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Abstract

Reprogramming of the standard genetic code to include non-canonical amino acids (ncAAs) opens new prospects for medicine, industry,
and biotechnology. There are several methods of code engineering, which allow us for storing new genetic information in DNA sequences
and producing proteins with new properties. Here, we provided a theoretical background for the optimal genetic code expansion, which
may find application in the experimental design of the genetic code. We assumed that the expanded genetic code includes both canonical
and non-canonical information stored in 64 classical codons. What is more, the new coding system is robust to point mutations and
minimizes the possibility of reversion from the new to old information. In order to find such codes, we applied graph theory to analyze the
properties of optimal codon sets. We presented the formal procedure in finding the optimal codes with various number of vacant codons
that could be assigned to new amino acids. Finally, we discussed the optimal number of the newly incorporated ncAAs and also the opti-
mal size of codon groups that can be assigned to ncAAs.
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Introduction
The standard genetic code (SGC) is a set of rules according to
which 64 codons are assigned to 20 canonical amino acids and
stop coding signal. Thanks to that, genetic information can be
stored in DNA and transmitted into the protein world. It is clear
that the SGC is redundant because there are 18 amino acids
encoded by more than one codon, i.e. 2, 3, 4, or 6 codons. Such
codons encoding the same amino acid are named synonymous
and are organized in groups called blocks or boxes.

The redundancy is a consequence of necessity of coding 21
items by non-overlapping words with a constant length and
having at their disposal four nucleotides. Codons, i.e. words
composed of three nucleotides, are enough to encode all these 21
elements. Shorter words, e.g. with the length of two nucleotides
would encode up to 16 items. According to the adaptation hy-
pothesis, the redundancy of the SGC could evolve to minimize
adverse effects of mutations or translational errors of coded pro-
teins (Woese 1965; Sonneborn 1965; Epstein 1966; Goldberg and
Wittes 1966; Haig and Hurst 1991; Freeland and Hurst 1998;
Freeland et al. 2000; Gilis et al. 2001). This property causes that the
coded information is more resistant to changes. Mutations in
codons encoding the same amino acid are neutral in terms of the
coded amino acid. Therefore, the SGC appears to be a good buffer
to the mutations. The redundancy may also result from the
necessity to fill in as many as possible codons with sense infor-
mation, otherwise the unassigned codons could pause or break

protein synthesis. It would result in the production of shorter
products without function or with disabled activity. Moreover,
the redundancy enables coding of selected amino acids by more
than one codon, which may increase the number of this amino
acid in coded proteins. The encoding a given amino acid by sev-
eral codons differently used enables regulation of efficiency and
speed of translation, which can be important in correct protein
folding (Ore�si�c and Shalloway 1998; Xia 1998; Kanaya et al. 1999;
Akashi 2003; Rocha 2004; Zhou et al. 2009; Plotkin and Kudla
2011; D’Onofrio and Abel 2014).

Despite the additional roles, the presence of the surplus
codons suggests to reduce their redundancy and exploit it in
expanding the genetic code. Thanks to that, we could use the ex-
tra codons for introducing new genetic information into the ca-
nonical coding system. The inclusion of non-canonical amino
acids (ncAAs) in the code can allow us for producing new artificial
proteins with novel functions and properties. This approach is
very promising for synthetic biology and may find many applica-
tions in medicine, industry and biotechnology.

There are several approaches to the expansion of the SGC
(Chin 2014). The first one is stop-codon suppression (Noren et al.
1989; Chin 2017; Italia et al. 2017; Young and Schultz 2018). In this
method, stop translation codons, especially those that are very
rarely used, e.g. UAG, are applied to encode new ncAAs. This
technique needs a modified aminoacyl-tRNA synthetase that
charges a tRNA molecule with the ncAA. However, this approach
has several drawbacks. For example, we can expand the SGC by
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only up two new amino acids, because one of the three stop
codons must be left to function as a termination signal of transla-
tion (Ozer et al. 2017). What is more, the newly added ncAAs
could compete with translation release factors, which may have
an impact on the speed and efficiency of the protein synthesis.

The second method is related to programmed frameshift sup-
pression. In this approach, four-base codons, called quadruplets,
are used to encode new ncAAs (Hohsaka et al. 1996; Anderson
et al. 2004; Neumann et al. 2010). Generally, these quadruplets are
composed of rarely used classical codons with an additional
base. They are decoded by a modified tRNAs containing comple-
mentary four-base anticodons. It should be noted, that the
competition between tRNAs reading classical codons and the
respective quadruplets can decrease the efficiency of the whole
procedure.

The third method postulates the expansion of the SGC by us-
ing selected synonymous codons, whose corresponding tRNAs
are pre-charged with ncAAs (Iwane et al. 2016). In this approach,
up to 1, 2, 3, and 5 codons from corresponding synonymous
codon blocks can be used to encode ncAAs leaving at least one
codon for the canonical amino acid. This method can signifi-
cantly increase the number of ncAAs by using many codon boxes.
However, changes in the using of synonymous codons can
disturb the translation and protein folding process, because the
codon usage is associated with the speed of protein synthesis
(Plotkin and Kudla 2011).

Another approach is based on addition one pair of unnatural
nucleotides to the canonical four bases (Ishikawa et al. 2000;
Ohtsuki et al. 2001; Yang et al. 2007; Kimoto et al. 2009; Malyshev
et al. 2009; Dien et al. 2018; Hamashima et al. 2018). It is thereby
possible to generate up to 63 � 43 ¼ 216� 64 ¼ 152 new codons to
which ncAAs can be assigned. Since the new genetic information
does not involve the canonical codons, it does not interfere with
the natural system. For example, the new unnatural codons may
not compete with tRNAs charged with canonical amino acids.
However, this method must deal with some molecular problems:
the pairing efficiency of unnatural bases and their recognition by
polymerases during DNA replication. Hopefully, these technical
problems can be solved with the development of molecular biol-
ogy and biological chemistry, so it is interesting to consider the
expansion of the SGC from theoretical point of view, which may
be used in the experimental solutions. The theoretical approach
to the expansion of the SGC has been recently proposed by Bła _zej
et al. (2020). The authors analyzed how to expand the SGC up to
216 codons generated by a six-letter nucleotide alphabet, includ-
ing besides four canonical bases also one pair of new bases. The
model of the code assumed the gradual addition of the codons to
minimize the consequences of point mutations.

In this paper, we investigated other theoretical aspects of the
SGC expansion using 64 canonical codons and the code redun-
dancy. We focused on finding the rules of the code expansion
via optimal partition of codon boxes into two parts coding
canonical and new information. In the first step, we found the
minimal set of codons that encodes the complete canonical
information, whereas the vacant codons can be used to encode
non-canonical items. At the same time, this code was supposed
to be the most robust to point mutations, which could change
the information between the canonical and non-canonical
parts. We considered codes with various number of the codons
in the canonical set and studied the robustness of the codes to
lose encoded information including physicochemical properties
of amino acids.

Methods
Representation of the genetic code as a graph
We described properties of the SGC using the methodology of
graph theory, which studies graphs, i.e. mathematical structures,
consisting of objects that are related to each other in some way.
According to this approach, the objects are represented by verti-
ces (nodes), which are connected by edges (links). This represen-
tation is suitable to describe relationships between all possible 64
codons of the SGC in terms of point mutations. In this case, verti-
ces are codons, whereas edges are all possible single point muta-
tions, which may occur between codons in protein coding
sequences. Assuming that, each codon has nine connections
with others, which results from three possible point mutations in
each of three codon positions (Figure 1). For example, codon UUU
can mutate into: AUU, CUU, and GUU due to mutations in the
first codon position, UAU, UCU, and UGU because of mutations in
the second codon position, as well as UUA, UUC, and UUG on ac-
count of mutations in the third codon position. This code repre-
sentation was successfully used in many problems related to the
optimality of the SGC in terms of point mutations (Aloqalaa et al.
2019; Bła _zej et al. 2019b; Aloqalaa et al. 2020). Moreover, some
rules of the optimal genetic code expansion using an additional
pair of unnatural bases were investigated by Bła _zej et al. (2020).

In order to describe the SGC as a graph in a more formal way, let
us assume that G(V, E) is a graph, in which V is the set of vertices
representing all possible 64 codons, whereas E is the set of edges be-
tween these vertices. We say that two codons u; v 2 V are connected
by the edge eðu; vÞ 2 E if and only if the codon u differs from the
codon v in exactly one position. In other words, these codons can
mutate one into another with one base substitution. Thus, this
graph is undirected, because its edges are bidirectional. The graph is
also regular, because each vertex has the same number of neigh-
bors, i.e. the same degree. In this case, it is nine. Moreover, the graph
presented in Figure 1 is unweighted, because its edges do not have
assigned different numerical values, i.e. weights.

Codons can be clustered in different groups encoding 20
amino acids and the translation termination signal, as well as
ncAAs in the case of expanded versions. Thus, following graph
theory, we can say that every possible genetic code induces a par-
tition P of the codon set V into l � 21 disjoint non-empty subsets
S, i.e. codon groups encoding at least 21 items. This can be written
in the formal way as:

P ¼ fS1; S2; . . . ; Sl : Si \ Sj ¼1; S1 [ S2 [ . . . [ Sl ¼ Vg:

Measures of genetic code robustness to point
mutations
A good measure, which describes the amount of information lost
due to mutations of codons, is related to the set conductance and
its modifications (Aloqalaa et al. 2019; Bła _zej et al. 2019b; Aloqalaa
et al. 2020; Bła _zej et al. 2020). They were defined below.

Definition 1.For a given graph G, let S be a subset of vertices V. The
set conductance of S is defined as:

/ðSÞ ¼ EðS; SÞ
volðSÞ ;

where EðS; SÞ is the number of edges of graph G crossing from
subset S to its complement S and vol(S) is the sum of all
neighbors of the vertices belonging to subset S.
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The set conductance has an interesting interpretation. Let
us assume that S is a codon group encoding a selected
amino acid. Then, /ðSÞ is the ratio of non-synonymous
substitutions to all possible point mutations for the given
codon group S. Therefore, this measure gives us an
information about the robustness level of this codon group
to single mutations that can change an amino acid coded
by this group to other amino acids coded by other codon
groups S. For example, the group of six codons encoding
arginine and serine have /ðSÞ equal to 36/54 and 40/54,
respectively. This observation rises immediately a question
about the minimum value of the set conductance for a
codon group with a given number of codons, i.e. its size
denoted here as k. It is particularly interesting in the
context of the optimal encoding of genetic information by

a codon block. In order to study this property, we used
other measure called k-size conductance.

Definition 2.The k-size conductance of the graph G, for the number
of codons in a group k � 1, is defined as:

/kðGÞ ¼ minS�V;jSj¼k/ðSÞ ;

where jSj ¼ k is the number of codons in subset S and /ðSÞ is the
set conductance.

In other words, it is the minimum possible value of set
conductance for a group consisting of k codons. It is
helpful in finding the codon groups that minimize
consequences of changing genetic information due to

UUU

CUU

AUU

GUU

UGG

CGG

AGG

GGG

UUC

CUC

AUC

GUC

UUA

CUA

AUA
GUA

UUG

CUG
AUG

GUG

UCU
CCU

ACU

GCUUCC
CCC

ACC

GCC

UCA

CCA

ACA

GCA

UCG

CCG

ACG

GCG

UAU

CAU

AAU

GAU

UAC

CAC

AAC

GAC

UAA

CAA

AAAGAA

UAG

CAG
AAG

GAG

UGU
CGU

AGU

GGU UGC
CGC

AGC

GGC

UGA

CGA

AGA

GGA

Mutations in the first codon position

G UU

U UU

A UU

U GG

G GG A GG

U CU

G CU A CU

U AU

G AU A AU

U GU

G GU A GU

U UC

G UC A UC

U CC

G CC A CC

U AC

G AC A AC

U GC

G GC A GC

U UA

G UA A UA

U CA

G CA A CA

U AA

G AA A AA

U GA

G GA A GA

U UG

U UG A UG

U CG

G CG A CG

U AG

G AG A AG

C UUC GG
C CU

C AU

C GU

C UC

C CC

C AC

C GCC UA
C CA

C AA

C GA

C UG

C CG

C AG

Mutations in the second codon position

GUU

UUU

AUU

UGG

GGG AGG

UUC

GUC AUC

UUA

GUA AUA

UUG

GUG AUG

UCU

GCU ACU

UCC

GCC ACC

UCA

GCA ACA

UCG

GCG ACG

UAU

GAU AAU

UAC

GAC AAC

UAA

GAA AAA

UAG

GAG AAG

UGU

UGU AGU

UGC

GGC AGC

UGA

GGA AGA

CUUCGG
CUC

CUA

CUG

CCU

CCC

CCA

CCGCAU
CAC

CAA

CAG

CGU

CGC

CGA

Mutations in the third codon position

All single mutations between codons

GUU AUUGGG AGG
GUC AUC

GUA AUA

GUG AUG

GCU ACU

GCC ACC

GCA ACA

GCG ACGGAU AAU
GAC AAC

GAA AAA

GAG AAG

UGU AGU

GGC AGC

GGA AGA

UUUUGG
UUC

UUA

UUG

UCU

UCC

UCA

UCGUAU
UAC

UAA

UAG

UGU

UGC

UGA
CUUCGG

CUC

CUA

CUG

CCU

CCC

CCA

CCGCAU
CAC

CAA

CAG

CGU

CGC

CGA

Figure 1 The representation of the standard genetic code as a graph, in which vertices are represented by 64 codons, whereas edges are all possible
single mutations that may occur between these codons. For clarity, the connections between the codons were presented also separately for mutations
in three codon positions. In fact, each codon can mutate into nine others with one substitution. The codons can be clustered into four groups differing
in one codon position. The codons connected by edges representing mutations in the first codon positions were shown as concentric circles.
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point mutations. For example, in the case of codon groups
encoding arginine and serine, only the former has the
minimal set conductance for their size, i.e.
/6ðGÞ ¼ ð36=54Þ ¼ ð2=3Þ but the latter is greater. To
evaluate the general quality of genetic code, we introduced
the third characteristic, called the average conductance of
set collection.

Definition 3. Let P be a set collection that fulfills the following
property:

P ¼ fS1; S2; . . . ; Sl : Si \ Sj ¼1; S1 [ S2 [ . . . [ Sl � Vg:

The average conductance of P is then defined as:

UðPÞ ¼ 1
jPj
X

S2P
/ðSÞ ;

where jPj is the number of subsets S in a code partition P and
/ðSÞ is the set conductance of an individual subset.
This measure is an average robustness of a code P to
consequences of point mutations, which can occur
between codon blocks S of this code. UðPÞ is a
generalization of the average code conductance calculated
for the SGC (Aloqalaa et al. 2019, 2020). In fact, if the
number of codon groups jPj ¼ 21 and S1 [ S2 [ . . . [ Sl ¼ V
are codon blocks arranged as in the SGC, then UðPÞ is the
average conductance for the SGC.

Finding the optimal codon groups in terms of
changing genetic information
The characteristics presented above appeared useful in studying
the structural properties of genetic codes. However, they require
a fast and effective method for determining the optimal conduc-
tance /kðGÞ for groups with k, i.e. a specific number of codons.
Fortunately, the graph G including 64 codons possesses many
interesting properties, which are helpful in the solution of the
optimality problem. First of all, this graph can be represented as
a Cartesian graph product, i.e. the set of all ordered combinations
of three cliques:

G ¼ K4 � K4 � K4 ;

where K4 is a 4-vertex clique, i.e. the set of four vertices corre-
sponding to nucleotides fA;U;G;Cg, such that every two distinct
vertices are adjacent. This property allows us to characterize the
set of codons reaching the minimal set conductance from all
possible subsets with a given codon number k. The following
proposition presented in Aloqalaa et al. (2019, 2020) is a natural
consequence of the Theorem 1 given by Bezrukov and Elsässer
(2003).

Proposition 1.Let us consider a linear order of the set of vertices of
4-clique K4, e.g. A < C < G < U, and let Ck be a collection of
the first k vertices of a graph G ¼ K4 � K4 � K4 in the
lexicographic order. Then we get:

/ðCkÞ � /ðSÞ ;

where S � K4 � K4 � K4; jSj ¼ k, for any k � 1. Therefore, the
following equations hold for any k � 1:

/ðCkÞ ¼ /kðGÞ :

As a result, each sequence of k; 1 < k < 64 codons of
graph G sorted according to a given lexicographic order can
reach the minimum of the set conductance over all
possible set of codons with the number k. We used the
notation Ck in the whole paper to denote a general set of k-
codons in the lexicographic order. Briefly, sorting codons
according to the lexicographic order enabled us to find the
codon groups that minimize changes in coded genetic
information, e.g. substitutions between codons encoding
different information. It should be noted that there are
exactly 144 different lexicographic codon orders, which
can be used to build a genetic code as a graph G. It results
from all possible linear orders of the four nucleotides and
all possible orders of three codon positions: 4! � 3! ¼ 144.

Inclusion of physicochemical properties of amino
acids
The model of the genetic code described above assumed equal
consequences of substitutions between all amino acids. This gen-
eral assumption allowed us for analytical finding of the optimal
codon groups minimizing the amino acid changes due to point
codon mutations. It would not be possible after the inclusion of
amino acid properties, although the model would contain an im-
portant information. Nevertheless, we also calculated the costs
of amino acid substitutions assuming physicochemical proper-
ties of these amino acids for the optimal codes found according
to the lexicographic approach in the procedure described in the
previous section. These calculations were done for the codon
groups that encoded canonical amino acids but not for those
encoding newly incorporated ncAAs, because we do not know a
priori their properties.

We included eight amino acid indices describing their physico-
chemical properties: BLAM930101, BIOV880101, MAXF760101,
TSAJ990101, NAKH920108, CEDJ970104, LIFS790101, and
MIYS990104. They represent diverse features, such as: electric
properties (isoelectric point and polarity), hydrophobicity, alpha-
helix and turn propensities, general physicochemical properties,
residue propensity (molecular weight, average accessible surface
area, and mutability), composition, beta-strand propensity, and
intrinsic propensities (hydration potential, refractivity, optical
activity, and flexibility). The indices were selected as representa-
tives out of more than 500 amino acid indices present in the
AAindex database (Kawashima et al. 2008) using a consensus
fuzzy clustering method (Saha et al. 2012).

Based on these indices, we calculated F function for the canon-
ical part of a genetic code, which is defined as:

F ¼
X8

n¼1

X

< i;j>2D

½fnðiÞ � fnðjÞ�2 ;

where D is the set of all possible pairs of codons i and j from ca-
nonical part of genetic code that differ by a single-point muta-
tion, whereas fnðiÞ and fnðjÞ are values of amino acid index n for
the amino acids encoded by these codons, respectively. Simply
speaking, this function is the sum of squared differences in eight
amino acid properties. In the case of mutations involving stop
translation codons, we assumed the maximum possible squared
difference over all possible pairs of amino acids for the given
amino acid index. The values of corresponding amino acid

4 | GENETICS, 2021, Vol. 218, No. 1



indices were standardized by dividing by the maximum squared
difference of the given index. The final F values were additionally
normalized by the total number of codons k belonging to the ca-
nonical subset of the considered code.

Data availability
The computations were conducted using Python 3.9.1 program-
ming language. All source codes and raw data relevant to our
investigations were included in supplementary material at fig-
share: https://figshare.com/s/10.25386/genetics.14079452.

Results and Discussion
We began our investigation with finding the smallest set of
codons encoding all 20 amino acids and stop coding signal, which
still preserves the canonical codon assignments and is simulta-
neously optimal in terms of changing genetic information be-
tween the set of canonical codons and the vacant codons, which
can encode ncAAs. We discussed different scenarios of reprog-
ramming the SGC assuming various number of vacant codons.
We used the average conductance as a measure of the quality of
given genetic code structures, i.e. codon blocks. We also discussed
structural features of the canonical codes in terms of its robust-
ness against changes in encoded amino acids.

In the construction of the codes, we assumed their robustness
to changes causing the loss of genetic information due to muta-
tions. This assumption follows the adaptation hypothesis, which
claims that the SGC evolved to minimize harmful consequences
of mutations or mistranslations of coded proteins (Woese 1965;
Sonneborn 1965; Epstein 1966; Goldberg and Wittes 1966; Haig
and Hurst 1991; Freeland and Hurst 1998; Freeland et al. 2000;
Gilis et al. 2001). Although this code did not turn out perfectly op-
timized in this respect (Bła _zej et al. 2016; Massey 2008; Novozhilov
et al. 2007; Santos et al. 2011; Santos and Monteagudo 2017;
WneR trzak et al. 2018; Bła _zej et al. 2018a, 2019b; WneR trzak et al.
2019), it shows a general tendency to error minimization in the
global scale. This property is better exhibited by its alternative
versions (Bła _zej et al. 2018b, 2019a), which occurred later in the
evolution. Therefore, the analysis of the genetic code expansion
in this context seems to be a natural consequence of its evolu-
tion.

The smallest set of codons encoding canonical
information
It is well known that the SGC is redundant, which means that a
smaller number of codons is enough to encode all 20 canonical
amino acids and one stop translation signal. Therefore, the set
encoding the canonical information can be reduced to a smaller
number of codons, allowing for encoding new genetic informa-
tion by the set of vacant codons. It seems reasonable to postulate
some conditions that must be met to obtain minimalistic genetic
codes encoding the canonical genetic information, which can be
a potential starting point for further analysis of genetic code ex-
pansion. We assumed that this codon set must be optimal in
terms of the set conductance /, which means that, for a given
number k of codons in the set, the number of connections be-
tween canonical information and the set of vacant codons is as
small as possible. In other words, the number of mutations be-
tween the canonical and the non-canonical codes should be min-
imal. This assumption has a sensible biological meaning because
it reduces a possibility of unwanted changes between the new
and the old genetic information.

Following Proposition 1, we get that the first k-codons ordered

in lexicographic order Ck constitute the set with the minimum set

conductance / over all possible sets with k codons. In conse-

quence, this codon set is the most resistant against loosing infor-

mation. An example of such set is shown in Table 1 for eight

codons. This property poses a question about the minimum

number of codons k such that there exists a set Ck composed of

codons that encode 20 amino acids and stop translation signal. In

order to deal with this problem, we denote Pk as a partition of the

set Ck of k lexicographically ordered codons that encode 21 ca-

nonical items creating a code, i.e. Pk is a set collection of codons

encoding canonical information:

Pk ¼ fS1; S2; . . . ; S21; Si \ Sj ¼1; S1 [ S2 [ . . . [ S21 ¼ Ckg;

where Sl; l ¼ 1; 2; . . . ; 21 is a non-empty set of codons encoding 21

items according to the SGC rules.
We tested all possible sets Ck encoding 21 canonical items in-

duced by all 144 codon orders and SGC assignments. Using this

method, we obtained that k¼ 28 is the minimal number of

codons in the set Ck, which induces partition P28, and encodes 20

amino acids and stop coding signal. In fact, there are two lexico-

graphic orders, which produce such a code. The first is induced

by a linear order between nucleotides U < G < A < C and an or-

der between codon positions 1< 2 < 3. The second is generated

by a linear order G < U < A < C between nucleotides and an or-

der between codon positions 1< 2 < 3.
Tables 2 and 3 include representations of 64 codons in the

classical SGC table showing the structure of the optimal C28 co-

don set. The codons C28 belonging to the canonical part of this

code P28 are marked in red, whereas the vacant codons are in

blue. In the first, third and fourth column of the tables, two

codons in the block comprising four codons differing in the third

codon position encode a classical amino acid or stop signal,

whereas in the second column, only one codon in the block enco-

des an amino acid. Interestingly, only codons ending with G and

U are involved in the coding of the canonical information. These

two codes differ only in the assignment of four amino acids in the

second column of the tables. In the first code, these amino acids

are coded by the codons ending with G, whereas in the second

code, the codons end with U. This way of codon selection by the

algorithm causes that the number of mutations changing the ca-

nonical information to the non-canonical one coded by the va-

cant codons is minimized. At the same time, all 20 canonical

amino acids and at least one stop translation signal are included

in the code.

Table 1 The example of the codon set Ck for k¼ 8, which is a
sequence of the first eight codons taken in a selected
lexicographic order

Codon Amino acid

AAA Lys
AAC Asn
AAG Lys
AAU Asn
ACA Thr
ACC Thr
ACG Thr
ACU Thr

According to Proposition 1, this set is characterized by the minimal set
conductance over all sets with the size of k¼ 8. The codons have assigned
encoded amino acids as in the standard genetic code.
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Properties of the codes in terms of robustness to
point mutations
We compared the quality of the obtained codes in terms of the

average conductance U, to find out to what extent these codes

minimize consequences of point mutations between codon

blocks encoding the canonical information Pk. We considered

codes with the increasing number of these codons k ¼ 28; . . . ; 64

at the expense of the codons for non-canonical information. We

also present Pk which were generated for two lexicographic

orders C28, for which we found the smallest set of codons encod-

ing the canonical information.
Figure 2 presents a relationship between UðPkÞ and the codon

number k calculated for the two lexicographic orders, for which

we found the smallest coding set C28 (the blue and orange lines).

The lower bound of UðPkÞ calculated over all possible 144 orders

is also shown for comparison (the green line). This line corre-

sponds to the codes whose structure allows for the best possible

minimization of substitutions between the coded canonical

items. As we can observe, in all considered cases the average con-
ductance U decreases with the number of codons k involved in
the code. This trend is related with an increasing redundancy of
the code for the same number of coded items. The maximum is
reached at k¼ 28 and is equal UðP28Þ ¼ 0:91, whereas the mini-
mum equals to UðP64Þ ¼ 0:81 for all set collections at k¼ 64. It
should be noted that UðP64Þ corresponds to the average code
code conductance calculated for the SGC and was discussed in
Aloqalaa et al. (2019, 2020). However, the presented relationships
are not strictly linear, because local changes in the course of this
trend occur. What is more, the two lexicographic orders that gen-
erate the smallest codon sets C28, generally do not induce the
optimal collections of sets Pk for k> 28 in terms of U. In other
words, it is not possible to generate a set collection Pk for each
k ¼ 29; . . . ; 64 using lexicographic orders shown in Tables 2 and 3
that would be minimal in terms of U.

We also analyzed these codes in terms of consequences of
amino acid substitutions considering their physicochemical prop-
erties. Figure 3 presents the relationship between the smallest
possible average costs of amino acid replacements and the
number of codons encoding these amino acids in the codes that
minimize changes between the canonical and non-canonical in-
formation. The costs were normalized by the number of codons
for the canonical information in the corresponding code.
Interestingly, the maximum of this normalized cost is taken by
the code with all 64 codons, i.e. the SGC and the minimum is for
the code including 55 codons for the canonical information
(Table 4). This code has nine codons released, which can be used
to code ncAAs. Interestingly, these codons have U in the first co-
don position and among them are two encoded stop translation
signal in the SGC. Moreover, these codons encode two amino
acids, which are very rarely used, i.e. cysteine and tyrosine, as
well as those that are abundant in proteins and can be coded by
six codons, i.e. leucine and serine. Therefore, reprogramming of
these codons seems sensible.

Table 5 presents how many times the individual codons
were selected as vacant in 37 codes that minimized changes of
information between the canonical and non-canonical partition
and showed the smallest possible average costs of amino acid
replacements considering their physicochemical properties.
Interestingly, codons encoding stop translation signal in the SGC
were most often released. However, among them there is not

Table 2 The smallest set of 28 codons encoding canonical
information and minimizing changes of information between the
canonical (labeled according to canonical assignments) and non-
canonical (unassigned codons) partition of the code

UUU Phe UCU UAU Tyr UGU Cys

UUC UCC UAC UGC
UUA UCA UAA UGA
UUG Leu UCG Ser UAG Stop UGG Trp
CUU Leu CCU CAU His CGU Arg
CUC CCC CAC CGC
CUA CCA CAA CGA
CUG Leu CCG Pro CAG Gln CGG Arg
AUU Ile ACU AAU Asn AGU Ser
AUC ACC AAC AGC
AUA ACA AAA AGA
AUG Met ACG Thr AAG Lys AGG Arg
GUU Val GCU GAU Asp GGU Gly
GUC GCC GAC GGC
GUA GCA GAA GGA
GUG Val GCG Ala GAG Glu GGG Gly

These codons were chosen according to a lexicographic order induced by the
linear order of nucleotides U < C < A < G and the order of codon positions
1< 2 < 3.

Table 3 The smallest set of 28 codons encoding canonical
information and minimizing changes of information between the
canonical (labeled according to canonical assignments) and non-
canonical (unassigned codons) partition of the code

UUU Phe UCU Ser UAU Tyr UGU Cys

UUC UCC UAC UGC
UUA UCA UAA UGA
UUG Leu UCG UAG Stop UGG Trp
CUU Leu CCU Pro CAU His CGU Arg
CUC CCC CAC CGC
CUA CCA CAA CGA
CUG Leu CCG CAG Gln CGG Arg
AUU Ile ACU Thr AAU Asn AGU Ser
AUC ACC AAC AGC
AUA ACA AAA AGA
AUG Met ACG AAG Lys AGG Arg
GUU Val GCU Ala GAU Asp GGU Gly
GUC GCC GAC GGC
GUA GCA GAA GGA
GUG Val GCG GAG Glu GGG Gly

These codons were chosen according to a lexicographic order induced by the
linear order of nucleotides G < U < A < C and the order of codon positions
1< 2 < 3.

U<G<A<C
G<U<A<C
lower band

Figure 2 The relationship between the average conductance UðPkÞ and
the number of codons in the code k ¼ 28; . . . ; 64 calculated for two
lexicographic orders, for which we found the smallest set coding
canonical information C28 (blue and orange lines). The lower bound
calculated over 144 orders is shown for comparison (green line).
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UAG codon, which is often used in experimental approaches due
to its low usage in protein coding sequences (Noren et al. 1989;

Chin 2017; Italia et al. 2017). Our algorithm preferred other stop

codons because it applies different criteria, i.e. the minimization

of changing the canonical and non-canonical information. Next
frequently used codons in the non-canonical partition are those

with A in the second and third codon position encoding lysine,

glutamic acid and glutamate. On the other hand, codons with G

in the third codon position were released very rarely or not at all.
Two of these codons are the only ones that encode methionine

and tryptophan.

Properties of expanded genetic code
The reducing number of codons encoded canonical amino acids
and stop translation signal, as shown in The smallest set of
codons encoding canonical information section, implies that the
rest codons can be used to encode ncAAs. Mathematically speak-
ing, the codon set Ck encoding the canonical information by the
k � 28 codons, induces its own complement, i.e. the set C0k of va-
cant codons for ncAAs. Thus, the new genetic information would
be encoded by 1 � n � ð64� kÞ codon blocks, which constitute a
partition of the set C0k. In consequence, we introduced a set
collection of n codon blocks for the new genetic information:

P0kðnÞ ¼ fS1; S2; . . . ; Sn; Si \ Sj ¼1; S1 [ S2 [ . . . [ Sn ¼ C0kg ; (1)

where each Si; i ¼ 1; . . . ; n is a non-empty set of codons that enco-
des the same genetic information, e.g. a specific ncAA. The new
set P0kðnÞ together with the set Pk encoding canonical information
constitutes an expanded genetic code denoted by Pðn; kÞ, which
encodes exactly n new ncAAs and k � 28 items of canonical ge-
netic information:

Pðn; kÞ ¼ Pk [ P0kðnÞ: (2)

Please note that according to the definition of Pk, we get that
the number of connections between the canonical and non-ca-
nonical parts of the expanded code is as small as possible, which
may causes a low probability of potential reversion between the
new and old information. It is very useful from experimental
point of view, when we want to keep the information about the
canonical amino acids and the stop translation, and simulta-
neously not lose the new information encoded in the vacant
codons.

Similar to the average conductance of the canonical code
UðPkÞ, it is theoretically possible to calculate this measure also
for the codon set encoding ncAAs, denoted as UðP0kðnÞÞ. Finally,
the average conductance of the whole expanded genetic code
UðPðn; kÞÞ can be derived to assess its optimality in terms of point
mutations. However, these measures can be obtained only when
the assignments of individual ncAAs to the vacant codons are

Number of codons
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Figure 3 The relationship between the smallest possible average costs of
amino acid substitutions regarding their physicochemical properties
based on F function and the number of codons in the canonical codes
that minimize changes between the canonical and non-canonical
information. The costs were normalized by the number of codons for the
canonical information in the corresponding code.

Table 4 The set of 55 codons (labeled according to canonical
assignments) encoding canonical information and minimizing
changes of information between the canonical and non-
canonical (unassigned codons) partition of the code

UUU UCU UAU UGU

UUC Phe UCC Ser UAC Tyr UGC Cys
UUA UCA UAA UGA
UUG UCG Ser UAG Stop UGG Trp
CUU Leu CCU Pro CAU His CGU Arg
CUC Leu CCC Pro CAC His CGC Arg
CUA Leu CCA Pro CAA Gln CGA Arg
CUG Leu CCG Pro CAG Gln CGG Arg
AUU Ile ACU Thr AAU Asn AGU Ser
AUC Ile ACC Thr AAC Asn AGC Ser
AUA Ile ACA Thr AAA Lys AGA Arg
AUG Met ACG Thr AAG Lys AGG Arg
GUU Val GCU Ala GAU Asp GGU Gly
GUC Val GCC Ala GAC Asp GGC Gly
GUA Val GCA Ala GAA Glu GGA Gly
GUG Val GCG Ala GAG Glu GGG Gly

These codons were chosen according to a lexicographic order induced by the
linear order of nucleotides C < G < A < U and the order of codon positions
1< 3 < 2. This code shows also the smallest possible average costs of amino
acid replacements considering their physicochemical properties normalized by
the codon number.

Table 5 The number of times when the individual codons were
selected as vacant in the codes minimizing changes of
information between the canonical and non-canonical partition
and showing the smallest possible average costs of amino acid
replacements considering their physicochemical properties

UUU Phe 8 UCU Ser 8 UAU Tyr 9 UGU Cys 7

UUC Phe 7 UCC Ser 11 UAC Tyr 13 UGC Cys 8
UUA Leu 27 UCA Ser 25 UAA Stop 36 UGA Stop 31
UUG Leu 1 UCG Ser 1 UAG Stop 0 UGG Trp 0
CUU Leu 5 CCU Pro 5 CAU His 5 CGU Arg 4
CUC Leu 7 CCC Pro 13 CAC His 13 CGC Arg 10
CUA Leu 22 CCA Pro 23 CAA Gln 29 CGA Arg 25
CUG Leu 0 CCG Pro 3 CAG Gln 0 CGG Arg 0
AUU Ile 5 ACU Thr 5 AAU Asn 7 AGU Ser 4
AUC Ile 8 ACC Thr 12 AAC Asn 14 AGC Ser 10
AUA Ile 24 ACA Thr 24 AAA Lys 31 AGA Arg 27
AUG Met 0 ACG Thr 2 AAG Lys 0 AGG Arg 0
GUU Val 5 GCU Ala 4 GAU Asp 5 GGU Gly 4
GUC Val 7 GCC Ala 10 GAC Asp 13 GGC Gly 9
GUA Val 22 GCA Ala 22 GAA Glu 30 GGA Gly 22
GUG Val 0 GCG Ala 1 GAG Glu 0 GGG Gly 0

The results were obtained from the set of 37 codes in which 28–63 codons
encoded the canonical information.
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known, because there are many possible set collections for the
fixed number of codons in the canonical set k and the number of
ncAAs coded in the non-canonical set n, which differ in U values.
Therefore, we decided to find a lower bound on the values of
UðP0kðnÞÞ for the fixed k � 28 and n ¼ 1; . . . ; ð64� kÞ. It could be
done using the representation 1 of P0kðnÞ as well as the definition
2 of the k-size conductance and a simple observation that for
every P0kðnÞ, we have:

UðP0kðnÞÞ ¼
1
n

Xn

i¼1

/ðSiÞ �
1
n

Xn

i¼1

/jSi jðGÞ : (3)

It means that the average conductance of the non-canonical
part of the code is greater or at most equal to the average of re-
spective jSij-size conductances of the codon blocks encoding
n ncAAs and having the optimal structure in terms of the set
conductance.

Therefore, for every P0kðnÞ, there exists a lower bound on the
average conductance of the set collection imposed on its codon
set C0k. What is more, these optimal collections are composed of
the best codon blocks in terms of the k-size conductance, i.e. the
minimum possible value of set conductance for a group consist-
ing of k codons. This feature gives us a general overview on the
optimal structures of the genetic code expansions including
the selected number n of ncAAs.

Following the property 3, we found all possible lower bounds
for every k � 28 and n ¼ 1; 2; . . . ; ð64� kÞ. Figure 4 presents their
graphical representations. As we can see, the lower bound on
UðP0kÞ increases with the number n of coded ncAAs.

This relationship shows an interesting course, e.g. for k¼ 28
(Figure 3), the curve of the lower bound increases with n but
slows down for n close to n0 ¼ 9 and then blows up again for
n > n0. This fact results from that there is no set with the number
of codons lower than four for n � n0, whereas these sets appear

C’ C’ C’ C’ C’ C’

C’ C’ C’ C’ C’ C’

C’ C’ C’ C’ C’ C’

C’ C’ C’ C’ C’ C’

C’ C’ C’ C’ C’ C’

C’ C’ C’ C’ C’ C’

Figure 4 The lower bound of the average conductance UðP0kðnÞÞ calculated for the set collection P0kðnÞ encoding ncAAs in relation to the number n of
coded ncAAs. The relationship was presented for all possible partitions of the set C0k containing vacant codons, which encode n ¼ 1; . . . ; ð64� kÞ ncAAs,
for k � 28 being the number of codons in the canonical set.
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for n > n0. Since the k-size conductance /kðGÞ for groups of codons

in the number k¼ 1, 2, 3 is � 0:778 and larger than for more

numerous groups with /k � 0:689, a set collection containing

the codon group of size lower than four have the average

conductance of the set collection generally higher in compari-

son to the collections that are composed of codon blocks with

the size greater or equal than four. This fact could explain the

presence of the U minimum for n > n0. This phenomenon is also

observed for 28 � k � 52 for respective changing points n0

(Figures 4 and 5).

The balance of expanded genetic code
Using equation (2), we can compare the structural differences

between the canonical Pk and the non-canonical P0kðnÞ parts of

the expanded code. In order to do so, we introduced a balance

measure W defined as:

WðPðn; kÞÞ ¼
UðP0kðnÞÞ
UðPkÞ

; 28 � k � 63 ; (4)

where UðPkÞ is the average conductance of the canonical code

partition and UðP0kðnÞÞ is the average conductance of the non-ca-

nonical code partition.
The balance function W < 1 indicates that the non-canonical

partition P0kðnÞ possesses better structural properties in terms of

the average conductance, i.e. minimization of non-synonymous

substitutions than the canonical partition Pk, whereas W > 1

means that the canonical genetic information is better optimized

in this respect. From our point of view, the value of W around one

is the most interesting because it suggests a similar robustness of

codon blocks to point mutations in both types of the expanded

genetic code. Therefore, the balance measure W appears to be

useful in studying properties of codon groups belonging to Pk and

PkðnÞ. Thanks to that, we can compare the quality of coding
system for the new and old information.

We tested the balance under the assumption that the non-ca-
nonical set P0kðnÞ attains lower bound of the average conductance
value UðP0kðnÞÞ. Figure 6 presents the balance values W calculated
for various number of codons in the non-canonical set C0k in rela-
tionship with the number n of coded ncAAs. It is visible that
the expanded genetic code is extremely unbalanced for small n,
i.e. when W < 1, which indicates that the non-canonical partition
P0kðnÞ have in general codon block structure that minimize non-
synonymous substitutions better than the canonical partition Pk.
In all considered cases W increases with the number of newly in-
corporated ncAAs. However, it is possible to find a balanced code
for which W are around one.

After comparison of codes with the balance in the range of
0.991–1.010, we noticed a biased distribution of codons in the ca-
nonical and non-canonical partitions. Codons with the G in the
third codon position dominated in the canonical partition. Each
of them was present in more than 2.3% among codons belonging
to this set. In total, these codons constituted 40%. In the case of
uniform distribution of all codons, we should expect the 1.56%
usage for each codon and 25% for the group having one nucleo-
tide type in one codon position. On the other hand, in the non-ca-
nonical partition, codons ending with A were most frequent, each
in more than 3.2% and 60% in total. Interestingly, such codons
were also very often selected to the non-canonical partition in
the expanded codes showing the smallest possible average costs
of amino acid replacements in terms of their physicochemical
properties (Table 5). The biased usage of the codon groups in the
canonical and non-canonical sets is significantly different in
comparison to the uniform distribution (P-value < 10�10 in the
proportion test).

What is more, the number of newly included ncAAs required
to obtain the balanced code is in some cases quite large. For ex-
ample, in the case of k¼ 28, possible balanced genetic codes are
obtained for the number of ncAAs n¼ 28, 29, and 30. This result
shows in fact a huge redundancy level of the SGC.

Concluding remarks
The redundancy of the SGC suggests that this coding system can
be expanded. In literature, we can find several approaches to this
problem. These findings encouraged us to start studying the issue
of the optimal expansion of the SGC from theoretical perspective.
In this paper, we proposed a method of genetic code expansion
using graph theory. Following this methodology, we described
the smallest set of codons still encoding 21 canonical items (20
amino acids with one stop translation signal) and characterizing
by the minimal set conductance for its size. This property pro-
vides the smallest number of connections between codons in this
minimalistic canonical code and the set of vacant codons, which
can be assigned to new genetic information. Thanks to that, such
a code is characterized by the minimized possibility of reversions
between these two parts of the expanded code, the canonical and
non-canonical one. What is more, we investigated the optimal
structure of many expanded codes with various number of
codons released for encoding potential ncAAs. Among these
codes, we found those that minimized average costs of amino
acid replacements considering their physicochemical properties.
In addition, the introduced balance measure, i.e. the ratio of the
average conductance of the non-canonical to canonical code,
allows us for finding the expanded genetic codes whose canonical
and non-canonical sets show a similar robustness to point
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Figure 5 The minimum of the average set conductance UðC028Þ (blue line)
in relation to the number n of coded ncAAs. The minimum of U was
found over all possible partitions of the set C028 containing 28 codons for
canonical information and 36 vacant codons for n ncAAs. The red
dashed line shows the minimum of the average set conductance
obtained for n¼ 9. As we can see, n¼ 9 is a deflection point, in which the
rate of the curve increase is changing.
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mutations. Using these approaches, we identified the codons that
can be used for reprogramming to encode new ncAAs.

It should be noted that the results presented here are based
on some theoretical assumptions, which were necessary to con-
duct the analytical calculations and reasoning as well as make
general conclusions about the expansion of the SGC. First of all,
we proposed an universal approach, which does not take into ac-
count the different probabilities of nucleotide mutations and the
codon usage. These features are much diversified and specific
not only between various species but even within the same ge-
nome. Therefore, it is not possible to construct a general model
of the genetic code expansion including the huge diversity of the
mutations and codon frequency. Secondly, we did not regard the
number and types of tRNAs, which can be used to decode unam-
biguously respective codons. Nevertheless, it seems reasonable
to investigate the problem of the SGC expansions starting from
the general foundations. Interestingly, using these assumptions,

we found several interesting limitations on the number of codons
required to encode canonical information and also on the codon
blocks that would encode new information. Our approach can
be considered a null model and a starting point to other more
complex models, most probably heuristic and genome-specific,
including the different mutation rate between nucleotides and
codon usage.
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Figure 6 The balance W, i.e. the ratio of the average conductance of the non-canonical to canonical code, in relation to the number n of coded ncAAs.
The relationship was presented for all possible partitions of the set C0k containing vacant codons, which encode n ¼ 1; . . . ; ð64� kÞ ncAAs, for k � 28
being the number of codons in the canonical set. It was assumed that P0kðnÞ attains the lower bound of UðP0kðnÞÞ.
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