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Strigolactones (SLs) are carotenoid-derived plant hormones involved in several growth and de-
velopmental processes. Also, SLs are allelochemicals that induce the seed germination of root 
parasitic plants and the hyphal branching of arbuscular mycorrhizal fungi. In this study, to identi-
fy novel lead chemicals that inhibit SL biosynthesis, we evaluated the effect of agrochemicals on 
SL biosynthesis. We found that the diacylhydrazine insect growth regulator, chromafenozide, re-
duced the endogenous level of 4-deoxyorobanchol (4DO), a major SL in rice. Furthermore, treat-
ment with the same class of insect growth regulator, methoxyfenozide, also resulted in the reduction of 4DO levels in rice root exudates. These 
results suggest that chromafenozide and methoxyfenozide are novel lead inhibitors of SL biosynthesis.
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Introduction

Strigolactones (SLs) are one group of plant hormones that control 
several developmental processes, such as the outgrowth of axil-
lary shoots, stress tolerance, and leaf senescence.1–3) In 1966, SLs 
were first isolated as germination stimulants of the root parasitic 
plant, Striga lutea Lour., from the root exudates of cotton (Gossy-
pium hirsutum L.).4) Subsequently, SLs have been found to induce 
hyphal branching in arbuscular mycorrhizal fungi that supply 
inorganic phosphate to plants.5) Research on SLs is agriculturally 
important because SLs regulate these useful characteristics.

Root parasitic plants, such as broomrapes (Phelipanche and Oro-
banche spp.) and witchweeds (Striga spp.), infest staple crops in 
sub-Saharan Africa, the Middle East, and Asia.4,6,7) Once attached 
to the host plant, root parasitic plants take up nutrients and water 
from the host. The damage caused by Striga in Africa, in particular, 
is severe and is estimated to account for the annual losses of US $7 

billion.6) Because infestation with the root parasitic plants is allevi-
ated in SL-biosynthesis mutants,2) SL-biosynthesis inhibitors could 
be useful in controlling root parasitic plants.

Genetic and biochemical analyses have revealed that SLs are 
biosynthesized from all-trans-β-carotene by several enzymes. 
Carlactone (CL), which is an important precursor in the SL-
biosynthetic pathway, is converted from all-trans-β-carotene by a 
carotenoid isomerase (D27) and two carotenoid cleavage dioxy-
genases, CCD7 (MAX3 in Arabidopsis/RMS5 in pea/D17 in rice/
DAD3 in petunia) and CCD8 (MAX4 in Arabidopsis/RMS1 in 
pea/D10 in rice/DAD1 in petunia).8,9) Subsequently, CL is oxidized 
by CYP711A family enzymes of cytochrome P450 proteins (P450), 
although their enzymatic activities differ among plant species. In 
rice, among five CYP711As, Os900 (CYP711A2) and Os1400 
(CYP711A3) participate in orobanchol biosynthesis.10) Os900 cat-
alyzes the conversion of CL to carlactonoic acid (CLA) and CLA 
to 4-deoxyorobanchol (4DO). In contrast, Os1400 converts CL to 
CLA and 4DO into orobanchol (see Supplementary Material, Fig. 
S1). In most plant species, except rice, the enzymatic activity of 
CYP711As only shows the conversion of CL to CLA.11,12)

To date, some compounds have been reported to be SL-
biosynthesis inhibitors. B2 and D6, hydroxamic acid derivatives, 
exhibit inhibitory activity against D27, CCD7, or CCD8.13) We 
have previously reported that TIS108 and KK5 reduce the level 
of 4DO in rice, suppressing Striga germination.14,15) In addi-
tion, by using these SL-biosynthesis inhibitors, some physi-
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ological roles of SLs have been uncovered in some plant spe-
cies.16–18) However, since suitable inhibitors of SL biosynthesis 
differ among plant species,15,16) a novel lead chemical, whose 
structure is substantially different from those of the reported SL-
biosynthesis inhibitors, is needed for SL research.

Chemicals such as pharmacological agents and agrochemicals 
can function as plant-growth regulators. For instance, spirono-
lactone, a diuretic drug used in mammals, induces morphologi-
cal changes in Arabidopsis by inhibiting brassinosteroid action.19) 
Furthermore, the fungicides tebuconazole and triflumizole have 
been identified as SL-biosynthesis inhibitors.20,21) Consequently, it 
is effective to screen pharmacological agents and agrochemicals—
except plant growth regulators which affect plant morphology—
for novel lead chemicals as SL-biosynthesis inhibitors.

20-hydroxyecdysone (20HE) is known as a molting hormone 
that regulates insect metamorphosis and development in most 
insects.22) Because molting is an essential event for insects, sev-
eral ecdysone agonists have been developed as insecticides. Es-
pecially, diacylhydrazine derivatives such as chromafenozide 
(CHR) and methoxyfenozide (MET) are commercially used as 
potent insecticides against lepidoptera insects (see Supplemen-
tary Material, Fig. S2). These chemicals bind to the ecdysone re-
ceptor complex and successively induce abnormal molting.

In this study, we evaluated the SL biosynthesis–inhibitory ac-
tivity of six agrochemicals, shown in Fig. 1, to find a novel lead 
SL-biosynthesis inhibitor. CHR and MET, known to be molting-
hormone agonists, were identified as effective SL-biosynthesis 
inhibitors.

Materials and methods

1. Plant material, chemicals, and growth conditions
We used Nipponbare species as the wild-type rice. Insecticides 
and insect growth regulators were purchased from Fujifilm Wako 
Chemicals (Osaka, Japan) and Sigma-Aldrich (St. Louis, MO, 
USA). Rice seedlings were grown as previously described.2) Steril-
ized rice seeds with 2.5% sodium hypochlorite were incubated at 
25°C in sterile water in the dark for 2 days. The germinated rice 
seeds were transferred into a phosphate-deficient hydroponic 
culture medium solidified with 0.7% agar and incubated at 25°C 
under fluorescent white light with a 14-hr light and 10-hr dark 
photoperiod for 7 days. Nine-day-old seedlings were transferred 
to a glass vial containing 12 mL of phosphate-deficient hydro-
ponic culture media and grown under the same conditions for 6 
days. Fifteen-day-old seedlings were transferred to a brown vial 
containing 12 mL of the same medium and 12 µL of the tested 
chemicals dissolved in DMSO, and it was incubated for 1 day. To 
analyze the 4DO levels, culture media and roots were collected.

2. Quantification of the 4DO level in rice root exudates and roots
We used 400 pg of deuterium-labeled 5-deoxystrigol (d6-5DS) as 
the internal standard.23) To measure 4DO in rice root exudates, 
we extracted the hydroponic culture medium with ethyl acetate 
twice. The organic phase was concentrated in vacuo. To mea-
sure 4DO in roots, we homogenized rice roots in ethyl acetate 

with d6-5DS added, and the suspension was filtered. The filtrates 
were dried and dissolved in 10% acetone. The extracts were 
loaded onto Oasis HLB 3 cc (60 mg) extraction cartridges (Wa-
ters, Milford, MA, USA), washed with 10% acetone (6 mL), and 
eluted with acetone (6 mL). The solutions were concentrated in 
vacuo and dissolved in 1 mL of ethyl acetate : n-hexane (15 : 85). 
The SL-containing fractions were loaded onto Sep-Pak Vac 1 cc 
(100 mg) silica cartridges (Waters), washed with 2 mL of ethyl 
acetate : n-hexane (15 : 85), and eluted with 3 mL of ethyl acetate :  
n-hexane (35 : 65). The eluates were concentrated in vacuo.

The dried concentrates were dissolved in deionized water :  
acetonitrile (1 : 1) and subjected to liquid chromatography-
tandem mass spectrometry (LC-MS/MS) analysis using a Triple 
TOF 5600 system (SCIEX), as previously described.24)

Results and discussion

To identify novel lead chemicals for SL-biosynthesis inhibitors 
among insecticides and insect growth regulators (see Supple-
mentary Material, Fig. S3), we first measured the level of SL in 
the root exudates of two-week-old rice seedlings from each treat-
ment group, because the levels of SL in rice root exudates show 
a good correlation with those in rice roots.25) In this study, we 
analyzed the levels of 4DO, a major SL in rice, by LC-MS/MS. 
The detection of SL levels becomes easy via the upregulation of 
SL-biosynthetic gene expression when rice seedlings are grown 
in phosphate-deficient culture media.26) Thus, we estimated the 
effects of chemicals on 4DO levels under conditions of phos-
phate deficiency. Of the tested chemicals, 10 µM CHR treatment 
significantly reduced the level of 4DO in root exudates as com-
pared with the control (Fig. 1). CHR is commercially used as an 
insect molting-hormone agonist with a hydrazone moiety.27) To 
check whether the insect molting hormone and its agonist show 
the inhibitory activity of SL biosynthesis, we performed the same 

Fig. 1. The effect of insecticides (10 µM) on 4-deoxyorobanchol (4DO) 
levels in rice root exudates. The data are the mean±S.D. (n=4). * Denotes 
a statistically significant difference from the 4DO level in no-application 
of chemicals plants (control) (Dunnett’s test; 0.01<p<0.05).
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assay using CHR, MET, and 20HE. In this assay, CHR and MET 
displayed statistically significant reductions in 4DO levels in root 
exudates at a concentration of 100 µM, while 20HE treatment did 
not affect the level of 4DO (Fig. 2). These results suggest that the 
chemical structure of the molting-hormone agonists, rather than 
their molting-hormone activity, is important for the reduction of 
4DO levels in root exudates. Next, we analyzed the endogenous 
4DO levels in CHR-treated roots. CHR treatment reduced en-
dogenous 4DO levels in roots in a dose-dependent manner (1–

100 µM) (Fig. 3). These results suggest that CHR and MET are 
novel lead chemicals for SL-biosynthesis inhibitors in rice.

We evaluated the inhibitory activity of SL biosynthesis on six ag-
rochemicals and found that CHR inhibited the 4DO biosynthesis 
in rice when the compound was applied at concentrations ranging 
from 10 to 100 µM. CHR is an insect growth regulator that induces 
abnormal molting as an ecdysone receptor agonist.28) Although 
root exudates of CHR- and MET-treated rice showed a reduction 
in 4DO levels, 20HE-treated rice root exudates did not. These re-
sults indicate that the inhibitory activity of SL biosynthesis, as 
shown by CHR and MET, is not related to the molting-hormone 
activity. In addition, as compared to the potent insecticidal activi-
ties (around 0.1 to 1 µM),29) the inhibitory activities of SL biosyn-
thesis were very weak, suggesting the importance of studying the 
structural activity relationship to develop specific SL-biosynthesis 
inhibitors. To date, it has been reported that B2 and D6 with hy-
droxamic acid and amide bonds showed inhibitory activity of SL 
biosynthesis. The target protein of B2 is D27, while D6 inhibits the 
enzymatic activities of CCD7 and CCD8.13,30) The structures of B2 
and D6 consisted of two benzene rings bridged by an amide bond 
(Fig. 4). The structures of CHR and MET also have two benzene 
rings bridged by an amide bond. Therefore, CHR and MET may 
inhibit SL biosynthesis by inhibiting the enzymatic activities of 
D27, CCD7, or CCD8. As B2 and D6 inhibit the activities of target 
enzymes at concentrations of 10 to 100 µM in vitro, the inhibitory 
activities of SL biosynthesis in CHR and MET might be compa-
rable to those in B2 and D6. To understand the target enzymes of 
CHR and MET in detail, we need to assess the effects of CHR and 
MET on D27, CCD7, CCD8, and CYP711A through inhibitory 
assay of these enzymes in the near future.

In this study, we found that CHR and MET, known as molt-
ing-hormone agonists, inhibit SL biosynthesis in rice. This is the 
first observation in which molting-hormone agonists inhibit SL 
production. SL-biosynthesis inhibitors can control the endoge-
nous levels of SLs in developmental stages and tissues. Although 
further structure–activity relationship studies are needed to de-
velop specific and potent SL-biosynthesis inhibitors, CHR- and 
MET-derivatives will play an important role in analyzing the SL 
function and controlling the damage of root parasitic plants.
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