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ABSTRACT: We report a new class of synthetic molecular pumps
that use a stepwise information ratchet mechanism to achieve the
kinetic gating required to sequester their macrocyclic substrates from
bulk solution. Threading occurs as a result of active template
reactions between the pump terminus amine and an acyl electrophile,
whereby the bond-forming reaction is accelerated through the cavity
of a crown ether. Carboxylation of the resulting amide results in
displacement of the ring to the collection region of the thread. Conversion of the carbamate to a phenolic ester provides an
intermediate rotaxane suitable for further pumping cycles. In this way rings can be ratcheted onto a thread from one or both ends of
appropriately designed molecular pumps. Each pumping cycle results in one additional ring being added to the thread per terminus
acyl group. The absence of pseudorotaxane states ensures that no dethreading of intermediates occurs during the pump operation.
This facilitates the loading of different macrocycles in any chosen sequence, illustrated by the pump-mediated synthesis of a
[4]rotaxane containing three different macrocycles as a single sequence isomer. A [5]rotaxane synthesized using a dual-opening
transamidation pump was structurally characterized by single-crystal X-ray diffraction, revealing a series of stabilizing CH···O
interactions between the crown ethers and the polyethylene glycol catchment region of the thread.

■ INTRODUCTION
Protein pumps actively transport substrates away from
equilibrium.1−4 These biomolecular machines are generally
extremely structurally complex, assembled from multiple
protein subunits and having molecular masses in excess of
500 kDa. A number of much smaller artificial molecular pumps
have been designed.5−24 These minimalist systems can provide
insights into the basic mechanisms required to drive chemical
systems away from equilibrium25,26 and also illustrate well how
different structural modules can be combined to generate
function that goes far beyond that of the sum of the individual
parts.7,27

Synthetic molecular pumps based on pseudorotaxane
architectures have been used to drive systems away from
equilibrium by progressively sequestering macrocycles from
bulk solution to thermodynamically less favorable sites on
collection threads.12−21 Accordingly, the macrocycles are
trapped in a high energy state on the axle compared to
unthreaded rings in solution. This constitutes active transport
of the rings from bulk solution to the collection thread.20,21

Accordingly, the pumping needs to be powered and to occur
under kinetic control. The chemical structure of the pump is
designed to promote macrocycle threading and inhibit
dethreading. Each pumping cycle builds on the last by
increasing the concentration of macrocycles held on the
collection thread. In this way, molecular pumping also enables
the synthesis of well-defined higher order oligo- and
polyrotaxanes and catenanes that would be inaccessible
through conventional “passive” template synthesis.13,18,28−32

Most of the rotaxane-based pumps reported to date employ
energy ratchet5 mechanisms, which rely on periodic variations
in the binding affinities and kinetic barriers between the
macrocycle and various sites on the pump. The different
conditions that occur over the operation cycle define the
energy surface accessible to the macrocycle, inhibiting
dethreading and driving the ring onto the collection thread.
A range of stimuli have been employed to drive such systems,
including transition metal coordination,29,30 acid/base cy-
cling,13,21,31 radical pairing,12,14−18,20 and photoisomeriza-
tions.22−24,33,34 Pumping by information ratchet mecha-
nisms35−38 has also been demonstrated with artificial molecular
pumps.19 Such systems rely on kinetic asymmetry,36−39 arising
from transition state energy differences that depend on the
mechanical state of the pump. Information ratchets can operate
autonomously in a chemostated environment40 and likely form
the mechanism for most or all biomolecular pumps.36

Here we report a new type of synthetic information ratchet
pump, 1, which operates through iterative transamidation.
Pump 1 operates in a stepwise manner with no dethreadable
intermediates, enabling sequence-controlled pumping of differ-
ent macrocycles onto collection threads.
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■ RESULTS AND DISCUSSION
Design and Operation of Single-Opening Trans-

amidation Pump 1. Pump 1, with a single opening for
ring-threading, was synthesized as outlined in the Supporting
Information (Scheme S1). Its mechanism exploits metal-free
active template rotaxane synthesis,41−44 in which the transition
state of a thread-forming reaction between a primary amine
and an electrophile is stabilized through the cavity of a crown
ether. This results in kinetically controlled trapping of the
threaded components.19,41−45 We chose to focus on N-
acylation for the active template reaction, as this had previously
been found43 to be particularly selective toward rotaxane
formation over the background reaction that generates the
non-interlocked thread. Treatment of 1 with 3,5-bis-trifluor-
omethylbenzylamine and 24-crown-8 2 for 16 h in toluene
afforded [2]rotaxane 3 in 65% yield (Scheme 1, step i). The
threaded structure of 3 was confirmed by 1H NMR, where
characteristic diastereotopic splitting of the protons on the
different faces of the macrocycle (Ha, see Scheme 1 for proton
labeling) results from threading onto an unsymmetric axle
(Figure 1b). Downfield shifts of the benzylic and aromatic
protons (Hd and He, from 4.74 to 4.91 ppm and 7.79 to 8.69
ppm, respectively) in 3 compared to those in the non-
interlocked thread, 7, indicate that the macrocycle is sited over
the amide in the [2]rotaxane.
We envisaged that converting the amide in [2]rotaxane 3 to

a reactive electrophile would allow further macrocycles to be
pumped onto the thread via transamidation.46,47 We were
inspired by recent methodology reported by Szostak and co-
workers,48,49 in which N-carboxylated amides were shown to
undergo transamidation reactions. We reasoned that derivatiz-
ing the amide of 3 should also remove its ability to donate
hydrogen bonds and thus weaken intercomponent binding and
promote shuttling of the macrocycle to the oligo(ethylene
glycol) region of the collection thread. Reaction of 3 with di-
tert-butyl decarbonate (Boc2O) (see Supporting Information,
Table S1, for optimization studies on the amide activation
step) gave [2]rotaxane 4 in 77% yield (Scheme 1, step ii).
Shuttling of the macrocycle to the collection thread upon

conversion of 3 to 4 was confirmed by 1H NMR (Figure 1c).
Signals for Ha shifted downfield from 3.42 to 3.60 and 3.18 to
3.55 ppm, together with more modest shifts to the other thread
protons proximal to the amide (Hb, Hc, Hd, He, and Hf). The
chemical shifts of He and Hf in 4 are similar to those in non-
interlocked thread 7 (Figure 1a), consistent with the
displacement of the macrocycle away from the amide.
However, no reaction occurred when [2]rotaxane 4 was

subsequently treated with 3,5-bis-trifluoromethylbenzylamine
and crown ether 2 in toluene. The Boc-amide was not
sufficiently electrophilic and/or too sterically hindered to bring
about [3]rotaxane formation in the nonpolar solvents required
for the active template reaction. To overcome this issue, we
reasoned that a nucleophilic bulky phenol might be able to
generate a more electrophilic rotaxane intermediate containing
a phenolic ester.42−45 Active template aminolysis of this ester
would then give the [3]rotaxane and regenerate the phenol.
Reaction of [2]rotaxane 4 with 4-bromo-3,5-dimethylphenol

and potassium phosphate in THF (for reaction optimization
see Table S2, Supporting Information) smoothly generated
ester [2]rotaxane 5 in 68% yield (Scheme 1, step iii). The
chemical shifts of macrocyclic protons Ha in 5 are almost

unchanged from 4, indicating that the macrocycle remains
located on the glycol region of the collection thread.
Pleasingly, the phenolic ester [2]rotaxane 5 enabled

[3]rotaxane formation as envisaged: treatment of 5 with 3,5-
bis-trifluoromethylbenzylamine and 24-crown-8 2 resulted in
[3]rotaxane 6 in 50% yield (Scheme 1, step iv) to complete a
second pumping cycle. The 1H NMR spectrum of [3]rotaxane
6 (Figure 1e) shows two sets of macrocyclic signals, one set at
chemical shifts similar to those in 3 (Figure 1b) and the other
similar to those in 4 (Figure 1c) and 5 (Figure 1d). This is

Scheme 1. Operation of Single-Opening Transamidation
Molecular Pump 1a

aReagents and conditions: (i) 3,5-bis-trifluoromethylbenzylamine
(1.0 equiv), 2 (1.0 equiv), toluene, rt, 16 h, 65%; (ii) Boc2O (6.0
equiv), DMAP (0.2 equiv), THF, 90 °C, 10 h, microwave irradiation,
77%; (iii) 4-bromo-3,5-dimethylphenol (1.0 equiv), K3PO4 (1.5
equiv), THF, 60 °C, 16 h, microwave irradiation, 68%; (iv) 3,5-bis-
trifluoromethylbenzylamine (2.0 equiv), 2 (2.0 equiv), toluene, rt, 10
days, 50%.
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consistent with one macrocycle in 6 residing on the collection
chain, while the other binds to the newly formed amide.
Synthesis of a Single-Sequence [4]Rotaxane (13)

Using a Single-Opening Transamidation Molecular
Pump. In principle, the pumping cycle shown in Scheme 1,
steps ii−iv, can be repeated over and over again, pumping on
additional rings (one per cycle) until the catchment region of
the thread is full. A distinctive feature of the mechanism is that
at no point in the pumping cycle are captured macrocycles able
to dethread, as the intermediate pump states are all rotaxanes
(dethreading is prevented by bulky stoppers on both ends of
the axle), rather than pseudorotaxanes, where dethreading is
only slowed by “speed bumps”. This should enable the pump
to be used to synthesize oligo- or polyrotaxanes with a single
sequence of structurally distinct macrocycles pumped in a
specific order.21,29,30,50

We demonstrated this by synthesizing [4]rotaxane 13
(Supporting Information, Scheme S2), which contains three
different 24-crown-8 derivatives threaded in a single sequence
and mechanically maintained in that order, on the thread
(Scheme 2). Nitrophenol ester pump 8 was subjected to three
pumping cycles, first using dibenzo-24-crown-8 9 as the
macrocycle to give [2]rotaxane 10 (see Supporting Informa-
tion for synthesis of 13 and intermediates). A pumping cycle
on [2]rotaxane 10 with 24-crown-8 (2) as the macrocycle then
generated [3]rotaxane 11, and then a third with benzo-24-
crown-8 (12) afforded [4]rotaxane 13. Rotaxane 13 was
characterized by high-resolution electrospray mass spectrom-
etry (Scheme 2) and 1H and 13C NMR spectroscopy

(Supporting Information, Spectra S47 and S48). [4]Rotaxane
13 was isolated in 2% overall yield (three pumping cycles; an
average of 60% per synthetic step) as the only isomer detected
out of six possible arrangement of three different macrocycles.
Synthesis of [5]Rotaxane 16 with Dual-Opening

Transamidation Molecular Pump 14. As the “active” end
of the thread features a bulky group that inherently prevents
dethreading, the transamidation pumping strategy is partic-
ularly well suited for operating with pumping motifs at both
ends of a thread. We prepared pump 14, with active esters at
either terminus of the catchment region. The design means
pump 14 is capable of pumping two macrocycles per
transamidation cycle. A bulkier 3,5-dimethyl-4-nitrophenol
leaving group was used in 14 to ensure dethreading did not
occur en route to [3]rotaxane formation (unsubstituted 4-
nitrophenol, the leaving group in 1 and 8, is not sufficiently
bulky to prevent dethreading of 2). A single pumping cycle on
14 resulted in [3]rotaxane 15 in 60% yield (Scheme 3, step i);
a second pumping cycle (Scheme 3, steps ii−iv) gave
[5]rotaxane 16 in 9% overall yield from 14.
[5]Rotaxane 16 was characterized by high-resolution

electrospray ionization spectrometry (Scheme 3) and 1H and
13C NMR spectroscopy (Supporting Information, Spectra S61
and S62). Single crystals of 16 suitable for X-ray diffraction
were obtained from slow evaporation of a diethyl ether/hexane
solution of the rotaxane. The X-ray crystal structure of 16 is
shown in Figure 2.
Despite extensive research on crown ethers over the last 50

years,51 solid state characterization of complexes between

Figure 1. Partial 1H NMR spectra (600 Hz, 298 K, CDCl3) of the pumping cycle of 1: (a) non-interlocked thread 7; (b) amide [2]rotaxane 3; (c)
Boc-activated [2]rotaxane 4; (d) ester [2]rotaxane 5; (e) amide [3]rotaxane 6. For proton labeling, see Scheme 1.
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crown ethers and linear oligo(ethylene glycol) chains remains
rare.52 This is likely a reflection of the lack of driving force for
such associations and, perhaps, the tendency of such

complexes not to form well-defined single crystals. However,
the synthesis of [5]rotaxane 16 does not depend on the
thermodynamically favored assembly of a host−guest complex,
but rather the crown ethers are driven onto the thread by the
information ratchet mechanism and kinetically trapped in the
out-of-equilibrium state. The X-ray crystal structure of 16
reveals the weak favorable interactions that the components
adopt to achieve a relatively low energy coconformation given
their forced association.53

The solid state structure of 16 is reminiscent of the
coconformation NMR indicates is adopted in CDCl3 solution:
the two outer macrocycles each bind to a thread amide group
through NH···O hydrogen bonding of the amide hydrogen to
the crown ether and CH···O�C hydrogen bonding from the
crown ether to the amide carbonyl.28,43,44 The internal
macrocycles do not interact with each other; the system is
better stabilized by each forming an extensive array of CH···O
interactions with the polyethylene glycol thread, including
somewhat unexpectedly the relatively electron poor phenolic
oxygens.54,55

Scheme 2. Synthesis of Single-Sequence [4]Rotaxane 13a

aReagents and conditions: (i) 3,5-bis-trifluoromethylbenzylamine
(1.5 equiv), 9 (1.5 equiv), toluene, rt, 16 h, 61% ([2]rotaxane:free
thread ratio 5:1, determined by 1H NMR, in the reaction mixture
prior to workup); (ii) Boc2O (6.0 equiv), DMAP (1.2 equiv), THF,
90 °C, 10 h, microwave irradiation, 81%; (iii) 4-bromo-3,5-
dimethylphenol (3.0 equiv), K3PO4 (4.5 equiv), THF, 70 °C, 8 h,
microwave irradiation, 90%; (iv) 3,5-bis-trifluoromethylbenzylamine
(2.0 equiv), 2 (2.0 equiv), toluene, rt, 7 days, 54%. (v) Boc2O (6.0
equiv), DMAP (1.2 equiv), THF, 80 °C, 4 h, microwave irradiation,
75%; (vi) 4-bromo-3,5-dimethylphenol (3.0 equiv), K3PO4 (4.5
equiv), THF, 60 °C, 16 h, microwave irradiation, 54%; (vii) 3,5-bis-
trifluoromethylbenzylamine (2.0 equiv), 12 (2.0 equiv), toluene, rt,
21 days, 20% (also isolated [3]rotaxane 11, 10%).

Scheme 3. Synthesis of [5]Rotaxane 16 Using a Dual-
Opening Molecular Pumpa

aReagents and conditions: (i) 3,5-bis-trifluoromethylbenzylamine
(1.0 equiv), 2 (1.0 equiv), toluene, 50 °C, 16 h, 60%; (ii) Boc2O
(12.0 equiv), DMAP (0.4 equiv), THF, 80 °C, 10 h, microwave
irradiation, 80%; (iii) 4-bromo-3,5-dimethylphenol (3.0 equiv),
K3PO4 (4.5 equiv), THF, 60 °C, 16 h, microwave irradiation, 53%;
(iv) 3,5-bis-trifluoromethylbenzylamine (2.8 equiv), 2 (5.5 equiv),
toluene, rt, 21 days, 35%.
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The Effectiveness of the Transamidation Pumping
Mechanism. The selectivity of crown-ether-stabilized N-
acylation toward threading over non-interlocked axle formation
in [2]rotaxane synthesis (i.e., active template synthesis) was
previously found to be >100:1 using 24-crown-8 and
nitrophenol ester electrophiles.43 In the case of single-opening
pumping of 1 to 3 (Scheme 1, step i) or dual-opening pumping
of 14 to 15 (Scheme 3, step i), the high selectivity appears to
be maintained, and we were not able to isolate any non-
interlocked thread (nor [2]rotaxane in the case of Scheme 3,
step i) from the crude reaction mixtures. In the pumping to
form 6 (Scheme 1, step iv), 11 (Scheme 2, step iv), and 16
(Scheme 3, step iv), when the electrophile is a 4-bromo-3,5-
dimethylphenol ester, the active template transamidation is
also highly selective with no signals of [2]rotaxane 3, 10, or
[3]rotaxane 15 observed in the 1H NMR of the crude reaction
mixtures. The pumping yields are limited by the reactivity of
the ester intermediates (5, S11, and S17). In pumping to form
[5]rotaxane 16 (Scheme 3, step iv), the potential [4]rotaxane
side-product containing two amides (i.e., a product where both
esters have reacted but only one macrocycle has threaded) is

not observed. In the active template synthesis of 10 from 8
(Scheme 2, step i), where dibenzo-24-crown-8 is the
macrocycle rather than 24-crown-8, the selectivity toward
[2]rotaxane formation over free thread falls to ∼5:1
(determined by 1H NMR of the crude reaction mixture). In
the final pumping step to form [4]rotaxane 13, which uses
benzo-24-crown-8 as the macrocycle, the selectivity toward
threading decreases further: [3]rotaxane 11 was isolated in
10% yield alongside the [4]rotaxane product (20%). Steric
congestion from the rings already trapped on the thread likely
contributes to the lower selectivity of threading observed in
this pumping step.

■ CONCLUSIONS
The combination of transamidation active template synthesis
and the activation of amides by carboxylation forms a simple
and effective stepwise information ratchet mechanism for
iteratively pumping multiple crown ethers from bulk solution
onto a collection thread. Phenolic esters provide stable
rotaxane intermediates in the pumping cycle. Pumps with a
single transamidation module sequester one crown ether from

Figure 2. (a) X-ray crystal structure of [5]rotaxane 16. (b) Expanded view of two macrocycles bound to the amide and on the polyethylene glycol
region of the thread, showing hydrogen bond intercomponent CH···O interactions. Hydrogen bond lengths: O4C···HN56, 2.40 Å; O22C···HC57,
2.67 Å; O13F···HC81, 2.51 Å; O80···HC24F, 2.71 Å; O80···HC5F, 2.58 Å; O80···HC6F, 1.99 Å; O83···HC20F, 2.79 Å. Hydrogen bond angles:
O4C···H−N56, 151.9°; O22C···H−C57, 148.6°; O80F···H−C24F, 154.8°; O80···H−C5F, 139.3°; O80···H−C6F, 104.9°; O13F···H−C81,
162.3°. (c) View showing CH···O hydrogen bonding of macrocycle on the polyethylene glycol region of the thread. Hydrogen bond lengths:
O1B···HC91, 2.56 Å; O7B···HC90, 2.60 Å; O86···HC20B, 2.87 Å; O89···HC23B, 2.57 Å; O92···HC12B, 2.51 Å. Hydrogen bond angles: O1B···
H−C91, 117.7°; O7B···H−C90, 114.3°; O86···H−C20B, 161.9°; O89···H−C23B, 152.8°; O92···H−C12B, 131.1°. Carbon, gray; oxygen, red;
hydrogen, white; nitrogen, blue; fluorine, yellow. Hydrogen bonds shown in light green. Additional hydrogen atoms and solvent molecules are
omitted for clarity.
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bulk solution onto the collection thread per cycle; molecules
with transamidation modules at both ends of the thread add
two crown ethers per cycle. Pumping does not require the
formation of thermodynamically favorable host−guest com-
plexes on regions of the thread nor macrocycle binding sites in
the collection region. The X-ray crystal structure of a
[5]rotaxane, synthesized using a dual-opening molecular
pump, reveals a coconformation stabilized by arrays of weak
CH···O interactions. The stepwise operation of transamidation
pumps makes it straightforward to synthesize monodispersed
oligorotaxanes with a specific number and sequence of
different macrocycles. Until recently, the synthesis of rotaxanes
required one thread binding site per macrocycle and sequence
isomerism in rotaxanes was virtually unknown.56 The ability to
drive molecular systems directionally away from equilibrium
with ratchet mechanisms has ramifications not only for
synthesis but for many other aspects of molecular nano-
technology.7,27,56,57
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