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Background. The molecular mechanism by which hepatitis B virus (HBV) induces hepatocellular carcinoma (HCC) is still
unknown. The genomic expression profile and bioinformatics methods were used to investigate the potential pathogenesis
and therapeutic targets for HBV-associated HCC (HBV-HCC). Methods. The microarray dataset GSE55092 was
downloaded from the Gene Expression Omnibus (GEO) database. The data was analyzed by the bioinformatics software to
find differentially expressed genes (DEGs). Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis, ingenuity pathway analysis (IPA), and protein-protein interaction (PPI) network
analysis were then performed on DEGs. The hub genes were identified using Centiscape2.2 and Molecular Complex
Detection (MCODE) in the Cytoscape software (Cytoscape_v3.7.2). The survival data of these hub genes was downloaded
from the Gene Expression Profiling Interactive Analysis (GEPIA). Results. A total of 2264 mRNA transcripts were
differentially expressed, including 764 upregulated and 1500 downregulated in tumor tissues. GO analysis revealed that
these DEGs were related to the small-molecule metabolic process, xenobiotic metabolic process, and cellular nitrogen
compound metabolic process. KEGG pathway analysis revealed that metabolic pathways, complement and coagulation
cascades, and chemical carcinogenesis were involved. Diseases and biofunctions showed that DEGs were mainly associated
with the following diseases or biological function abnormalities: cancer, organismal injury and abnormalities,
gastrointestinal disease, and hepatic system disease. The top 10 upstream regulators were predicted to be activated or
inhibited by Z-score and identified 25 networks. The 10 genes with the highest degree of connectivity were defined as the
hub genes. Cox regression revealed that all the 10 genes (CDC20, BUB1B, KIF11, TTK, EZH2, ZWINT, NDC80, TPX2,
MELK, and KIF20A) were related to the overall survival. Conclusion. Our study provided a registry of genes that play
important roles in regulating the development of HBV-HCC, assisting us in understanding the molecular mechanisms that
underlie the carcinogenesis and progression of HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is a highly malignant
disease with high morbidity and mortality worldwide and
is one of the leading causes of tumor mortality in the
world [1–3]. HCC represents the result of a complex and
heterogeneous malignant process that occurs in the con-
text of an underlying progressive liver dysfunction [4].
HCC often arises from genetic mutations that alter the
metabolic pathways, which therefore induces a disordered
cell proliferation [4]. The majority of the HCC cases

(approximately 80%) are associated with chronic hepatitis
B virus (HBV) or hepatitis C virus (HCV) infections [5].
In China, chronic hepatitis caused by HBV is considered
as the most important cause for the occurrence and devel-
opment of liver cancer [6]. Although there are several
reports on the pathogenesis of liver cancer caused by
HBV, it still requires further elucidation. At present, the
treatment of liver cancer mainly involves surgical treat-
ment, but the 5-year survival rate associated with it
remained low [7]. The main reasons for the limited effect
of surgical treatment include low early diagnostic rate and
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high postoperative recurrence rate, and there is still a lack
of effective adjuvant therapy beyond surgery. In recent
years, the underlying molecular mechanisms of HCC path-
ogenesis were better understood. The development of
HCC is a complex, multistep process that is associated
with sustained inflammatory damage, including hepatocel-
lular necrosis and regeneration, with fibrotic deposition
[8]. However, there is currently a lack of overall under-
standing with regard to the pathogenesis of HCC in terms
of pathways and network crosstalk. Therefore, an in-depth
study of the molecular mechanisms and therapeutic targets
in the occurrence and development of liver cancer has
become a hot and key research topic.

The Gene Expression Omnibus (GEO, http://www.ncbi
.nlm.nih.gov/geo/) is an international public storage data-
base that includes data based on high-throughput chip
and second-generation sequencing functional genome
datasets uploaded by the research community [9]. Ingenu-
ity pathway analysis (IPA) (http://www.ingenuity.com) is
an integrated software application based on cloud comput-
ing and can be used to analyze the genome, miRNA,
single-nucleotide polymorphism (SNP), chips, metabolism,
protein, and RNA-Seq experiment and various small-scale
experiment data, to build the model of the interaction
[10]. It not only screen the molecular disease information
rapidly in the early stage of the study, providing a scien-
tific basis for the research design, but also carry out an
in-depth data mining in the later stage of the study to
build a complete biological system of molecular data com-
prehensively [10].

In this study, the original gene chip expression profile
dataset GSE55092 from the GEO database containing a
total of 140 samples, including 91 normal liver tissue sam-
ples and 49 HBV-HCC tissue samples, was analyzed. The
obtained differentially expressed genes (DEGs) were ana-
lyzed using the Database for Annotation, Visualization
and Integration Discovery (DAVID, https://david.ncifcrf
.gov/) database for Gene Ontology (GO) functional annota-
tion and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis. The canonical pathways, diseases
and biofunctions, upstream regulator analysis, regulator
effects, and networks of DEGs were analyzed using QIA-
GEN’s IPA analysis software. The protein-protein interaction
(PPI) networks were constructed from the DEGs using the
search tool for retrieving interacting genes/proteins
(STRING) database. The key genes were then identified,
and the corresponding modules were constructed according
to the PPI network. Finally, the Gene Expression Profiling
Interactive Analysis (GEPIA) was used to analyze the rela-
tionships between the hub genes and patient prognosis.
Therefore, this study is aimed at performing an integrative
analysis of all available high-throughput gene expression data
on HBV-HCC in patients to elucidate the key genes involved
in the molecular pathogenesis of it.

2. Materials and Methods

2.1. Data Source. The raw data of this study is obtained from
the GEO database of the National Center for Biotechnology

Information (NCBI), and the NCBI-GEO is an open micro-
array and a next-generation sequencing database. The acces-
sion number GSE55092 was based on GPL570 (Affymetrix
Human Genome U133 Plus 2.0 Array) [11].

2.2. Data Preprocessing and Differential Expression Analysis.
The data processing was assisted by Beijing Kangshengsaike
Technology Co., LTD (Beijing, China). After the original
data was normalized by the Expression Console (EC), the
Affymetrix® Transcriptome Analysis Console (TAC) soft-
ware was used to analyze the gene differences among the
samples. If P < 0:05, ∣log fold change ðFCÞ ∣ >2, then the gene
was considered to be differentially expressed.

2.3. GO Enrichment Analysis and KEGG Pathway
Enrichment Analysis. The GO enrichment analysis and
KEGG pathway enrichment analysis were performed using
the DAVID database [12]. P < 0:05 was considered to be sta-
tistically significant. Also, the top 20 GO terms and the
KEGG pathways were selected.

2.4. Ingenuity Pathway Analysis. To carry out an in-depth
biological information analysis of 2264 common differential
genes, canonical pathways, diseases and biofunctions,
upstream regulator analysis, regulator effects, and networks
of 2264 common differential genes were analyzed by QIA-
GEN’s IPA analysis software. Fisher’s exact test and
Benjamini-Hochberg correction were used to identify signif-
icantly enriched DEGs as members of pathways and func-
tional categories [13]. Upstream analysis was conducted
based on the interaction relationship between transcriptional
regulators (TR) and their target genes in Ingenuity Knowl-
edge Base [10]. It was predicted by overlap P value and

Table 1: Baseline characteristics of the patients with HBV-
associated HCC.

Characteristic

Male to female 10 : 1

Age (years) 57:7 ± 7:7
Total bilirubin (mg/dL) 0:88 ± 0:47
Albumin (g/dL) 3:91 ± 0:57
Alanine aminotransferase (U/L) 36:18 ± 17:8
Aspartate aminotransferase (U/L) 39:09 ± 17:0
γ-Glutamyltransferase (U/L) 93:9 ± 83:56
Tumor gradea

G2 (%) 64

G3 (%) 27

G4 (%) 9

HBsAg-positive (%) 100

HBeAg-positive (%) 0

Anti-HBc (%) 100

Anti-HBe (%) 100
aTumors were graded using the Edmondson-Steiner criteria. Plus-minus
values are means ± SD.
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Figure 1: Identification of aberrantly expressed mRNAs. (a) Heat map of differentially expressed mRNA. (b) The scatter plot of differentially
expressed mRNA. Red color represents upregulation of differential genes, while green color represents downregulation of differential genes.
P < 0:05 and ∣logFC ∣ >2 were chosen as the cutoff criteria.
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activation Z-score, in which the overlap P value was calcu-
lated based on the intersection of regulatory objects and
differential genes in datasets reported in the literature,
and P < 0:05 was considered to be significant. The Z

-score was calculated based on the expression association
between regulators and genes, and weighted correction
was done according to the interaction type and data devi-
ation. Z‐score > 2 or <-2 was considered as significant.
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Figure 2: Functional annotation of DEGs by DAVID. (a) The top 20 GO terms related to mRNA dysregulation. (b) The top 20 of KEGG
pathway of DEGs in HBV-HCC. The value of -LgP indicates the significance of the GO and KEGG signaling pathway. Differences were
considered statistically significant at P < 0:05.

Sized by : -log (P value)
Colored by : Z-score 

Figure 3: Diseases and biofunctions. In the hierarchical clustering of heat map, each individual colored rectangle is a particular biological
function or disease. The patch size is determined by P value. The smaller the P value, the larger the patch is. The plaque color is
determined by Z-score; the Z‐score > 2 and <-2 is considered meaningful. Blue color indicates suppressed disease or biological function,
and orange indicates that the disease or biological function is activated. Grey indicates that the Z-score for the biological function or
disease is unknown.
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The underlying network of our algorithms was based on
the Ingenuity Knowledge Base [10]. The score of the net-
works was calculated based on the P value, reflecting the
probability that the molecules of the dataset appear in
the network as a random process. The score was obtained
by the -log of right-tailed Fisher’s exact test.

2.5. PPI Network Construction and Analysis of Modules. The
PPI of common DEGs was analyzed using a STRING online
database (http://string-db.org), and the common DEGs of
PPI network visualization have been realized by using the
Cytoscape software (http://www.cytoscape.org/) [14]. The
search clustered subnetworks were used using Cytoscape
MCODE. The default parameters were as follows: degree
cutoff ≥ 2, node score cutoff ≥ 0:2, K‐core ≥ 2, and max
depth = 100. By calculating the centrality parameters of each
node, CentiScaPe was used for finding the most important
nodes in a network.

2.6. Validation and Survival Analysis of Key Hub Genes. The
protein expression and raw survival data were downloaded
from the GEPIA website (http://gepia.cancer-pku.cn/). Can-
cer type was restricted by liver hepatocellular carcinoma
(LIHC), and the expressions of CDC20, BUB1B, KIF11,
TTK, EZH2, ZWINT, NDC80, TPX2, MELK, and KIF20A
were obtained.

3. Results

3.1. Differentially Expressed mRNAs in HBV-HCC. The
NCBI-GEO database is an open database, and the clinico-
pathological characteristics of the patients with HBV-
associated HCC are shown in Table 1[11]. According to the
filtering criteria of P < 0:05 and ∣logFC∣ > 2, a total of 2264
differentially expressed mRNAs were identified (Table S1).
Among these, 764 mRNAs were upregulated, and 1500
mRNAs were downregulated. As shown in Figure 1(a), the
hierarchical clustering analysis was performed for these
2264 aberrantly expressed mRNAs. The results showed that
the expression level of each transcript was represented by a
color, ranging from green (low) to red (high). Each column

and each row represents one group and one mRNA,
respectively. The scatter plot in Figure 1(b) showed the
number of DEGs identified from each dataset.

3.2. GO and KEGG Pathway Enrichment Analysis. GO anal-
ysis revealed the associated functions of these abnormally
expressed mRNAs. A total of 712 GO terms have been
shown to be significantly enriched. The most highly
enriched GO terms of dysregulated mRNAs were associated
with the small-molecule metabolic process (GO:0044281),
xenobiotic metabolic process (GO:0006805), and cellular
nitrogen compound metabolic process (GO:0034641)
(Figure 2(a)). KEGG showed that the genes were mainly
enriched in metabolic pathways, complement and coagula-
tion cascades, and chemical carcinogenesis (Figure 2(b)).
Meanwhile, GO and KEGG analyses were performed for
upregulated and downregulated DEGs, respectively, and
the results are shown in Figure S1. Moreover, as shown in
Figure S2, the IPA results of canonical pathways showed
that the DEGs were enriched in different pathways,
among which LXR/RXR activation, FXR/RXR activation,
and LPS/IL-1-mediated inhibition of RXR functions are
the most significantly affected.

3.3. Diseases and Biofunctions. IPA can be used to study the
potential link between biological function and disease. The
differences between the genomes of HCC and other diseases
were compared to detect the possible correlations between
HCC and other diseases at the genome level. As shown in
Figure 3, through the application of disease and biological
function enrichment analysis, it was revealed that among
the 2264 genes with common differences, the genes were
mainly related to the following diseases or biological function
abnormalities: cancer, organismal injury and abnormalities,
gastrointestinal disease, and hepatic system disease
(Table S2). The diseases and biofunctions were also
presented as a histogram (Figure S3).

3.4. Upstream Regulator Analysis. The top 10 upstream regu-
lators predicted to be activated by Z-score are presented in
Table 2. SB203580 was the most predicted activated

Table 2: Top 10 upstream regulators that are predicted to be activated by Z-score.

Upstream regulator Molecule type Z-score P value

SB203580 Chemical-kinase inhibitor 5.805 4:57E − 16
RABL6 Other 5.112 9:62E − 19
U0126 Chemical-kinase inhibitor 4.928 2:49E − 23
Bisindolylmaleimide I Chemical-kinase inhibitor 4.246 0.000000677

Pyrrolidine dithiocarbamate Chemical reagent 4.182 1:49E − 08
Actinomycin D Chemical drug 4.156 1:97E − 13
COL18A1 Other 4.104 3:59E − 10
SP600125 Chemical-kinase inhibitor 3.948 3:16E − 12
SB202190 Chemical-kinase inhibitor 3.848 2:14E − 08
NR0B2 Ligand-dependent nuclear receptor 3.666 0.00000586
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Figure 4: Upstream regulator analysis of differentially expressed genes in HBV-HCC. (a) The relevant network of SB203580. (b) SB203580
regulates network molecules related to hypoplasia. (c) The relevant network of lipopolysaccharide.
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upstream regulators by Z-score for the dataset involving
HBV-HCC (Figure 4(a)). At the same time, SB203580 regu-
lated some downstream genes related to hypoplasia
(Figure 4(b)), including ACOX1, BCL2, JUN, MYC,
PDGFRA, PTGS2, SLC20A1, THBS1, and TNF. The top 10
upstream regulators that were predicted to be inhibited by
Z-score are presented in Table 3. The most predicted inhib-
ited upstream regulators by Z-score included lipopolysaccha-
ride (Figure 4(c)).

3.5. Network Analysis.According to the input dataset, 25 net-
works were identified and listed in the decreasing order of
significance (Table S3). The identified top network of genes
unified the functional terms “Cell Cycle, Cellular Assembly
and Organization, DNA Replication, Recombination, and
Repair” (Figure 5). For the network with 33 focus
molecules, ESR1 was found to be the central node.

3.6. Key Candidate Gene Identification with DEG PPI
Network. The PPI network of DEGs was constructed by using
the STRING online database and Cytoscape (Figure 6), and
the top ten highly connected genes included CDC20, BUB1B,
KIF11, TTK, EZH2, ZWINT, NDC80, TPX2, MELK, and
KIF20A (Table 4). MCODE was used for module analysis
of the PPI network, and the most significant was chosen for
further pathway analyses based on the degree of importance.
Figure 6(b) shows the most important module in which all
hub genes are contained.

3.7. Validation and Survival Analysis of Key Hub Genes.
The key hub genes were validated in the TCGA dataset.
All of the hub genes were upregulated in 369 LIHC samples
as compared to 160 normal samples (Figure 7(a)). Among
the 10 hub genes, all genes that showed association with
the prognosis of HCC patients were found: CDC20
(P = 3:8e − 06), BUB1B (P = 0:0028), KIF11 (P = 0:00061),
TTK (P = 0:0015), EZH2 (P = 5:6e − 05), ZWINT
(P = 0:00061), NDC80 (P = 0:013), TPX2 (P = 0:00054),
MELK (P = 0:0015), and KIF20A (P = 0:0034), respectively.
The Kaplan-Meier analysis results are presented in
Figure 7(b).

4. Discussion

In recent years, many studies have shown the involvement
of HBV in the carcinogenesis, invasion, and metastasis of
liver cells and also play a key role in the occurrence and
development of liver cancer [15]. In the treatment of
HCC, there is a lack of effective therapeutic target clini-
cally [16]. The poor prognosis of HCC patients after treat-
ment is mainly due to the high incidence of intrahepatic
and extrahepatic metastasis of HCC [17]. However, the
metastasis of cancer cells is a complicated process, and
both intracellular and tumor microenvironmental factors
can affect the metastatic ability of tumor cells. Most of
the molecular mechanisms that mediate metastasis are still
unclear. Therefore, further studies should be conducted to
understand the molecular mechanisms of HBV-HCC
development, invasion, and metastasis, which not only

facilitates the early diagnosis of HCC but also assists in
finding better drug targets for clinical treatment of HCC.

Based on microarray analysis, 2264 common DEGs
were identified by studying the gene expression profiles.
The GO function analysis of 2264 differential genes
showed that the most highly enriched GO terms of
HBV-HCC differential genes were included in the small-
molecule metabolic process, xenobiotic metabolic process,
and cellular nitrogen compound metabolic process. KEGG
analysis showed that the genes were mainly enriched in
metabolic pathways, complement and coagulation cas-
cades, and chemical carcinogenesis. IPA revealed that the
top significantly changed canonical pathways are related
to FXR/RXR activation, LXR/RXR activation, and LPS/IL-
1-mediated inhibition of RXR function, and this was con-
sistent with that of the previous reports in the literature.
We found that FXR/RXR and LXR/RXR are involved in
many diseases, such as hypothalamic dysfunction [18],
germ cell development [19], adipose stem cells (ASCs)
[20], colorectal cancer (CRC) [21], and major depressive
disorder [22]. A study has found that the stimulation of
glutamine to ASCT2 expression partly involves the bind-
ing of FXR/RXR to the ASCT2 promoter [23], which
might be the key to the proliferation and survival of
HepG2 cells. LXR-mediated transactivation is coactivated
by PGC-1α (peroxisome-proliferator-activated receptor-
γco-activator-1α), which in turn can restore the SREBP-1
isoform expression in HepG2 cells [24]. Therefore, this
study helps us to elucidate the mechanisms of proliferation
and invasion of HBV-HCC and to predict the progression
of cancer.

According to the disease and biofunction network
analysis, major diseases of HCC targets were screened.
IPA revealed cancer, organismal injury and abnormalities,
gastrointestinal disease, and hepatic system disease as the
top diseases and biofunctions associated with these
mRNAs. The goal of upstream regulator analysis is to

Table 3: Top 10 upstream regulators that are predicted to be
inhibited by Z-score.

Upstream
regulator

Molecule type
Z

-score
P value

Lipopolysaccharide Chemical drug -6.951 3:4E − 59
Poly rI:rC-RNA Biologic drug -6.267 4:08E − 18
IL1B Cytokine -6.089 1:75E − 44
IFNG Cytokine -5.785 2:93E − 35
TNF Cytokine -5.607 5:37E − 60

TLR3
Transmembrane

receptor
-5.41 7:11E − 11

CREB1 Transcription regulator -5.368 4:87E − 22
PDGF BB Complex -5.235 2:66E − 30
HNF4A Transcription regulator -5.153 1:28E − 17
TP53 Transcription regulator -5.14 2:72E − 49
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identify molecules that are upstream of these genes in the
dataset, and this might explain the observed changes in
the expression. Also, the top 10 activated and inhibited
regulators of various categories were selected, respectively.
For instance, SB203580 inhibits proliferation and invasion
of HepG2 cells by blocking the formation of oncogenic
pSmad3L and smad2/3/4 complexes [25]. Lipopolysaccha-
ride stimulates the activation of hepatic stellate cells
through the TLR4 pathway and promotes angiogenesis in
mouse HCC model [26]. A total of 25 networks based
on input dataset were identified. The most important of
these involves the biological importance of our data, which
is related to the cell cycle, cellular assembly and organiza-
tion, DNA replication, recombination, and repair. The
central node is ESR1, which has been the focus of breast
cancer research for some time and also has clinical impli-
cations in endometrial [27], ovarian [28], and other types
of cancers.

PPI networks were constructed, and the following 10
hub genes were identified: CDC20, BUB1B, KIF11, TTK,

EZH2, ZWINT, NDC80, TPX2, MELK, and KIF20A. The
GEPIA was used to analyze the prognosis of these 10
hub genes, and the results showed that the expression
levels of these 10 genes were associated with the prognosis
of HCC patients. Abnormal expression of CDC20 appears
in most of the human cancers [29]. Inhibition of CDC20
expression in HCC reduced cell proliferation and induced
G2/M cell cycle arrest, showing a positive correlation with
TNM staging [30]. Consistent with our research findings,
increased expression of BUB1B is associated with poor
prognosis in HCC patients [31]. KIF11 is highly expressed
in blast crisis chronic myelogenous leukemia [32] and
pancreatic cancer [33]. Previous reports have suggested
that TTK promotes cell proliferation and invasion, and its
functions include promoting the formation of mitotic check-
point complexes, regulating cell division, responding to DNA
damage, and promoting chromosome alignment [34]. Sudo
et al. [35] have reported that EZH2 was significantly upregu-
lated in HCC tissues when compared to those with corre-
sponding nontumor specimens. ZWINT protein is shown
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to be elevated in HCC tissues and is associated with tumor
size and number. The HCC patients with high ZWINT
expression are associated with a high tumor recurrence rate.
NDC80 participates in the pathogenesis of HCC through its
proliferation and antiapoptotic effects and might be consid-
ered as a new target for HCC gene therapy [36]. Downregu-
lation of TPX2 in human HCC can inhibit PI3K/AKT signal
transduction, inhibit cell proliferation, and promote cell apo-
ptosis [37]. MELK overexpression has been detected in a
variety of human tumors, suggesting it as an important factor

in tumorigenesis [38]. KIF20A is a member of the drive pro-
tein superfamily, which is mainly involved in the cellular
mitotic process. KIF20A expression is significantly increased
in HCC [39]. The top 10 hub genes were obtained by the PPI
network and are closely related to tumor development and
tumor progression, suggesting that these hub genes might
act as prognostic markers and therapeutic targets in HCC.

In summary, our research identified several key candi-
date genes that are involved in HBV-HCC progression
through an integrated bioinformatics analysis, which further
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Figure 6: PPI network and module analysis. (a) PPI network of the most significant DEGs identified from GSE55092 was constructed.
Four subnetworks were identified by Cytoscape MCODE. Genes in different subnetworks are shown in different colors, and blue nodes
indicate other genes. (b) One most important module subnetwork was identified by Cytoscape MCODE. Yellow represents the hub
genes.

Table 4: The degree values of top 10 hub genes.

Gene symbol Gene description Fold change Degree

CDC20 Cell division cycle 20 4.16 36

BUB1B BUB1 mitotic checkpoint serine 6.17 30

KIF11 Kinesin family member 11 3.66 29

TTK TTK protein kinase 5.02 28

EZH2 Enhancer of zeste homolog 2 3.24 28

ZWINT ZW10 interacting kinetochore protein 3.55 27

NDC80 NDC80 kinetochore complex component 7.72 27

TPX2 Microtubule nucleation factor 2.31 27

MELK Maternal embryonic leucine zipper kinase 7.15 27

KIF20A Kinesin family member 20A 5.58 26
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Figure 7: Validation of hub genes in the TCGA dataset. (a) CDC20, BUB1B, KIF11, TTK, EZH2, ZWINT, NDC80, TPX2, MELK, and
KIF20A expressions in 369 LIHC patients compared with 160 normal samples. (b) Overall survival curves of CDC20, BUB1B, KIF11,
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contributes to the search of biomarkers and therapeutic tar-
gets for HBV-HCC. However, more molecular biology exper-
iments are warranted to further explore the underlying
mechanisms of these key candidate genes in the development
of HBV-HCC.
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