor-

tantly, the magnitude of US responses in IC correlates with later task performance at recall (Fig-

ure 1—figure supplement 8, see ‘Neuronal responses to task stimuli’ in Appendix 1 for details).

Unlike the IC, all CE populations responded to both USs (Figure 1—figure supplement 6B), sug-

gesting that US responses in CE alone may not offer valence contrast for US discrimination, and thus

are tuned to stimulus salience.

In summary, we propose a model wherein CESST and CEm differentiate intrinsic CS salience at

habituation (Figure 1Dii). After learning, these intrinsic differences are overridden by the uniform

salience component of CS-US associations (in either valence domain) (Figure 1Diii, see Figure 1—

figure supplement 7Cii for valence-resolved transfer). Importantly, in this model, early CS salience

in CEPKCd is replaced by CS valence information in later learning stages, driving CS discrimination in

CE (Figure 1Dii and Figure 1—figure supplement 7Bii).

IC–CE information flow facilitates conditioned responding
The representation of CS salience and valence components are distributed across the IC–CE net-

work. In turn, the exchange of this information may be required for conditioned responding in Pav-

lovian learning. To characterize such cortico-limbic interactions, we first assessed synaptic

connectivity between a/pIC and CEl populations by retrograde tracing (Figure 2—figure supple-

ment 1A) and slice electrophysiology (Figure 2A, Figure 2—figure supplement 1B). We found that

aIC and pIC innervate CEl subpopulations symmetrically (92% of PKCd+/91% of SST+ neurons

responsive to aIC and 100% of PKCd+/SST+ neurons to pIC input) (Figure 2B and ‘IC–CE circuit

architecture’ in Appendix 1).

To investigate whether CS information in the IC–CE network is relevant for conditioned respond-

ing, we trained a random forest (RF) classifier to assess the performance of the network in the repre-

sentation of CS-bound behavior in iterative random draws of 100 neurons from IC and CE combined

(see ‘Multi-region decoding’ in Materials and methods). A behavioral episode was considered ‘cor-

rect’ if it occurred during the presentation of the respective CS, and ‘incorrect’ if it occurred before

CS onset. This analysis showed that successful association of CS and behavior was linked to correct

trial performance (Figure 2—figure supplement 2Ai left; RF-associated feature importance in right

is projected onto the elements of the network graph - see below). We then probed information

exchange between IC and CE by quantifying the transfer entropy (TE) from event-aligned (electro-

physiological spike or calcium event) 1s-binned activity centered on the onset of behavioral episodes

(port visits for R-CS; freezing onsets for F-CS) (Figure 2—figure supplement 3A; Magrans de Abril

et al., 2018). Stimuli or behaviors evoke a state that is generalizable across individuals within our cir-

cuit architecture, which makes this approach feasible (Lizier et al., 2011). After exploring TE param-

eter space by considering all possible neuron pairs within each CS and stage, as well as within and

across regions, we applied the peak TE from a 1 s history for all subsequent analyses (Figure 2—fig-

ure supplement 3B). This analysis revealed significant information transfer from IC to CE for correct

behavioral decisions (Figure 2Ci). Specifically, a subnetwork-specific transfer from aIC to CEPKCd and

CESST indicated correct port visits (Figure 2Ci green), while a transfer from pIC to CESST indicated

correct freezing onsets (Figure 2Ci blue). This top-down information transfer was absent in incorrect

behavioral episodes occurring outside of the CS presentation (Figure 2Cii). Taken together, this sug-

gests that the information transfer in the IC$CE/NBM network is critical for conditioned

responding.

To experimentally test the behavioral consequences predicted by TE maps, we subjected a

cohort of mice to the Pavlovian learning task while we temporally uncoupled IC from CE. Mice

received bilateral injections of adeno-associated virus (AAV) carrying either the optogenetic inhibitor
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archaerhodopsin (syn-Arch) or GFP as control (syn-GFP) into aIC or pIC, and bilateral fiber-optic can-

nulas placed above CE (Figure 2Di; Figure 2—figure supplement 4). The respective IC–CE projec-

tion was optogenetically inhibited at CS presentations during training. This design specifically

interfered with the outflow of CS-associated information from IC to CE. Mice receiving aIC–CE inhi-

bition during CS periods throughout conditioning showed impaired conditioned responding, as indi-

cated by a lower number of port visits in RC and exacerbated freezing in FC compared to control

animals (Figure 2Dii). In contrast, we observed the opposite pattern for optogenetic pIC–CE manip-

ulation (Figure 2Dii; see Figure 2—figure supplement 5A).

To test for effects on memory formation, mice underwent a recall session without manipulation.

Consistent with the predicted effects of acute silencing, the optogenetic aIC–CE manipulation

Figure 2. IC-CE information flow facilitates conditioned responding. (A) Fraction of SST+ and PKCd+ neurons in CEl that responded with EPSCs upon

optogenetic stimulation of aIC or pIC input. (B) Scheme for IC inputs to CEl populations. (C) Performance-dependent transfer entropy (TE) between IC

and CE nodes for (i) correct (port visits during R-CS and freezing episodes during F-CS) and (ii) incorrect (port visits or freezing outside of

corresponding CS) behavioral episodes (±2 s of bin containing behavioral episode onset). RF Decoder accuracy (Da) for decoding behavioral episodes

shown above networks. Node color corresponds to RF-associated feature importance, indicating information most relevant for RF classification (see

Figure 2—figure supplement 2Ai). (D) (i) Experimental approach to functionally dissect aIC and pIC inputs to CE during a Pavlovian learning task. (ii)

Behavioral performance of optogenetic experimental groups in Cearly and Clate stages. Significant MANOVA in Cearly (F2,44=3.60, p=0.0126) and Clate

(F2,44=6.43, p=0.0004). (iii) Behavioral performance of the optogenetic (left) and chemogenetic (hM4(pIC)–CE, right) IC–CE treatment cohorts during

manipulation-free recall. Significant MANOVA at recall for the aIC-CE manipulation (F1,13=8.18, p=0.005) and pIC-CE manipulation (F1,17=6.81,

p=0.0067). Data shown as mean ± SEM. nGFP=9/12 naIC–CE=7, npIC–CE=9/8. Holm post hoc as difference to control is noted as #, between manipulation

groups is noted as $. #/$p<0.05, ##p<0.01, ###p<0.001, $$$$p<0.0001. Full statistical report in Appendix 1—table 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Approach and avoidance behavior during conditioning and recall in chemogenetic pIC–CE and aIC-pIC manipulation cohorts.

Figure supplement 1. Anatomical and functional assessment of IC–CE connectivity.

Figure supplement 2. Pavlovian learning task stimulus distributions in the IC–CE network are reshaped by performance and CEPKCd.

Figure supplement 3. Illustration for quantifying TE and assessment of TE parameter space.

Figure supplement 4. Histological assessment of optogenetic IC–CE manipulation cohorts.

Figure supplement 5. Valence-specific conditioned responses of optogenetic IC–CE manipulation cohorts.

Figure supplement 6. Histological verification of the chemogenetic pIC–CE and aIC–pIC manipulation cohorts.

Figure supplement 7. Valence-specific conditioned responses of chemogenetic pIC–CE and aIC–pIC manipulation cohorts.
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interfered with memory acquisition (Figure 2Diii left; see Figure 2—figure supplement 5B for raw

data). Because the acute effects of optogenetic pIC–CE uncoupling did not last into recall, we rea-

soned that tonic silencing by designer receptor exclusively activated by designer drug (DREADD)-

based perturbation of the pIC–CE pathway might be more effective in impacting memory formation

in this setting. To achieve this, a separate cohort of wild-type animals received bilateral injections of

retrograde canine adenovirus expressing Cre-recombinase (CAV::Cre) into the CE and an AAV for

Cre-dependent expression of the inhibitory hM4 receptor bilaterally into the pIC (hM4(pIC)–CE).

CAV::Cre in combination with AAV for Cre-dependent GFP expression served as control (Figure 2—

figure supplement 6 top). The hM4 ligand clozapine-N-oxide (CNO) was systemically administered

prior to conditioning sessions. Indeed, tonic pIC–CE silencing at conditioning resulted in a robust

impairment of memory formation, as indicated by lower conditioned responding at recall

(Figure 2Diii right; see Figure 2—figure supplement 7A, B for learning curves/raw data).

Collectively, these data demonstrate a functional role for IC–CE interaction in both Pavlovian

reward and fear learning, in line with the underlying information flow predicted from TE. We found

that the IC innervates CE subpopulations symmetrically, while IC subregions drive conditioned

responding antagonistically. Both projections implement Pavlovian memory to adapt behavior for

future encounters of sensory cues.

Learning establishes a performance-linked intra-cortical hierarchy
The previous experiments suggest a link between CS value and behavioral performance. To explore

signatures of CS value in the network, we sought to separate CS-driven networks generated from

CS periods that lead to a correct behavioral response (port visit during R-CS/freezing episode during

F-CS) from CS periods with an incorrect behavioral response (unspecific or absent behavior). This

analysis showed that correct conditioned responding is characterized by top-down TE from aIC to

pIC (Figure 3Ai). These characteristics were different in unsuccessful trials, where TE from aIC to pIC

was missing (Figure 3Aii). This finding paralleled the observed poorer decoding of CSs not contain-

ing correct behavioral episodes, as assessed by RF classification (Figure 2—figure supplement 2Aii

for RF decoder accuracy and feature importance).

Directional aIC–pIC communication places aIC above pIC in a cortical hierarchy. Top-down pro-

cesses can ascribe predictions for sensory input to lower elements in the hierarchy, which may facili-

tate interpretation (Kok et al., 2014). To probe for a neurophysiological correlate of an intra-cortical

hierarchy in vivo, we simultaneously recorded from aIC and pIC during the Pavlovian learning task

(Figure 3Bi). We related local spikes (aIC) to distant local field potentials (LFPs in pIC) to assess

coherence, which is a proposed mechanism through which neuronal networks exchange information

by adjusting gain (Fries, 2015). Because performance should scale with learning progress, we chose

the best performer in the fear domain at the recall stage (Figure 1—figure supplement 8A, ‘MS1’).

Spike-triggered averages (STAs) of the pIC LFP were generated around spikes from aIC. During

habituation, STA amplitudes were similar during CS presentation and a 10 s period immediately pre-

ceding CS onset (preCS) (Figure 3Bii). Strikingly, during recall, we observed a stimulus-induced

increase in STA amplitude, revealing oscillatory synchronization (Figure 3Biii). To eliminate potential

changes in total LFP amplitudes, we normalized the STA spectrum to the absolute pIC LFP ampli-

tude, yielding spike-field coherence (SFC). During habituation, we observed SFC peaks in the b- and

g-range for preCS, which decreased during CS presentation (Figure 3Biv). However, at recall, we

observed CS-specific tuning of aIC spikes to pIC LFP, with maximum SFC at 33 Hz (Figure 3Bv). SFC

was stronger in the negative valence domain, indicating an asymmetry in aIC–pIC communication

(Figure 3—figure supplement 1). Synchronization was not present in worse performers (Figure 3—

figure supplement 2A) or when performing the converse analysis (pIC–aIC, Figure 3—figure sup-

plement 2B). Taken together, these data reveal stimulus-driven top-down gain modulation within

the aIC–pIC network, which correlates with experience and performance.

We then determined the functional relevance of aIC–pIC crosstalk for Pavlovian learning. Animals

received bilateral injections of CAV::Cre into the pIC, and an AAV carrying Cre-dependent hM4 (or

Cre-dependent GFP for controls) into aIC (Figure 3Ci, hM4(aIC)–pIC; Figure 2—figure supplement

6 bottom). We systemically administered CNO to both groups at the RC and FC stages and tested

their memory during drug-free recall. This specific inhibition of the projection from aIC to pIC during

training impaired Pavlovian fear learning (Figure 3Cii, see Figure 2—figure supplement 7Aiii,iv, B
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Figure 3. Learning establishes a performance-linked intra-cortical hierarchy. (A) TE networks generated from CSs during which correct (i) and incorrect/

no (ii) behavior occurred during CS presentations. RF decoder accuracy (Da) for decoding correct/incorrect CSs shown above network. Node color

corresponds to feature importance from RF classification. (B) (i) Scheme of recordings from aIC and pIC multi-site implanted animals, examined for

interregional interactions at the habituation and recall stages. (ii, iii) STA from the (ii) habituation and (iii) recall stages of 200 ms pIC LFP traces centered

around the occurrence of 2388 preCS/2526 CS (habituation) and 7132 preCS/6920 CS (recall) aIC spikes. (iv, v) pIC LFP power-normalized SFC of STAs

for (iv) habituation and (v) recall. (C) (i) Experimental strategy for the chemogenetic inhibition of the aIC–pIC pathway. (ii) Quantification of behavioral

performance in reward and fear domains at recall with a significant MANOVA (F1,18=3.64, p=0.0471), nControls=12, nM4(aIC)-pIC=9. Data shown as

mean ± SEM. Holm post hoc as difference to control, #p<0.05. Full statistical report in Appendix 1—table 1. (D) (i) TE network of incorrect CS (from

Aii), with node color showing contrast feature importance between incorrect and correct CS. * Depict significantly different feature importance

(Figure 2—figure supplement 2Aii). RF Da for decoding incorrect CSs shown above network. (ii) TE network (from Figure 2Cii) with node color

illustrating contrast feature importance between incorrect and correct behavioral episodes. * Depict significantly different feature importance

(Figure 2—figure supplement 2Ai). RF Da for decoding incorrect behavioral episodes shown above network.

Figure 3 continued on next page
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for learning curve/raw data). These results provide evidence for top-down gating of associative plas-

ticity in the IC, and support valence-asymmetric gain control established by SFC.

As information flow from aIC is critical for Pavlovian learning, we next tested whether this is also

reflected in the distribution of CS- and behavior-related information. We contrasted the feature

importance obtained from RF classification between correct/incorrect CSs (Figure 3A; Figure 2—

figure supplement 2Aii) or behavioral episodes (Figure 2C; Figure 2—figure supplement 2Ai).

Indeed, feature importance for decoding in aIC was reduced in incorrect compared to correct CS

presentations (Figure 3Di), as well as for CS-unspecific behavioral episodes (Figure 3Dii). Taken

together, these data suggest that CS information in the aIC is critical for Pavlovian learning.

The basal forebrain mediates bottom-up recruitment of IC activity
Neural systems require mechanisms signaling insufficient CS value to drive learning. To probe for

network signatures of insufficient value, we quantified TE between network elements at the time of

CS presentation during learning, when only limited CS-US associations have occurred. TE maps dur-

ing these CS presentations show significant bottom-up transfer from CE to IC, indicating potential

recruitment of IC by CE (Figure 4A; see ‘Control’ in Figure 2—figure supplement 2Aiii for RF

decoder accuracy and feature importance). However, there is no known anatomical projection that

could mediate this transfer.

Interestingly, our fMRI survey had identified strong coupling between CE and the cholinergic

NBM (Figure 1Ai bottom, Figure 1Aii). Because electrical stimulation of CE via the basal forebrain

(Kapp et al., 1994) and activation of putative CEPKCd (Gozzi et al., 2010) are known to trigger corti-

cal arousal, we hypothesized that the CE–NBM pathway may facilitate IC coupling to CE. The topo-

logical organization of NBM projections suggests that distinct subareas innervate specific cortical

patches (Zaborszky et al., 2015), which could allow NBM inputs to coordinate arousal in selected

cortical regions. To investigate this, we made bilateral lesions in CE by injecting N-methyl-D-aspar-

tate (CENMDA, n = 3, Figure 4—figure supplement 1A; see Figure 4—figure supplement 1B for

correlation matrix) to identify regions displaying depleted functional coupling to NBM when com-

pared to CE sham-lesioned control animals (CESHAM). NBM-seeded global brain correlations in the

CENMDA group showed decreased coupling to the right aIC, suggesting that CE input to NBM selec-

tively triggers NBM–aIC interactions (Figure 4B; see Figure 4—figure supplement 1C for seed

placement). To explore this possibility, we assessed synaptic connectivity between CEl populations

and NBM neurons by retrograde tracing (Figure 4—figure supplement 2A) and slice electrophysiol-

ogy (see Figure 4—figure supplement 2B and ‘CE–NBM circuit architecture’ in Appendix 1). We

found that CEl subpopulations, which are mostly GABAergic (Cassell et al., 1999), primarily inner-

vate putatively local parvocellular (pc) interneurons (IN) versus corticopetal magnocellular (mc) neu-

rons, supporting a disinhibitory mechanism of CE input gating NBM output (Figure 4C).

To characterize this pathway in vivo, two aIC–pIC multi-site implanted animals (PKCd::Cre,

Figure 1B) received an additional injection of an AAV carrying Cre-dependent ChR2 into the right

CE, and a fiber-optic cannula placed above the right NBM. This approach directly assessed the

effects of CEPKCd–NBM stimulation on aIC and pIC activity (Figure 4Di). Animals received 5 ms 470

nm laser pulses at 0.2 Hz in an open-loop setting while freely moving, which elicited pronounced

LFP depolarization in aIC, and, to a lesser extent, in pIC (Figure 4Dii top/bottom; comparison of

minima of aIC and pIC in Figure 4Diii). This stimulation also increased single unit spiking in the IC

(Figure 4—figure supplement 3), indicating that CE activity may recruit the IC. 405 nm laser pulses

served as control stimuli, as ChR2 is insensitive to this wavelength (Nagel et al., 2003).

Since the NBM is the major source of acetylcholine in the cortex (Woolf, 1991) and CE input may

disinhibit choline acetyltransferase+ cholinergic neurons (ChAT+) in the NBM, we asked whether

interference with cholinergic signaling could affect IC depolarization. We found that systemic

Figure 3 continued

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. STA, SFC and associated approach and avoidance behavior in aIC–pIC interaction.

Figure supplement 1. The aIC–pIC hierarchy is valence-asymmetric.

Figure supplement 2. The aIC–pIC hierarchy is direction-asymmetric and performance-dependent.
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administration of the muscarinic receptor 1 (M1R) antagonist telenzepine (TZP) dampened CEPKCd–

NBM-induced IC depolarization by approximately 50%. These data demonstrate that activity in the

CE via NBM interacts with cholinergic modulation of IC function (Figure 4Dii).

Figure 4. Basal forebrain NBM mediates bottom-up recruitment of IC activity. (A) (i) Network depicting significant TE during CSs generated from data

acquired from RC and FC stages. RF decoder accuracy (Da) for decoding CSs at RC and FC stages shown above network. Node color corresponds to

feature importance from RF classification (Figure 2—figure supplement 2Aiii). (B) Chronic CENMDA reduced NBM resting-state functional connectivity

to the right aIC compared to the CESHAM group. Two-sample t-test between CESHAM (n = 4) and CENMDA (n = 3) groups, followed by Gaussian Random

Field Theory Multiple Comparison Correction (voxel-level p-value=0.05, cluster-level p-value=0.05). Differential z-score between CENMDA and CESHAM
indicates depleted correlation (blue). (C) Fraction of magnocellular (mc)/parvocellular (pc) neurons in the NBM that responded with IPSCs upon

optogenetic stimulation of CESST or CEPKCd input. (D) (i) In vivo optogenetic stimulation of the right CEPKCd–NBM pathway in two IC multi-site recorded,

freely moving animals. (ii) Peri-laser stimulus time histograms of aIC (top) and pIC (bottom) channel-averaged LFP traces averaged over 60 (405, 470 nm)

and 40 (470 nm-TZP) laser pulses. Traces represent averages of all available channels in aIC (11Ch) and pIC (12Ch). Insets depict respective minima of

LFP traces within 20 ms after laser pulse onset. Significant one-way RM ANOVA for aIC (F1,116,11,16=153.00, p<0.0001) and pIC (F1,340,14,74=23.60,

p<0.0001). (iii) Quantification of IC LFP minima upon CEPKCd–NBM stimulation under control conditions. Significant one-way ANOVA (F2,32=209.40,

p<0.0001). All data presented as mean ± SEM. Holm-Sidak post hoc analysis was used for comparison between treatments/regions (*) and one-sample

t-test for individual differences to zero ($), */$p<0.05, ***/$$$p<0.001, ****/$$$$p<0.0001. Full statistical report in Appendix 1—table 1. (E) (i) STA from

the recall stage of 200 ms pIC LFP traces centered around aIC spikes after systemic administration of TZP. (ii) SFC resulting from pIC LFP power-

normalized STA from (i). (F) Circuit model of the bottom-up IC$CE/NBM pathway consistent with experimental data. Dotted line represents a

connection not assessed, but consistent with previous studies (Jolkkonen et al., 2002; Kapp et al., 1994).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. IC LFP responses upon optogenetic CEPKCd–NBM stimulation.

Figure supplement 1. ROI-based functional connectivity of the CE lesion group.

Figure supplement 1—source data 1. fMRI cross-correlation matrix of CENMDA in Figure 4—figure supplement 1B.

Figure supplement 2. Anatomical and functional assessment of CE–NBM connectivity.

Figure supplement 3. Optogenetic CE–NBM stimulation increases spiking of single neurons in aIC and pIC.
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Because synchronization in the g-range has been associated with M1R signaling (Fisahn et al.,

2002), we asked whether it may also be required for intra-IC SFC (Figure 3B). To test whether aIC–

pIC synchronization is M1R-dependent, we performed recall sessions after systemic administration

of TZP. These were interspersed with recall sessions in control conditions (for the same animal) to

avoid time effects. We found that M1R antagonism abolished CS-induced SFC, indicating that cho-

linergic signaling via M1R mediates cortical gain control in the IC (Figure 4E).

Collectively, these data support a model whereby CE input to the NBM predominantly inhibits

putative GABAergic IN to disinhibit corticopetal ChAT+/- mc neurons (Figure 4F). Importantly, these

results identify a missing link by which behavioral decisions in the CE may recruit the IC–CE pathway

via the NBM (Gehrlach et al., 2019; Venniro et al., 2017).

The CE–NBM pathway promotes top-down information for Pavlovian
learning
In Pavlovian learning, USs serve as primary prediction error signals to update the CS as a US predic-

tor. TE of the post-US period revealed recurrent dynamics between and within CE populations, as

well as bottom-up TE from pIC to aIC. Interestingly, we found bottom-up recruitment of the CEPKCd–

aIC pathway, which linked hierarchies during an instructive US (Figure 5A). Collectively, an imping-

ing US largely uncoupled the network compared to a CS (Figure 4A) and shifted the network TE

toward sensory bottom-up signaling (pIC–aIC; see ‘Control’ in Figure 2—figure supplement 2Aiv

for RF decoder accuracy and feature importance). To determine whether this phenomenon is solely

attributable to primary prediction error, or whether network dynamics represent a general feature of

value ambiguity, we examined CS presentations where information on valence was low but relative

salience was high. These conditions are best satisfied during habituation, as RF mean decoding accu-

racy for CS classification was significantly higher compared to conditioning (Figure 5—figure sup-

plement 1A). CS-aligned TE networks during habituation were remarkably similar to US-aligned

networks at conditioning, suggesting that the CE–NBM–aIC pathway was engaged under conditions

of value ambiguity (Figure 5B).

To further validate these predictions, we recorded from the IC (as in Figure 1B) in mice undergo-

ing conditioning stages when CEPKCd was chemogenetically silenced. To recalculate TE networks,

neural activity from aIC and pIC was replaced with their respective activity from recordings when

CEPKCd was silenced in the same mice (Figure 5C; aIC‘, pIC‘ in hM4(CEPKCd); Figure 4A for control

network). In these networks, we still found bottom-up TE from CE to IC. However, recruitment of

top-down transfer from IC to CE was absent, reminiscent of TE networks during an incorrectly

assigned CS (Figure 3Aii). These results indicate that CEPKCd may be required for IC recruitment. In

addition, intra-IC communication displayed pIC to aIC directionality, resembling US/habituation net-

works (Figure 5A,B). This suggests that CEPKCd activity facilitates top-down information transfer,

while sensory bottom-up signaling predominates during CEPKCd inhibition (Figure 5C). Notably, RF

CS decoding revealed a shift in feature importance from aIC to pIC (Figure 5C, Figure 2—figure

supplement 2Aiii), which is fully recapitulated in the post-US period (TE: Figure 5—figure supple-

ment 1Bi, feature importance: Figure 2—figure supplement 2Aiv) and partially recapitulated for

CS in habituation (TE: Figure 5—figure supplement 1Bii, feature importance: Figure 2—figure sup-

plement 2Av).

Ambiguity of CS value evokes bottom-up CE–IC information flow (Figure 5B). Because this might

be mediated via NBM (Figure 4), reducing CE–NBM signaling should interfere with learning. We

tested this in a cohort of mice in the Pavlovian learning task with selectively blocked CEPKCd–NBM

communication during CS presentations at conditioning. For this, PKCd::Cre animals were bilaterally

injected with Cre-dependent Halorhodopsin or Archaerhodopsin (DIO-NpHR3.0/DIO-Arch) into the

CE and implanted with fiber-optic cannulas above NBM (Figure 5Di; Figure 5—figure supplement

2). Mice receiving optogenetic inhibition of CEPKCd–NBM during all CS periods of conditioning dis-

played aberrant Pavlovian associations during manipulation-free recall. This was evident from the

low number of port visits and reduced freezing levels compared to control animals (Figure 5Dii; see

Figure 5—figure supplement 3A, B for learning curves/raw data). Together, these data reproduce

the impaired memory formation observed in aIC– and pIC–CE manipulations (Figure 2D). Of note,

optogenetic interference with the CESST–NBM pathway had no effect on Pavlovian learning (Fig-

ure 5—figure supplement 2; Figure 5—figure supplement 3C, D).
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IC–CE signaling controls conditioned responding (Figure 2), which, in turn, is largely mediated

through CE circuitry (Fadok et al., 2018). We hypothesized that IC information is critical for the cor-

rect representation of CS value in CE (i.e. salience and valence). To test this, we assessed the func-

tional consequences of silencing the aIC. Animals that had been initially used for CE recordings

(Figure 1D) were used to reassess CS representation and similarity in CE population activity, now

having aIC bilaterally silenced ((hM4(aIC)), Figure 5Ei; Figure 5—figure supplement 4). We focused

on neurons most engaged at respective tasks by selecting neurons with the highest decoding

Figure 5. The CE–NBM pathway promotes top-down information for Pavlovian learning. (A) Network depicting significant TE after US; generated from

data acquired from RC and FC. RF decoder accuracy (Da) for decoding USs at RC and FC stages shown above network. Node color corresponds to

feature importance resulting from RF classification under control conditions (see Figure 2—figure supplement 2Aiv). (B) Network depicting significant

TE during CS in the habituation stage. RF Da for decoding CSs at habituation. Nodes are colored according to the feature importance resulting from

RF classification (see Figure 2—figure supplement 2Av). (C) Network depicting significant TE during CS generated from data acquired during RC and

FC. aIC/pIC data has been replaced by a dataset recorded during chemogenetic inhibition of CEPKCd (aIC’, pIC’) in the same animals (hM4(CEPKCd)). RF

Da for decoding CSs at RC and FC stages during hM4(CEPKCd) shown above network. Feature importance given as differential from control conditions,

with * indicating significant differences (see Figure 2—figure supplement 2Aiii). (D) (i) Experimental approach for optogenetic inhibition of the

CEPKCd-NBM pathway during CS presentations at conditioning. (ii) Quantification of approach and avoidance behavior at recall (nGFP = 7, nCE-PKCd–

NBM=6; significant MANOVA, F1,10=9.76, p=0.0045). Data presented as mean ± SEM. Holm post hoc as difference to control, ##p<0.01. (E) (i) Scheme

for chemogenetic inhibition of aIC (hM4(aIC)) during CE population recordings. (ii) Mean CS Da of an MLP trained to detect CS information in the

activity of 20 CESST, 30 CEPKCd, and 10 CEm best neurons per treatment to detect CS information at recall during control conditions (PBS) and hM4(aIC)

(significant treatment x population interaction in a two-way ANOVA, F5,4788=117.50, p<0.0001). (iii) Mean CS Da of an MLP trained on the activity of 20

CESST, 30 CEPKCd, and 10 CEm best neurons per treatment to detect R(F)-CS applied on F(R)-CS at recall during control conditions (PBS) and hM4(aIC)

(significant treatment x population interaction in a two-way ANOVA, F5,9588=306.50). (iv) Mean CS Da of an MLP trained on the activity of 20 CESST, 30

CEPKCd, and 10 CEm best neurons to detect R-US or F-US applied on R-CS or F-CS, respectively, in the conditioning stages during control conditions

(PBS) and hM4(aIC) (significant treatment x population interaction in a two-way ANOVA, F5,9588=163.90, p<0.0001). * Indicates significant differences

between treatments within population, as determined by Holm-Sidak post hoc analysis, ****p<0.0001. Only non-significant differences to shuffled data

are explicitly indicated (‘ns’). Full statistical report in Appendix 1—table 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Decoding accuracy of an MLP classifier on single neuron activity of CE populations.

Source data 2. Approach and avoidance behavior during the optogenetic CEPKCd–NBM manipulation cohort during recall.

Figure supplement 1. Supporting RF data and TE maps.

Figure supplement 2. Histological verification of the optogenetic CE–NBM manipulation cohorts.

Figure supplement 3. A cell-type-specific CE–NBM pathway is required for Pavlovian learning.

Figure supplement 4. Histology of hM4 expression in calcium imaging cohorts.

Figure supplement 5. Valence-specific mapping of CS and US features in IC–CE circuitry.

Figure supplement 6. Hierarchical interactions in IC$CE/NBM circuitry.
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accuracy (‘best neurons’) using single-neuron decoding (see ‘Neural decoding’ in Materials and

methods), which potentially represented functional ensembles (Figure 5—figure supplement 5A

and Figure 5—source data 1).

Silencing the aIC impaired CS representation in CESST (Figure 5Eii), and CS discrimination by

CEPKCd to chance level (Figure 5Eiii and Figure 5—figure supplement 5B). Furthermore, CESST and

CEm reverted to discrimination levels at habituation (see Figure 1Dii for comparison). This implies

that functionally independent IC pathways channel CS information via CESST and CS discrimination

via CEPKCd.

Strikingly, aIC silencing revealed a disinhibition of salience transfer from US to CS during condi-

tioning, providing a potential mechanistic explanation for the role of IC–CE pathways in Pavlovian

learning (Figure 5Eiv; see Figure 5—figure supplement 5C for valence-resolved transfer). More

specifically, in the absence of aIC function, CESST and CEPKCd map US salience onto CS representa-

tions by default, obstructing stimulus discrimination by CEPKCd. In contrast, successful aIC recruit-

ment confers valence discrimination through CEPKCd (Figure 5Eiii, Figure 1Dii and Figure 5—figure

supplement 5Aii, B) to guide correct behavioral responding (Figure 2C). Collectively, these data

demonstrate that reciprocal hierarchical interaction in the cortico-limbic IC$CE/NBM network ulti-

mately supports salience and valence feature representation in the CE and consequent behavioral

decisions (Figure 2).

Discussion
Our study successfully integrated brain wide network analysis from high field small animal fMRI with

circuit physiology, and thereby mapped the IC$CE/NBM network as a distinct functional unit. This

approach uncovered a basic functional motif that encodes complementary CS features at different

hierarchies and stages of Pavlovian learning. We established a process mechanism, wherein stimulus

salience at lower levels recruits top-level value representations in the IC associated with primary rein-

forcers. This information feeds back to CE to update and reassemble the salience and valence

dimensions of the CS to guide behavioral decisions (Figure 5—figure supplement 6).

We identified an ascending CE–NBM–IC pathway with a critical role in driving IC–CE signaling.

Lesion studies have linked the connection between CE and NBM to enhanced surprise/prediction

error-triggered learning (Han et al., 1999; Holland and Gallagher, 2006). In these settings, the

introduction of inconsistency into CS-US contingencies (which increases uncertainty) enhances CS

associations and learning, supporting the Pearce-Hall model for Pavlovian learning (Pearce and Hall,

1980). In this regard, the CE–NBM pathway could use precision signaling to gate top-down models

from higher order areas (aIC) to primary sensory areas (pIC) for sensory learning (Feldman and Fris-

ton, 2010). This form of striatal coordination of cortical hierarchies, which has been described in

humans (den Ouden et al., 2010) and may be computationally advantageous (e.g. for gating work-

ing memory) (Frank and Badre, 2012). In vitro experiments indicate that acetylcholine can favor

communication from associative to primary sensory cortex (Roopun et al., 2010). Therefore, we

speculate that a similar mechanism may gate associative plasticity in the interoceptive system

(Caras and Sanes, 2017; Figure 3C), as acetylcholine has been linked to learning rate and certainty

(Doya, 2002; Yu and Dayan, 2005). Basal forebrain cholinergic neurons rapidly respond to rein-

forcement feedback in both valence domains (Hangya et al., 2015). Since neurons in the CE are

unlikely to mediate NBM response to US, we posit that CE neurons and the CE–NBM axis integrate

primary reinforcement signals (Cui et al., 2017) with information on novelty, confidence, and expec-

tation (Martinez-Rubio et al., 2018; Steinberg et al., 2020), which is relayed to the IC and the

amygdala itself (Yu et al., 2017). Indeed, these higher order prediction errors, which incorporate

hierarchical probability distributions, have been mapped onto the basal forebrain in humans

(Iglesias et al., 2013).

Cognitive function requires balanced top-down signaling, while its dysregulation may underlie

conditions like autism and schizophrenia (Friston et al., 2016; Lawson et al., 2014). Disruptions in

hierarchical processing (Figures 3D and 5C), analogous to human patients (Hong et al., 2019),

could account for the absence of affective models in autism and the resulting behavioral difficulty

with uncertainty and affective interactions. Since CE–NBM signaling promotes top-down information

flow from aIC to pIC, we propose that disrupted functional connectivity in the IC$CE/NBM network

likely contributes to these conditions. Such hierarchical dysfunction may cause the inability to resolve
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uncertainty (Figure 5D), as seen in autism (Vasa et al., 2018) and comorbid anxiety

(Simonoff et al., 2008). Individuals diagnosed with autism rely less on prior beliefs, suggesting that

they may predominantly utilize sensory bottom-up signaling for perception (Lawson et al., 2017).

This increased sensory bottom-up processing may result from deficits in model-building and reflect

augmented salience (at the expense of valence) in the absence of interoceptive information

(Figure 5Eiii, iv). This phenomenon is congruent with TE networks generated from data under condi-

tions of CEPKCd inhibition, where CS-driven networks revert to uncertain/surprise states (Figure 5C).

Our observations of enhanced decoding accuracy of exteroceptive stimuli in the network, along with

a relative shift of feature importance towards primary sensory pIC (Figure 2—figure supplement

2Aiii), is congruent with the fundamentally different cognitive strategies ascribed to autism

(Happé and Frith, 2006). These studies also show a dominance of posterior networks in perceptual

tasks (Koshino et al., 2005). The shift towards pIC, which exhibits negative-valence bias (Figure 1—

figure supplement 5B), may therefore explain augmented aversive behavior in these conditions.

Theories on affect, such as the somatic marker hypothesis (Barrett, 2017; Bechara and Damasio,

2005), suggest that interoceptive signals modulate decision-making and emotional learning. Gener-

ally, these theories propose that bodily states are integrated into affective decisions. Previous work

highlighted IC–CE circuitry in controlling affective states (Gehrlach et al., 2019; Schiff et al., 2018;

Venniro et al., 2017). In extension of these studies and our data, we propose that top-down infor-

mation transfer in the IC$CE/NBM network beteen IC and CE as a mechanism where interoceptive

signals guide decision-making. Here, the magnitude of US responses along an antero-posterior

valence gradient in the IC (Figure 1—figure supplement 8B) determines CS responses and condi-

tioned responding at recall (Figure 1—figure supplement 8A,C). In this process, the IC not only

represents sensory cues (Livneh et al., 2017), but also generates CS-associated allostatic states,

instructing lower hierarchies to guide behavioral responding and memory formation (Figure 2Ci).

Consistent with recent propositions (Barrett and Simmons, 2015), the gradual acquisition of CS

information by the IC suggests the construction of a hierarchical task model in the interoceptive sys-

tem that issues predictions about the physiological value of the CS to lower hierarchies. Thus, our

study identifies a cortico-limbic hierarchy linking predictive representations of physiological states to

decision making. Representations of CS and US synergize across IC–CE hierarchies for Pavlovian

learning to optimize behavioral outcomes, potentially showcasing a general phenomenon in cortico-

limbic interaction.

In conclusion, we propose that distributed neural ensembles in a cortico-limbic network ascribe

affective value to sensory cues, and drive affective learning by recruiting interoceptive representa-

tions in the IC. Under states of value ambiguity, the CE drives bottom-up recruitment of the IC via

the NBM. This, in turn, integrates stimuli with bodily states to potentially build interoceptive models

in the IC, which then feed back to the CE to control adaptive behavioral decisions. In a psychiatric

context, the inability to establish or recruit hierarchically organized interoceptive predictions in the

IC$CE/NBM circuitry based on the present sensory environment may contribute to symptoms of

autism spectrum disorder or schizophrenia.

Materials and methods

Key resources table

Continued on next page

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(M. musculus,
male)

wild-type Charles River
Laboratories

C57BL/6J background

Strain, strain
background
(M. musculus,
male)

PKCd::Cre doi:10.1038/
nature09553

Prkcd::GluCla::Cre C57BL/6J background
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(M. musculus,
male)

SST::Cre Jackson
Laboratory

SOM-IRES::Cre;
stock no: 013044

C57BL/6J background

Other DIO-GFP This paper AAV5.EF1a.
DIO.GFP.WPRE

AAV vectors to
transduce brain
tissue;
Titer:9.73E+10

Other syn-GFP Penn Vector Core AAV5.hsyn.
eGFP.WPRE

AAV vectors to
transduce
brain tissue;
Titer:1.15E+13

Other syn-ChR2 Penn Vector Core AAV5.hsyn.
hChR2(H134R).
eYFP.WPRE

AAV vectors to
transduce brain
tissue;
Titer:1.87E+13

Other DIO-ChR2 Penn Vector Core AAV5.EF1a.DIO.
hChR2(H134R).
eYFP.WPRE

AAV vectors to
transduce
brain tissue;
Titer:1.30E+13

Other syn-Arch Penn Vector Core AAV5.hsyn.
ArchT.YFP.WPRE

AAV vectors to
transduce
brain tissue;
Titer:4.68E+12

Other DIO-Arch BI Biberach AAV5. Ef1a.DIO.
eArch.eYFP.WPRE

AAV vectors
to transduce
brain tissue;
Titer:6.00E+12

Other DIO-NpHR Penn Vector Core AAV5.Ef1a.DIO.
eNpHR3.0-
eYFP.WPRE

AAV vectors to
transduce
brain tissue;
Titer:2.59E+12

Other GCaMP6m BI Biberach AAV9.hsyn.
GCaMP6m.WPRE

AAV vectors to
transduce
brain tissue;
Titer:1.00E+12

Other DIO-GCaMP6f Penn Vector Core AAV1.hsyn.DIO.
GCaMP6f.WPRE.

AAV vectors to
transduce
brain tissue;
Titer:1.00E+13

Other AAV::Cre Vector Biolabs AAV5.CMV.Cre AAV vectors to
transduce
brain tissue;
Titer:1.00E+12

Other CAV::Cre Montpellier
Vector
Platform

CAV2.Cre CAV vectors to
transduce brain
tissue;
Titer:5.50E+12

Other DIO-hM4 Penn Vector Core AAV5.hsyn.DIO.
hM4D.mCherry.
WPRE

AAV vectors to
transduce brain
tissue;
Titer:1.01E+13

Chemical
compound,
drug

DAPI Life technologies DAPI 1 mg/mL

Chemical
compound,
drug

TZP Sigma CAS #147416-96-4 (3 mg/kg)
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-PKCd
(mouse
monoclonal)

BD Biosciences Cat. #610398 Lot#4080743
IF(1:1000)

Antibody Anti-FOXO3/NeuN
(chicken polyclonal)

Abcam Cat. #ab131624 Lot#GR88877-
12 – IF(1:500)

Antibody Anti-ChAT
(goat polyclonal)

Millipore Cat. #AB144P Lot#2280814 –
IF(1:200)

Antibody Anti-mouse
(goat polyclonal)

Life technologies Cat. #A21052 Lot#1712097 –
IF(1:1000)

Antibody Anti-chicken
(goat polyclonal)

Life technologies Cat. #A11041 Lot#1383072 –
(1:1000)

Antibody Anti-goat
(donkey polyclonal)

Abcam Cat. #A11057 Lot#819578 –
IF(1:500)

Peptide,
recombinant
protein

Streptavidin-
Alexa Fluor

Life technologies Cat. #S11223 Lot#18585036 –
IF(1:1000)

Peptide,
recombinant
protein

CTB-Alexa Fluor Invitrogen Cat. #C34775

Software,
algorithm

GraphPad
Prism 7 and 8

GraphPad
Software, Inc

Version 8.1.1

Software,
algorithm

scikit-learn
package

doi:10.1007/
s13398-
014-0173-7.2

Python 3

Animals
Male mice aged between 2 and 6 months were group housed in a colony on a 14 hr light/10 hr dark

period and allowed water and food ad libitum, unless noted otherwise. Animal procedures were per-

formed in accordance with institutional guidelines and were approved by the four respective Aus-

trian (BGBl nr. 501/1988, idF BGBl I no. 162/2005) and European authorities (Directive 86/609/EEC

of 24 November 1986, European Community) and covered by the license M58/002220/2011/9.

Wild-type C57BL/6J mice were in-house bred and provided by the Research Institute of Molecular

Pathology animal facility or ordered from Charles River Laboratories (strain C57BL/6J). Transgenic

animals (Prkcd::GluCla::Cre [Haubensak et al., 2010] BAC transgenic mice, PKCd::Cre and SOM-

IRES::Cre transgenic mice, SST::Cre; stock no: 013044, Jackson Laboratory) were maintained on the

C57BL/6J background. All mice were handled by the experimenters for several days prior starting

any behavioral procedures.

Resting state functional magnetic resonance imaging (resting state
fMRI)
Animals (CEsham/CENMDA) were subjected to resting state fMRI on a 15.2 T Bruker system (Bruker

BioSpec, Ettlingen, Germany) with a 23 mm quadrature birdcage coil. Prior to imaging, all mice

were anesthetized with 4% isoflurane, and care was taken to adjust the isoflurane levels immediately

so that respiration did not fall below 140 breaths per minute (bpm) at any time. During imaging, res-

piration was maintained between 140 and 160 bpm. For the resting state fMRI study, a single shot

echo planar imaging (EPI) sequence with spin echo readout was used (TR = 3000 ms, TE = 19.7 ms,

FOV = 16�16 mm2, voxel size = 250�250 mm2, 30 slices 0.5 mm thick, one average, 240 repetitions,

12 min total imaging time). Following the resting state scan, a high-resolution T1-weighted anatomi-

cal scan was acquired using gradient echo sequence (TR = 500 ms, TE = 3 ms, FOV = 16�16 mm2,

voxel size = 125�125 mm2, 30 slices 0.5 mm thick, four averages).
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Data processing for resting state fMRI
Resting state fMRI data were processed using the Data Processing Assistant for Resting-state fMRI

Advanced Edition (DPARSF-A) toolbox, which is part of the Data Processing and Analysis of Brain

Imaging (DPABI) toolbox version 2.1 (http://rfmri.org/dpabi) (Chao-Gan, 2010). The first 10 volumes

were removed from each data set to ensure that steady state magnetization was reached. Data were

processed in series of steps that included slice-timing correction, realignment, co-registration, nor-

malization, and segmentation using in-house created mouse masks for cerebrospinal fluid (CSF),

white matter (WM), and gray matter (GM). Nuisance covariates related to motion were regressed

out using Friston 24-parameter model (Friston et al., 1996). In addition, WM and CSF mean time-

series were used as nuisance regressors in the general linear model to reduce influence of physiolog-

ical noise (Margulies et al., 2007). Data were analyzed with and without linear regression of global

signal (Murphy et al., 2009; Murphy and Fox, 2017; Saad et al., 2012). Data were spatially

smoothed with a 2.4 pixel full-width half-maximum Gaussian kernel. A narrow band pass filter

(0.054-0.083 Hz) (Wee et al., 2012) was used following nuisance regression. All data were co-regis-

tered to the in-house generated mouse atlas with 80 distinct brain regions. For the seed-based func-

tional connectivity analysis, the mean time series signal from the region of interest (seed) was

calculated and correlated with the time series signal from each pixel of the brain. Between group

comparison was done using pairwise t-test followed by Gaussian Random Field (GRF) Theory Multi-

ple Comparison Correction (voxel-level p-value=0.05, cluster-level p-value=0.05). Within group com-

parison was done using one-sample t-test followed by GRF multiple comparison correction (voxel-

level p-value=0.05, cluster-level p-value=0.05). For the functional connectivity matrix, mean time

course signal from 80 brain region was calculated. Fisher’s z-transformed Pearson correlation coeffi-

cients between each pair of brain regions were calculated for all groups (Song et al., 2011). One-

sample t-test was used to find a significant pair of brain regions within a group, with p<0.05 consid-

ered significant. All analyses were performed using freely available R-project software

(R Development Core Team, 2011). The network visualization was performed with BrainNet Viewer

(Xia et al., 2013). Resting state fMRI results shown here use global signal regression (GSR). An alter-

native approach for noise correction was also performed (Behzadi et al., 2007), and no significant

differences among results were found (data not shown). We chose to interpret results following

GSR, as this approach improved specificity of positive correlations (Fox et al., 2009;

Weissenbacher et al., 2009) and aided in symptom prediction following focal brain lesions in

humans (Boes et al., 2015).

Stereotactic surgery for virus/toxin injection, fiber-optic cannula/lens/
electrode implantations
General surgical procedures: Mice were deeply anesthetized with isoflurane and maintained at 1.5-

2% throughout the procedure (Univentor 400). Animals were mounted in a stereotactic frame (Kopf),

while body temperature was kept constant at 36˚C via a rectal temperature-controlled heating pad

(FHC). Before incision, local anesthesia was provided underneath the skin by injection of 0.1 ml of

lidocaine (Xylanaest, 1%). The exposed skull was drilled through above the area of interest, relative

to bregma (Paxinos and Franklin, 2007). Animals were provided with post-surgical analgesics

(250 mg/ml Carprofen; Rimadyl, Pfizer) and antibiotics (400 mg/l Enrofloxacin; Baytril, KVP pharma)

via drinking water for 7 days. Opto-chemogenetic experiments: For optogenetic experiments, ani-

mals were bilaterally injected with the appropriate viruses (CEl 80 nl, AP -1.38, ML ±2.9, DV -

4.85 mm; aIC 100 nl, AP +1.54, ML ±3.17, DV -3.55; pIC 80 nl, AP -0.7, ML ±4.2, DV -4 mm) and

bilaterally implanted with fiber-optic cannulas (Doric Lenses, 200-400mm, NA 0.37-0.53) 0.5 mm

above the target coordinates (CEl AP -1.38, ML ±2.9, DV -4.35 mm; NBM AP -0.4, ML ± 1.6, V -

4.3 mm). For chemogenetic inhibition, we used the Cre-dependent hM4 DREADD system (AAV::

DIO-hM4) injected bilaterally into aIC (100 nl) or pIC (80 nl). The Cre-expressing construct (CAV::

Cre) was delivered bilaterally to pIC or CEl. For Ca2+ imaging, mice were unilaterally injected with

an AAV carrying a Ca2+ indicator into CEm (60 nl, AAV::GCaMP6m; AP -1.06, ML +2.25, DV -

4.5 mm) or into CEl (50 nl, AAV::DIO-GCaMP6f; AP -1.38, ML +2.9, DV -4.85 mm). At �4 weeks

post-injection, a lens was implanted above the injection site (Inscopix microendoscope 0561 Part

ID:1050-002182). After a 1-week recovery period, the baseplate was cemented onto the skull (Insco-

pix microscope baseplate V2, Part ID:1050-002192). For in vivo electrophysiology, silicon probes
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(single-site; Neuronexus) or custom-built tetrodes (multi-site; 30 mm Nichrome wires, California Fine

Wire; two bundles per site) were affixed to fiber-optic cannulas and implanted. Ground screws were

mounted above the contralateral prefrontal cortex and cerebellum. All implants were fixed to the

skull with dental cement (SuperBond C&B kit, Prestige Dental Products).

In vivo electrophysiology and data acquisition
Mice were handled and habituated to the recording room for several days prior to experimental

recordings. Implanted electrodes were connected, via an Omnetics connector, to a 16-channel unity-

gain headstage (Plexon), after which mice were left in the home cage for 10 min. The headstage was

connected to a pre-amplifier, and the signal was band-pass filtered (3 Hz-1khz) and amplified. Neural

activity was digitized at 40 kHz and highpass-filtered for spikes (800 Hz) and LFPs (3–200 Hz) for off-

line analysis. Spikes were sorted with Offline Sorter v4 (OFS, Plexon). All recording sessions for each

mouse were merged, and principal component (PC) analysis was performed on unsorted waveforms.

Spikes were manually sorted with OFS. Single units were sorted manually in 3D PC feature space for

each session and declared a single unit if the spike cluster was separable from noise and other clus-

ters and no refractory period infringements were detected. To avoid multi-sampling of single units,

cross-correlograms of units from adjacent channels were inspected for co-firing and respective units

removed from analysis.

Ca2+ imaging and data acquisition
Deep-brain calcium imaging was performed with an in vivo miniature endoscope (Inscopix). Mice

were handled and habituated to the mounted microscope for several days prior to experimental

recordings. nVista HD System v2.0.32 (Inscopix) was used for the acquisition of Ca2+ signals. Images

were obtained at 20 fps with automatically set exposure time, 3.25 gain, and LED power set to 40%.

Data was processed and analyzed with Mosaic v1.2.0 software (Inscopix). The aligned videos were

down-sampled 2x2 (time x space) and the Ca2+ signal was calculated as the relative change of fluo-

rescence over the entire recording session (DF(t)/F0=(F(t)-F0)/F0). The individual neurons and their

Ca2+ traces were extracted by applying PCA-ICA analysis. Spatial filters obtained by PCA-ICA were

then manually selected to avoid duplicates or false units in further analysis. Ca2+ traces were then fil-

tered (0.5 Hz low pass filter) and automated Ca2+ event detection was applied (DF(t)/F0 > 3xMAD

(median absolute deviation), toff=0.2 s). Exported events were further analyzed with Neuroexplorer

software v5.114 (Plexon).

Peri-event time histogram (PETH) analysis of neural recordings
Data from in vivo electrophysiology and calcium recordings were processed in Neuroexplorer. Neu-

ronal firing and calcium signals were extracted as 500 ms binned events. Neuronal events were then

exported as PETH and z-scored per recording stage. Only data within -8 – 18s relative to CS onset

was considered and smoothed with a Gaussian filter (degree of 5 for IC and 8 for CE data). The elec-

trical shock artefact was masked, and neural activity originating from a channel showing prolonged

LFP black-out at a given trial was replaced with the population average of the same bin.

Behavioral design for in vivo electrophysiological experiments
Mice underwent 3 habituation sessions (6 presentations per CS in blocks of 2) and 3 port training

sessions (random water delivery at the port), each 30 min after intraperitoneal injection of either

PBS, CNO, or TZP (treatment order counterbalanced). For RC, mice were separated into a PBS and

CNO groups, receiving respective daily intraperitoneal injections. After 8-12 RC sessions (20 CS-US

pairings/session), mice were subjected to an FC session (3-4 CS-US pairings), receiving the same

treatment as in RC. After three to four recall sessions (using the same treatments as in habituation,

four to six presentations per CS in blocks of two), mice underwent single RC and FC sessions with

the respective converse treatment (PBS or CNO), followed by three recall sessions, each with a dif-

ferent treatment (PBS, CNO, or TZP). Reward-specific behavior was scored when a mouse broke the

IR beam while entering the port (‘port visits’), whereas freezing onsets were scored (1s minimum

time immobile, 1s sliding window, Motion Threshold=80) on recorded videos with Cineplex Editor

v3.6 (Plexon) and aligned to electrophysiological data offline.
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Behavioral design for Ca2+ imaging experiments
Mice underwent two habituation sessions with four presentations of each CS in blocks of two and

two port training sessions (random water delivery in the port). Thirty minutes before each session,

mice received an intraperitoneal injection of either PBS or CNO (treatment order was counterbal-

anced). All mice subsequently underwent 6-10 RC sessions with 12 CS-US pairings, receiving a daily

intraperitoneal injection of PBS before RC sessions, and one session with a prior CNO injection.

Next, mice were subjected to two FC sessions with two CS-US pairings each, receiving an injection

of either PBS or CNO (in balanced order). Thereafter, all mice were subjected to 4 recall sessions

(two PBS and two CNO sessions). Reward-specific behavior was scored when a mouse broke the IR

beam while entering the port (‘port visits’), whereas freezing onsets were scored on recorded videos

with Ethovision v12.0 (Noldus) offline (1s minimum time immobile, <0.5% area change for a 1s slid-

ing window).

Neural decoding
Neural decoding was performed on raw recorded neural data (X) to determine the representation of

stimuli (y) within the recorded brain regions. We reasoned that operations on raw data, while not

maximizing decoder accuracy, will allow for more straightforward comparisons between conditions,

as minimal non-linearities introduced by independent data pre-processing steps are minimized.

Decoding was performed by solving classification problems (y=f(X)) with classes y (defined for Task 1

’CS’: bins before CS onset, bins during CS; for Task 2 ’US’: bins before CS, bins after US).

Three different types computation were performed: 1. Single-region decoding, 2. identification of

similarity between neural activity patterns for single regions, and 3. multi-region decoding. The com-

putations were performed using Jupyter Notebooks, Python 3, and the scikit-learn package

(Fabian et al., 2011). 1s bin data was used for all the computations.

1. Single-region decoding. The neural data matrix (X) was combined from all mice and defined
by region: per stage, treatment, CS, and day. The alignment was performed based on the clas-
sification goal y. Before classification, the data was z-scored and balanced by under-sampling.
The Multi-layer Perceptron classifier was used. A 5-fold cross validation was performed, and
the procedure was repeated 40 times. The mean accuracy of all iterations was used as the cri-
terion for decoder performance. The best single neurons in CE were defined as those reaching
highest accuracy when X consisted of a single neuron only (see Figure 5—source data 1 for all
neurons). For region-wise decoding, neuron selection versions were applied according to the
maximum number of neurons available to allow meaningful comparisons between treatments
and stages, as indicated in the respective figure legends. As a control, the classification proce-
dure was applied to shuffled class vectors y for each task.

2. Similarity of neural activity. To evaluate the similarity of the representations of conditioned and
unconditioned stimuli within neuronal activity over time, decoders trained on one stimulus
were applied to another stimulus within the same stage. Four combinations were performed:
(1) lick on R-CS, (2) shock on F-CS, (3) R-CS on F-CS and (4) F-CS on R-CS. For each combina-
tion, a decoder was trained 10 times on one stimulus and applied on the second one. As a
control, The trained classifier was applied to shuffled target class vectors y.

3. Discrimination of neural activity. To evaluate the ability to discriminate between the two CSs,
three classes were defined: class 0 (bins before the CSs), class 1 (R-CS bins), and class 2 (F-CS
bins). The same criteria used for single-region decoding were applied to the selection of ran-
dom/best neurons and training/evaluation of the classification. Evaluation consisted of two
steps: (1) classical accuracy considering all three classes (data not shown) and (2) a sub-selec-
tion of (1) with class 0 omitted. This resulted in the accuracy of assigning CS bins to the correct
CS divided by the number of all CS bins, which were also classified as CS bins.

4. Multi-region decoding. All available neural data from all mice and regions were combined into
data matrices (X) as ’network’ and defined: per stimulus (CS or US) and stage. alignment was
performed as for ‘Single-region decoding’ based on the classification goal. Two different treat-
ments were investigated: (i) Control: only data from control sessions for all regions (PBS), (ii)
hM4(CEPKCd): only data from CNO sessions for regions aIC and pIC and PBS sessions for
CEPKCd, CESST, and CEm. Prior to Random Forest classification, the data were z-scored and
balanced by under-sampling. 100 neurons were selected randomly, although the percentage
distribution between the regions was respected. A 5-fold cross validation was performed, and
the procedure was repeated 40 times. In addition to the mean classification accuracy of all iter-
ations, the mean feature importance of all single neurons for each region was computed.
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Combined Pavlovian reward and fear conditioning for behavioral
cohorts
Animals from all experimental cohorts were water deprived for 16 hr at all stages of the experiment,

while their weight was continuously monitored to ensure it never fell below 80% of their initial

weight. Prior to conditioning experiments, animals underwent a port training session where they

learned to associate the port with the delivery of a water drop in context A (light on, water delivery

port, neutral grid). Only after successful port training did the animals proceed to reward condition-

ing (RC). All cohorts underwent at least 8 RC sessions in context A, where they received between 12

and 24 pairings of a neutral sound (50 ms white noise, 0.9 Hz for 10 s at 70dB, ‘R-CS’) with the sub-

sequent delivery of a water drop (valve opened for 1s). Thereafter, mice underwent a single fear con-

ditioning (FC) session in context B (no light, port removed, shock grid) where they received five

pairings of a different neutral sound (3kHz continuous for 10s at 70dB, ‘F-CS’) with the delivery of a

mild 1s foot shock (0.5 mA, Coulbourn). Memory testing was conducted in context A by presenting

both unreinforced sounds four times each interleaved in blocks of two (2x(2R-CS + 2F-CS)). Reward-

specific behavior was scored when a mouse broke the IR beam while entering the port (‘port visits’),

whereas freezing behavior was scored on recorded videos with Ethovision v12.0 (Noldus) offline (1s

minimum time immobile, <0.5% area change for a 1s sliding window).

Circuit manipulations
For optogenetic manipulations, mice were handled and habituated to attachment of the fiber-optic

patch cord (Doric Lenses) to the fiber implants for several days prior to the experiment. For behav-

ioral cohorts, activation of Channelrhodopsin-2 (ChR2) was achieved with a 473 nm laser, delivering

10 ms pulses at an intensity of 10 mW at the fiber tip at a stimulation frequency of 20 Hz for IC pro-

jections to CE. Neuronal inhibition was achieved by activation of Halorhodopsin or Archaerhodopsin

using an 489 nm laser at constant 7-8 mW light intensity at the fiber tip. Intensity was adjusted

before experiments with a power meter (Thorlabs, PM100D). The laser was triggered by a custom

Matlab (v2014b) script during conditioning experiments for conditioned stimulus (CS) periods only.

CE–NBM stimulation during in vivo electrophysiological recordings was performed with 5 ms pulses

from a 470 nm LED (Doric Lenses). For chemogenetic/pharmacological manipulations, mice were

handled and habituated to intraperitoneal PBS injections for 3 days. PBS, CNO (Sigma), and TZP

(Sigma) injections were performed 30 min prior to the start of the experiment, and mice were

returned to their home cage after injection. Volume was adjusted to 0.1 ml for all experiments. A

final dosage of 3 mg/kg for TZP and 5 mg/kg for CNO was used for all chemogenetic experiments

other than RC sessions, for which the dosage was adjusted to 2.5 mg/kg.

Transfer entropy
Transfer entropy TEn1�n2 between neurons n1 and n2 was computed using the Python package PyIn-

form (https://github.com/ELIFE-ASU/PyInform), which is a wrapper of the inform library using

Jupyter Notebooks and Python 3. For each treatment, a sound and stage ’network’ (as for the multi-

region decoding) was created with 1s bin data. 500 neurons were subsequently drawn randomly

from this matrix, considering the percentage distribution between the regions. The TE was com-

puted pairwise between all neurons. The local maximum per pair was taken. Only the upper 50% of

all pairs per region combination were considered. TE between regions was defined by the average

TE of neurons belonging to the regions (as in Lizier et al., 2011).

TEk;vðn1� n2Þ ¼ TEkðn1;i� n2;jÞi;j

D E

Where k refers to past states and i and j label the sample subset of Regiona,i and Regionb,j of size

v in each region.

Significance was tested as in Timme and Lapish, 2018. The null hypothesis was that n2 does not

depend on n1. 1000 surrogate datasets were created by shuffling the time-series and computing the

region-wise TE. The proportion of TEsurrogate>=TEreal was used as the p-value for significance testing

(a<0.05).
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Brain slice preparation and electrophysiology
Three weeks prior to electrophysiological recordings, male WT mice received injections of AAV-

ChR2 in the IC, while transgenic SST- and PKCd::Cre mice received injections of AAV-DIO-ChR2 in

the CE. At 2–3 months of age, mice were deeply anesthetized with isoflurane, decapitated, and their

brains quickly chilled in sucrose-based dissection buffer bubbled with 95% O2/5% CO2 containing

the following (in mM): 220 Sucrose, 26 NaHCO3, 2.4 KCl, 10 MgSO4, 0.5 CaCl2, 3 Sodium Pyruvate,

5 Sodium Ascorbate, and 10 glucose. Coronal brain slices (300 mm thick) were cut in dissection

buffer using a Vibratome (Leica, VT1000S), and immediately incubated for a 15 min recovery phase

in oxygenated artificial cerebrospinal fluid (aCSF) comprised of the following (in mM): 126 NaCl, 2.5

KCl, 1.25 NaH2PO4, 26 NaHCO3, 2.5 CaCl2, 2.5 MgCl2, and 25 glucose in 95% O2/5% CO2 at 32˚C.

This was followed by a slice resting phase with oxygenated aCSF for at least 45 min at room temper-

ature (RT). Individual brain slices containing target regions (CE for IC injections, NBM for CE injec-

tions) were placed on the stage of an upright, infrared-differential interference contrast microscope

(Olympus BX50WI) mounted on a X-Y table (Olympus) and visualized with a 40x water immersion

objective by an infrared sensitive digital camera (Hamamatsu, ORCA-03). Slices were fully sub-

merged and continuously perfused at a rate of 1–2 ml per min with oxygenated aCSF. Patch pipettes

were pulled on a Flaming/Brown micropipette puller (Sutter, P-97) from borosilicate glass (1.5 mm

outer and 0.86 mm inner diameter, Sutter) to final resistances ranging from 3 to 5 MW. The Internal

solution for recording responses to optogenetic stimulation of PKC-d/SST neuronal input to NBM

contained the following (in mM): 135 KCl, 0.2 EGTA, 10 HEPES, 2 MgATP, 0.5 Na2GTP, 10 Na2phos-

phocreatine, and 0.2% (w/w) Biocytin. For recording responses to optogenetic stimulation of IC neu-

ronal input in CE, the internal solution contained the following (in mM): 135 K-Gluconate, 5 KCl, 10

HEPES, 2 MgCl2, 0.2 EGTA, 1 Na2ATP, 0.4 NaGTP, 10 Na2Phosphocreatine, 0.2% (w/w) Biocytin,

and 280–290 mOsmol. Membrane currents were recorded with a Multiclamp 700B amplifier (Molecu-

lar Devices). Electrophysiological signals were low-pass filtered at 3 kHz, sampled at 10 kHz (Digi-

data 1440A, Axon Instruments) and further analyzed with pClamp 10 software (Molecular Devices).

Recordings started 5 min after letting the cell reestablish constant activity post break-in. Inputs from

IC to CE or CE to NBM were stimulated in voltage-clamp (�70 mV) with 20 ms blue light pulses

through a 40x electrophysiology microscope objective, driven by a 120W mercury lamp (X-Cite 120

PC Q). The amplitude of 4 pulses, 1 s apart, was averaged as postsynaptic responses of specific cell

types in the CE or NBM. Cell identity was confirmed using biocytin and post hoc

immunohistochemistry.

Histological evaluation
For verification of injection targeting, implant placement, and virus expression, mice were deeply

anesthetized by an intraperitoneal injection of a mixture of Ketamine (10 mg/ml, OGRIS Pharma)

and Medetomidine (Domitor, ORION Pharma) in phosphate-buffered saline (PBS), and transcardially

perfused with cold 10 ml PBS and 30 ml of 4% Paraformaldehyde (PFA). Brains were immediately

removed and post-fixed overnight in 4% PFA at 4˚C. 20mm cryo-sections were obtained from brains

from all cohorts except animals subjected to electrophysiological recordings or Ca2+ imaging, for

which 80-mm-thick vibratome sections were collected.

Immunohistochemistry
Sections were permeabilized with PBS-T (0.1% Triton X-100 in PBS or 0.2% for ex vivo electrophysiol-

ogy sections) and subsequently blocked with 2% bovine serum albumin (BSA, in PBS-T) for 1 hr to

attenuate unspecific binding. Slides were incubated overnight with primary antibodies (Key Resour-

ces Table) in BSA at 4˚C. Slides were then washed in PBS-T and incubated with fluorescently conju-

gated secondary antibodies (Key Resources Table) in BSA for 2h at room temperature. After

washing, slides were mounted with fluorescence mounting medium (Dako) and images were

acquired on a confocal microscope (Zeiss) and slide scanner (3DHistech).

Data analyses and statistical tests
Sample sizes were in line with estimates derived from previous experiments using G*Power Version

3.1.9.6. For neural recording experiments, three to five animals were required (effect size 0.3;

Groessl et al., 2018). For behavioral experiments, the target sample size was in the range of 8-10
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animals (effect size 0.45, Groessl et al., 2018). Animals were randomly assigned to experimental

cohorts. The behavioral experimenter was blind to the treatment wherever possible. Behavioral and

neural data analyses was carried out blinded and/or computationally wherever applicable. Establish-

ment of the behavioral assay, neural recordings, and circuit manipulation were performed in inde-

pendent experiments with separate animal cohorts (Figures 2, 5, Figure 2—figure supplements 5,

7, Figure 5—figure supplement 3; biological replicates). Basic behavior was replicated across

experiments for control groups. Circuit manipulations were replicated using different technologies

on separate experiments and cohorts (Figures 2, Figure 2—figure supplements 5, 7; biological

replicates). Neural activity recordings were replicated in independent animals (biological replicates)

and across sessions within animals (technical replicates) (Figures 1, 5, Figure 1—figure supple-

ments 5, 6 and 8, Figure 5—figure supplement 5). For behavioral experiments, 8/97 animals were

excluded for failing port training, low virus expression, or misplaced/broken fibers. For in vivo elec-

trophysiology and calcium imaging, 4/14 and 13/26 animals were excluded due to absent Calcium

signals or absent/low quality signals, respectively. After unit identification, no further animals were

excluded in either case. Statistical significance was determined using parametric statistics (assuming

normality of the data) or permutation tests. All statistical tests were performed using Graph Pad

Prism (versions 7 & 8) and custom R and/or Python codes. Significant results are indicated as

described in the figure legends and Appendix 1—table 1.
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Appendix 1

Neuronal responses to task stimuli
The Fraction of responders in the IC/CE was based on a trial-averaged z-score deflection of ±1.65.

Population responses to task stimuli are shown in Figure 1—figure supplements 5A–C and 6A–

C. PETH of positive CS responders in the IC/CE are shown in Figure 1—figure supplements 5Aiii,

Ciii and 6Aiii,Ciii. Single neuron activity suppression was virtually absent with these criteria, there-

fore suppression is only reflected on the population level. Consistent conditioned responding

reflects task performance. Since performance at recall varied within the IC/CE groups (Figure 1—fig-

ure supplement 8A), we segregated neurons of individual mice into ‘performers’ and ‘non-perform-

ers’ using a median split on behavioral performance at recall. For IC subregions, we found a striking

difference in US response magnitude between the two groups, where non-performers population

response to R-US in aIC and tonic response to F-US in pIC were largely absent. These data indicate

that successful US encoding in IC determines behavioral performance (Figure 1—figure supplement

8Bi, iv). This pattern transferred to the CS in performers, where aIC showed population responses to

R-CS, whereas pIC displayed responses to F-CS at recall (Figure 1—figure supplement 8Ci, iv). Sim-

ilarly, a median split based on behavioral performance at recall for the CE recording cohort (Fig-

ure 1—figure supplement 8A) revealed significant differences in US response magnitude in the

PKCd+ population for the fear domain, and a trend for the reward domain upon reward delivery (Fig-

ure 1—figure supplement 8Dv, iv). This suggests that PKCd+ neurons may signal the need to learn,

while their level of engagement may determine success.

IC–CE circuit architecture
To address whether IC-CE TE for conditioned responding (Figure 2C) may emerge from an underly-

ing neural network architecture, we performed retrograde anatomical tracing with fluorescently

labeled CTB. We injected CTB into the CE and quantified CTB+ neurons in the IC relative to DAPI of

the entire IC area and the respective projection field to the CE. We found that CE-projecting neu-

rons are more abundant in pIC than aIC relative to its size or projection area (Figure 2—figure sup-

plement 1A). TE for conditioned responding could suggest a biased innervation of CE

subpopulations by IC subregions. We examined whether TE maps are reflected in the circuit archi-

tecture by assaying synaptic connectivity using slice electrophysiology combined with optogenetics.

PKCd::Cre mice received an injection of AAVs carrying Cre-dependent GFP into the CE to allow for

direct identification of SST+ (approximated by absence of GFP expression) and PKCd+ neurons, and

syn-ChR2 was injected into aIC or pIC for pan-neuronal expression (Figure 2—figure supplement

1B). Optogenetic excitation of a/pIC input to CE revealed monosynaptic connections between IC

and CEl neurons. Interestingly, we found no difference in the synaptic innervation between CEl pop-

ulations (Figure 2A, 92% of PKCd+ and 91% of SST+ neurons responded to aIC/100% of PKCd+/

SST+ neurons to pIC input). These data support a functional rostro-caudal organization of the IC-CE

network, reflecting differential US tuning in IC subregions (Figure 1—figure supplement 5B). Based

on these data, we propose that functional differences in subnetworks emerge from distributed

ensembles rather than from a pre-determined circuit architecture.

CE–NBM circuit architecture
We assessed the anatomical connectivity between CE and NBM by injecting the retrograde tracer

cholera toxin-B (CTB) into the NBM, which showed robust backlabeling in CE. Double-staining for

PKCd revealed that this projection is dominated by the PKCd+ population (~10% of CTB+/DAPI are

PKCd+ vs. ~5% PKCd-) (Figure 4—figure supplement 2A). Backlabeling to CEm was previously

reported to be sparse or absent (Jolkkonen et al., 2002). Since the vast majority of CE neurons are

GABAergic (Cassell et al., 1999), we suspected that a disinhibitory mechanism may gate (choliner-

gic) output neurons in the NBM. To examine cell type-specific innervation of NBM by CE, we per-

formed slice electrophysiology, combined with optogenetic stimulation of CE fibers in NBM

(Figure 4—figure supplement 2Bi). An AAV carrying Cre-dependent Channelrhodopsin-2 (DIO-

ChR2) was injected into the CE of PKCd::Cre and SST::Cre mice, and slices containing NBM were

obtained after 3 weeks. Patch-clamp was guided by cell morphology, as corticopetal neurons are
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magnocellular (mc), rather than parvocellular (pc) interneurons (IN) (Gritti et al., 1997). To identify

cholinergic cells, neurons were filled with biocytin for labelling with fluorescently tagged streptavi-

din, and stained for choline acetyltransferase (ChAT) post hoc (Figure 4—figure supplement 2Bii).

Of recovered mc neurons, 33% (2/6) were identified as ChAT+ neurons, but no pc neurons stained

for ChAT (0/14). Optogenetic stimulation of CESST and CEPKCd neuronal inputs induced inhibitory

postsynaptic responses in 82% (9/11) and 77% (10/13) of ChAT- IN, respectively. We found that 14%

(1/7) of mc neurons are responsive to CESST but none responded to CEPKCd input (0/7; Figure 4C),

consistent with previous reports showing that CE axons largely avoid ChAT+ neurons

(Jolkkonen et al., 2002).

Appendix 1—table 1. Detailed statistical report for MANOVA/ANOVA analyses.

Continued on next page

Dataset Statistical test p-values
F ratio (DFn,
DFd)

Figure 1Ci CS IC
Stage x Subregion
Stage
Subregion

Two-way ANOVA
p<0.0001
p<0.0001
p<0.0001

F9,6384=13.69
F3,6384=29.11
F3,6384=203.31

Figure 1Cii CS similarity IC
Stage x Subregion
Stage
Subregion

Two-way ANOVA
p<0.0001
p<0.0001
p<0.0001

F3,6392=42.10
F1, 6392=116.62
F3, 6392=42.69

Figure 1Cii CS US transfer IC
Stage x Subregion
Stage
Subregion

Two-way ANOVA
p<0.0001
p<0.0001
p<0.0001

F3,6392=50.14
F1,6392=102.10
F3,6392=469.13

Figure 1Di CS CE
Stage x Population
Stage
Population

Two-way ANOVA
p<0.0001
p<0.0001
p<0.0001

F15,9576=9.30
F3,9576=30.92
F5,9576=28.20

Figure 1Dii
CS similarity CE
Stage x Population
Stage
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F5,9588=30.40
F1,9588=25.90
F5,9588=33.87

Figure 1Diii
CS US transfer CE
Stage x Population
Stage
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F5,9588=339.60
F1,9588=88.70
F5,9588=798.90

Figure 2Dii Conditioning early MANOVA p=0.0126 F2,44=3.60

Figure 2Dii Conditioning late MANOVA p=0.0004 F2,44=6.43

Figure 2Diii, left Recall opto MANOVA p=0.0050 F1,13=8.18

Figure 2Diii, right Recall hM4(pIC) MANOVA p=0.0067 F1,17=6.81

Figure 3Cii Recall hM4(aIC)-pIC MANOVA p=0.0471 F1,18=3.64

Figure 4Dii CEPKCd-NBM stim.
aIC pIC

One-way RM
ANOVA

p<0.0001
p<0.0001

F1,116,11,16=153.00
F1,340,14,74=23.60

Figure 4Diii CEPKCd-NBM stim. One-way ANOVA p<0.0001 F2,32=209.40

Figure 5Dii Recall CEPKCd-NBM MANOVA p=0.0045 F1,10=9.76

Figure 5Eii CS CE
Treatment x Population
Treatment
Population

Two-way ANOVA
p<0.0001
p<0.0001
p<0.0001

F5,4788=117.50
F1,4788=102.80
F5,4788=449.30

Figure 5Eiii CS similarity CE
Treatment x Population
Treatment
Population

Two-way ANOVA
p<0.0001
p<0.0001
p<0.0001

F5,9588=306.50
F1,9588=134.80
F5,9588=340.70
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Appendix 1—table 1 continued

Dataset Statistical test p-values
F ratio (DFn,
DFd)

Figure 5Eiv CS US transfer CE
Treatment x Population
Treatment
Population

Two-way ANOVA
p<0.0001
p<0.0001
p<0.0001

F5,9588=163.90
F1,9588=432.50
F5,9588=584.50

Figure 1—figure supplement 5Ai
Habituation R-CS
Time x Subregion
Time
Subregion

Two-way RM
ANOVA

p=0.1764
p=0.0037
p=0.7836

F52,11180=1.18
F52,11180=1.61
F1,215=0.08

Figure 1—figure supplement 5Ai
Habituation F-CS
Time x Subregion
Time
Subregion

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.9293

F52,11076=2.23
F52,11076=2.17
F1,213=0.008

Figure 1—figure supplement 5Aiii
Habituation R-CS Responders
Time x Subregion
Time
Subregion

Two-way RM
ANOVA

p=0.8104
p<0.0001
p=0.6977

F52,1664=0.82
F52,1664=5.682
F1,32=0.1536

Figure 1—figure supplement 5Aiii Habituation F-CS
Responders
Time x Subregion
Time
Subregion

Two-way RM
ANOVA

p=0.0007
p<0.0001
p=0.7154

F52,884=1.782
F52,884=2.497
F1,17=0.1374

Figure 1—figure supplement 5Bii
R-US
Time x Subregion
Time
Subregion

Two-way RM
ANOVA

p=0.0002
p=0.9740
p=0.0021

F52,14248=1.87
F52,14248=0.66
F1,274=9.62

Figure 1—figure supplement 5Biv
F-US
Time x Subregion
Time
Subregion

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.0587

F50,7100=2.29
F50,7100=5.03
F1,142=3.63

Figure 1—figure supplement 5Ci
Recall R-CS
Time x Subregion
Time
Subregion

Two-way RM
ANOVA

p=0.0537
p=0.1030
p=0.79

F52,14560=1.34
F52,14560=1.26
F1,280=0.07

Figure 1—figure supplement 5Ci
Recall F-CS
Time x Subregion
Time
Subregion

Two-way RM
ANOVA

p=0.5919
p<0.0001
p=0.3279

F52,14560=0.94
F52,14560=2.42
F1,280=0.961

Figure 1—figure supplement 5Ciii
Recall R-CS Responders
Time x Subregion
Time
Subregion

Two-way RM
ANOVA

p=0.1447
p<0.0001
p=0.1309

F52,1924=1.212
F52,1924=2.984
F1,37=2.387

Figure 1—figure supplement 5Ciii
Recall F-CS Responders
Time x Subregion
Time
Subregion

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.4025

F52,1716=2.159
F52,1716=6.107
F1,33=0.7194

Figure 1—figure supplement 6Ai
Habituation R-CS
Time x Population
Time
Population

Two-way RM
ANOVA

p<0.0001
p=0.1186
p=0.9656

F64,3232=2.76
F32,3232=1.30
F2,101=0.036
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Appendix 1—table 1 continued

Dataset Statistical test p-values
F ratio (DFn,
DFd)

Figure 1—figure supplement 6Ai
Habituation F-CS
Stage x Population
Stage
Population

Two-way RM
ANOVA

p<0.0001
p=0.0104
p=0.1205

F64,4032=2.43
F32,4032=1.67
F2,126=2.15

Figure 1—figure supplement 6Aiii
Habituation R-CS Responders
Time x Population
Time
Subregion

Two-way RM
ANOVA

p=0.9238
p<0.0001
p=0.9813

F64,800=0.7528
F32,800=7.436
F2,25=0.0189

Figure 1—figure supplement 6Aiii
Habituation F-CS Responders
Time x Population
Time
Subregion

Two-way RM
ANOVA

p=0.0005
p<0.0001
p=0.0473

F64,1056=1.721
F32,1056=2.425
F2,33=3.353

Figure 1—figure supplement 6Bii
R-US
Time x Population
Time
Population

Two-way RM
ANOVA

p<0.0001
p<0.0001
p<0.0001

F56,3976=2.45
F28,3976=9.61
F2,142=11.18

Figure 1—figure supplement 6Biv
F-US
Time x Population
Time
Population

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.6376

F56,4480=4.22
F28,4480=31.28
F2,160=0.451

Figure 1—figure supplement 6Ci
Recall R-CS
Time x Population
Time
Population

Two-way RM
ANOVA

p<0.0001
p=0.5507
p=0.8385

F72,9684=2.81
F36,9684=0.952
F2,269=0.176

Figure 1—figure supplement 6Ci
Recall F-CS
Time x Population
Time
Population

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.2932

F72,9072=2.01
F36,9072=9.42
F2,252=1.23

Figure 1—figure supplement 6Ciii
Recall R-CS Responders
Time x Population
Time
Population

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.6363

F72,2952=3.577
F36,2952=16.4
F2,82=0.4546

Figure 1—figure supplement 6Ciii
Recall F-CS Responders
Time x Population
Time
Subregion

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.4251 F72,3240=2.273

F52,3240=28.5
F2,90=0.8636

Figure 1—figure supplement 7Ai
R-CS IC
Stage x Subregion
Stage
Subregion

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F9,3184=5.68
F3,3184=9.99
F3,3184=78.65

Figure 1—figure supplement 7Aii
F-CS IC
Stage x Subregion
Stage
Subregion

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F9,3184=11.50
F3,3184=22.38
F3,3184=137.80

Figure 1—figure supplement 7Aiii
R-CS CE
Stage x Population
Stage
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F15,4776=29.17
F3,4776=23.21
F5,4776=28.00
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Appendix 1—table 1 continued

Dataset Statistical test p-values
F ratio (DFn,
DFd)

Figure 1—figure supplement 7Aiv
F-CS CE
Stage x Population
Stage
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F15,4776=7.93
F3,4776=13.56
F5,4776=24.62

Figure 1—figure supplement 7Bi
CS discrimination IC
Stage x Subregion
Stage
Subregion

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F3,1592=18.53
F1,1592=27.94
F3,1592=479.8

Figure 1—figure supplement 7Bii
CS discrimination CE
Stage x Population
Stage
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F5,2366=15.58
F1,2366=19.37
F5,2366=25.30

Figure 1—figure supplement 7Ci
R-US IC
Stage x Subregion
Stage
Subregion

Two-way ANOVA

p<0.0001
p=0.0030
p<0.0001

F3,1592=16.06
F1,1592=8.85
F3,1592=302.70

Figure 1—figure supplement 7Ci
F-US IC
Stage x Subregion
Stage
Subregion

Two-way ANOVA

p=0.2300
p=0.8792
p<0.0001

F3,1592=1.44
F1,1592=0.02
F3,1592=1619.00

Figure 1—figure supplement 7Ci
R-US CE
Stage x Population
Stage
Subregion

Two-way ANOVA

p<0.0001
p=0.0213
p<0.0001

F5,2228=5.40
F1,2228=5.31
F5,2228=23.34

Figure 1—figure supplement 7Ci
F-US CE
Stage x Population
Stage
Subregion

Two-way ANOVA

p=0.0013
p=0.0020
p<0.0001

F5,2388=4.01
F1,2388=9.53
F5,2388=76.81

Figure 1—figure supplement 7Cii
RC CS US transfer IC
Stage x Subregion
Stage
Subregion

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F9,3192=242.50
F3,3192=521.60
F3,3192=167.50

Figure 1—figure supplement 7Cii
FC CS US transfer IC
Stage x Subregion
Stage
Subregion

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F9,3192=9.97
F3,3192=11.62
F3,3192=688.50

Figure 1—figure supplement 7Cii
RC CS US transfer CE
Stage x Population
Stage
Population

Two-way ANOVA

p<0.0001
p=0.0013
p<0.0001

F5,4788=18.39
F1,4788=10.42
F5,4788=326.10

Figure 1—figure supplement 7Cii
FC CS US transfer CE
Stage x Population
Stage
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F5,4788=603.30
F1,4788=142.20
F5,4788=1057.40

Figure 1—figure supplement 8Bi aIC R-US
Time x Performance
Time
Performance

Two-way RM
ANOVA p=0.0029

p=0.0034
p=0.0388

F52,7592=1.63
F52,7592=1.62
F1,146=4.35
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Appendix 1—table 1 continued

Dataset Statistical test p-values
F ratio (DFn,
DFd)

Figure 1—figure supplement 8Bii aIC F-US
Time x Performance
Time
Performance

Two-way RM
ANOVA p<0.0001

p<0.0001
p=0.9474

F50,3950=2.47
F50,3950=2.50
F1,79=0.004

Figure 1—figure supplement 8Biii pIC R-US
Time x Performance
Time
Performance

Two-way RM
ANOVA p<0.0001

p<0.0001
p=0.6200

F52,6552=9.86
F52,6552=3.55
F1,126=0.247

Figure 1—figure supplement 8Biv pIC F-US
Time x Performance
Time
Performance

Two-way RM
ANOVA p<0.0001

p<0.0001
p<0.0001

F50,3050=3.27
F50,3050=5.93
F1,61=17.59

Figure 1—figure supplement 8Ci aIC R-CS
Time x Performance
Time
Performance

Two-way RM
ANOVA p<0.0001

p=0.6431
p=0.5547

F52,8268=2.09
F52,8268=0.917
F1,159=0.350

Figure 1—figure supplement 8Cii aIC F-CS
Time x Performance
Time
Performance

Two-way RM
ANOVA p=0.0434

p=0.0002
p=0.8521

F52,8268=1.36
F52,8268=1.84
F1,159=0.0349

Figure 1—figure supplement 8Ciii pIC R-CS
Time x Performance
Time
Performance

Two-way RM
ANOVA p>0.9999

p=0.1204
p=0.8266

F52,6188=0.353
F52,6188=1.24
F1,119=0.05

Figure 1—figure supplement 8Civ pIC F-CS
Time x Performance
Time
Performance

Two-way RM
ANOVA p=0.0003

p=0.0063
p=0.3331

F52,6188=1.81
F52,6188=1.56
F1,119=0.944

Figure 1—figure supplement 8Di
SST R-US
Time x Performance
Time
Performance

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.0607

F28,3052=2.33
F28,3052=2.49
F1,109=3.59

Figure 1—figure supplement 8Dii
SST water
Time x Performance
Time
Performance

Two-way RM
ANOVA

p=0.1217
p<0.0001
p=0.0187

F28,3052=1.32
F28,3052=20.42
F1,109=5.70

Figure 1—figure supplement 8Diii
SST F-US
Time x Performance
Time
Performance

Two-way RM
ANOVA

p=0.0003
p<0.0001
p=0.9986

F28,1344=2.22
F28,1344=8.10
F1,48=3.012e-006

Figure 1—figure supplement 8Div
PKCd R-US
Time x Performance
Time
Performance

Two-way RM
ANOVA

p<0.0001
p=0.0342
p=0.7613

F28,3192=3.07
F28,3192=1.54
F1,114=0.09

Figure 1—figure supplement 8Dv
PKCd water
Time x Performance
Time
Performance

Two-way RM
ANOVA

p=0.0262
p<0.0001
p=0.6868

F28,3220=1.56
F28,3220=2.67
F1,115=0.16

Figure 1—figure supplement 8Dvi
PKCd F-US
Time x Performance
Time
Performance

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.3513

F28,1848=2.96
F28,1848=6.32
F1,66=0.88
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Appendix 1—table 1 continued

Dataset Statistical test p-values
F ratio (DFn,
DFd)

Figure 1—figure supplement 8Dvii
CEm R-US
Time x Performance
Time
Performance

Two-way RM
ANOVA

p>0.999
p<0.0001
p=0.7647

F28,1512=0.18
F28,1512=3.95
F1,54=0.09

Figure 1—figure supplement 8Dviii
CEm water
Time x Performance
Time
Performance

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.5895

F28,1512=2.92
F28,1512=3.53
F1,54=0.30

Figure 1—figure supplement 8Dix
CEm F-US
Time x Performance
Time
Performance

Two-way RM
ANOVA

p=0.9646
p<0.0001
p=0.6271

F28,1204=0.57
F28,1204=22.73
F1,43=0.24

Figure 2—figure supplement 2Ai
Feature importance behavior

One-way ANOVA p<0.0001 F9,156190=5184.00

Figure 2—figure supplement 2Aii
Feature importance CS

One-way ANOVA p<0.0001 F9,73454=2437.00

Figure 2—figure supplement 2Aiii
Feature importance CS hM4 CEPKCd

One-way ANOVA p<0.0001 F9,77790=5185.00

Figure 2—figure supplement 2Aiv
Feature importance US hM4 CEPKCd

One-way ANOVA p<0.0001 F9,77821=2126.00

Figure 2—figure supplement 2Av
Feature importance habituation CS hM4 CEPKCd

One-way ANOVA p<0.0001 F9,77619=1766.00

Figure 2—figure supplement 5Ai
RC port visits opto
Session x Treatment
Session
Treatment

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.0271

F14,154=3.40
F7,154=15.39
F2,22=4.27

Figure 2—figure supplement 5Aii
FC freezing opto
Treatment x Trial
Treatment
Trial

Two-way RM
ANOVA

p<0.0001
p<0.0001
p=0.0054

F10,110=4.71
F5,110=50.67
F2,22=6.69

Figure 2—figure supplement 5Bi
Recall port visits opto
CS x Treatment
CS
Treatment

Two-way RM
ANOVA

p=0.2605
p<0.0001
p=0.0343

F4,44=1.37
F2,44=17.90
F2,22=3.95

Figure 2—figure supplement 5Bii
Recall freezing opto
CS x Treatment
CS
Treatment

Two-way RM
ANOVA

p=0.0225
p<0.0001
p=0.0154

F4,44=3.17
F2,44=66.66
F2,22=5.07

Figure 2—figure supplement 7Ai
RC GFP
CS x Session
CS
Session

Two-way RM
ANOVA

p<0.0001
p=0.0001
p<0.0001

F13,130=5.97
F1,10=38.23
F13,130=4.64

Figure 2—figure supplement 7A ii
RC hM4(pIC)-CE
CS x Session
CS
Session

Two-way RM
ANOVA

p<0.0001
p=0.0027
p<0.0001

F13,91=9.07
F1,7=20.62
F13,91=8.09

Figure 2—figure supplement 7Aiii
RC hM4(aIC)-pIC
CS x Session
CS
Session

Two-way RM
ANOVA

p=0.0003
p=0.0053
p<0.0001

F13,104=3.30
F1,8=14.36
F13,104=4.86
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Appendix 1—table 1 continued

Dataset Statistical test p-values
F ratio (DFn,
DFd)

Figure 2—figure supplement 7Aiv
FC
Treatment x Trial
Treatment
Trial

Two-way RM
ANOVA

p=0.0537
p=0.56
p<0.0001

F10,125=1.88
F2,25=0.59
F5,125=174.70

Figure 2—figure supplement 7B
Recall port visits hM4(pIC)-CE
CS x Treatment
CS
Treatment

Two-way RM
ANOVA

p=0.9251
p<0.0001
p=0.7647

F2,36=0.08
F2,36=31.88
F1,18=0.09

Figure 2—figure supplement 7B
Recall freezing hM4(pIC)-CE
CS x Treatment
CS
Treatment

Two-way RM
ANOVA

p=0.2970
p<0.0001
p=0.0087

F2,36=1.26
F2,36=40.47
F1,18=8.65

Figure 2—figure supplement 7B
Recall port visits hM4(aIC)-pIC
CS x Treatment
CS
Treatment

Two-way RM
ANOVA

p=0.9652
p<0.0001
p=0.7341

F2,38=0.04
F2,38=30.32
F1,19=0.19

Figure 2—figure supplement 7B
Recall freezing hM4(aIC)-pIC
CS x Treatment
CS
Treatment

Two-way RM
ANOVA

p=0.4522
p<0.0001
p=0.0008

F2,38=0.81
F2,38=54.69
F1,19=15.80

Figure 5—figure supplement 1A
RF Da Control

One-way ANOVA p<0.0001 F2,5997=271.60

Figure 5—figure supplement 3Ai
RC Control
CS x Session
CS
Session

Two-way RM
ANOVA

p=0.0163
p=0.0745
p=0.1830

F9,54=2.54
F1,6=4.65
F9,54=1.47

Figure 5—figure supplement 3Aii
RC CEPKCd-NBM
CS x Session
CS
Session

Two-way RM
ANOVA

p=0.9163
p=0.1080
p=0.5668

F9,45=0.42
F1,5=3.82
F9,45=0.86

Figure 5—figure supplement 3Aiii
FC freezing
Trial x Treatment
Trial
Treatment

Two-way RM
ANOVA

p=0.5363
p<0.0001
p=0.7568

F5,60=0.83
F5,60=15.37
F1,12=0.10

Figure 5—figure supplement 3Bi
Recall port visits CEPKCd-NBM
CS x Treatment
CS
Treatment

Two-way RM
ANOVA

p=0.0338
p=0.0434
p=0.5666

F2,22=3.97
F2,22=3.63
F1,11=0.35

Figure 5—figure supplement 3Bii
Recall freezing CEPKCd-NBM
CS x Treatment
CS
Treatment

Two-way RM
ANOVA

p=0.0095
p<0.0001
p=0.0029

F2,22=3.11
F2,22=81.45
F1,11=8.72

Figure 5—figure supplement 3Ci
RC Control
CS x Session
CS
Session

Two-way RM
ANOVA

p=0.0109
p=0.0104
p=0.0048

F9,72=2.63
F1,8=11.08
F9,72=2.96

Figure 5—figure supplement 3Cii
RC CESST-NBM
CS x Session
CS
Session

Two-way RM
ANOVA

p<0.0001
p=0.0062
p=0.0008

F9,108=4.75
F1,12=10.99
F9,108=3.48
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Dataset Statistical test p-values
F ratio (DFn,
DFd)

Figure 5—figure supplement 3Ciii
FC freezing
Trial x Treatment
Trial
Treatment

Two-way RM
ANOVA

p=0.3490
p<0.0001
p=0.0038

F5,100=1.13
F5,100=119.10
F1,20=10.70

Figure 5—figure supplement 3Di
Recall port visits CESST-NBM
CS x Treatment
CS
Treatment

Two-way RM
ANOVA

p=0.9034
p=0.0001
p=0.5441

F2,40=0.10
F2,40=11.59
F1,20=0.38

Figure 5—figure supplement 3Dii
Recall freezing CESST-NBM
CS x Treatment
CS
Treatment

Two-way RM
ANOVA

p=0.9419
p<0.0001
p=0.5966

F2,40=0.06
F2,40=77.68
F 1,20=0.29

Figure 5—figure supplement 5Ai
CS CE
Stage x Population
Stage
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F15,9576=34.91
F3, 9576=89.24
F5, 9576=328.04

Figure 5—figure supplement 5Aii
CS similarity CE
Stage x Population
Stage
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F5,9588=311.70
F1,9588=221.90
F5,9588=110.60

Figure 5—figure supplement 5Aiii
CS US transfer CE
Stage x Population
Stage
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F5,9588=163.90
F1,9588=432.50
F5,9588=584.50

Figure 5—figure supplement 5B
CS discrimination CE
Treatment x Population
Treatment
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F5,2387=29.37
F1,2387=116.3
F5,2387=130.1

Figure 5—figure supplement 5C
RC CS US transfer CE hM4(aIC)
Treatment x Population
Treatment
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F5,4788=186.13
F1,4788=259.70
F5,4788=64.77

Figure 5—figure supplement 5C
FC CS US transfer CE hM4(aIC)
Treatment x Population
Treatment
Population

Two-way ANOVA

p<0.0001
p<0.0001
p<0.0001

F5,4788=195.10
F1,4788=481.90
F5,4788=948.20

DFn = degrees of freedom for numerator, DFd = degrees of freedom for denominator.
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