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Background: Lung cancer is the most common type of cancer in the world. In lung adenocarcinoma (LUAD), studies on receptor 
tyrosine kinase ROS proto-oncogene 1 (ROS1) have mainly focused on the oncogenic effects of its fusion mutations, whereas ROS1 
has been reported to be aberrantly expressed in a variety of cancers and can extensively regulate the growth, survival, and proliferation 
of tumor cells through multiple signaling pathways. The comprehensive analysis of ROS1 expression has not been fully investigated 
regarding its predictive value for LUAD patients.
Methods: Gene expression profiles collected from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) 
databases were used to build and validate prognostic risk models. The association of ROS1 with overall survival and the immune 
landscape was obtained from the Tumor Immune Estimation Resource (TIMER) database. The following analyses were performed 
using the R package to determine the model’s validity: pathway dysregulation analysis, gene set enrichment analysis, Gene Oncology 
analysis, immune invasion analysis, chemotherapy, radiotherapy, and immunotherapy sensitivity analysis. Finally, we conducted a pan- 
cancer analysis and performed in vitro experiments to explore the regulatory role of intercellular adhesion molecule 5 (ICAM5) in the 
progression of LUAD.
Results: We constructed a 17-gene model that categorized patients into two risk groups. The model had predictive accuracy for tumor 
prognosis and was specific for patients with high ROS1 expression. Comprehensive analysis showed that patients in the high-risk 
group were characterized by marked dysregulation of multiple pathways (eg, unfolded protein response), immune suppression of the 
tumor microenvironment, and poor benefit from immunotherapy and radiotherapy compared with patients in the low-risk group. 
PLX4720 may be a suitable treatment for the high-risk patient population. The ICAM5 gene has been demonstrated to inhibit the 
proliferation, cell cycle, invasion, and migration of LUAD cells.
Conclusion: We constructed a 17-gene prognostic risk model and found differences in immune-related cells, biological processes, 
and prognosis among patients in different risk groups based on the correlation between ROS1 and immunity. Personalized therapy may 
play an essential role in treatment. We further investigated the role of ICAM5 in inhibiting the malignant bioactivity of LUAD cells.
Keywords: ROS1, ICAM5, LUAD, immune, prognostic model

Introduction
Lung cancer is the leading cause of cancer-related death worldwide.1 Lung adenocarcinoma (LUAD) is the most 
common histologic subtype of non-small cell lung cancer, accounting for approximately 40% of lung cancers.2,3 There 
is a need for targeted evaluation and treatment of patients based on different genotypes, particularly those that may affect 
the immune microenvironment of LUAD. Previous studies of receptor tyrosine kinase ROS proto-oncogene 1 (ROS1) 
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have shown that ROS1 is aberrantly expressed in various cancers and can broadly regulate cell growth, survival, and 
proliferation through multiple signaling pathways, such as the RAS-RAF-MEK-ERK pathway. The ROS1 fusion gene 
can produce an oncogenic cancer receptor tyrosine kinase, and mutations in some ROS1 sites can confer resistance to 
immune checkpoint inhibitors. The study of the effect of ROS1 on LUAD has been focused on its fusion mutations, but 
the association between the expression level of ROS1 and immunity or prognostic value has yet to be well-studied in 
LUAD patients. Our study found that the expression level of ROS1 was significantly lower in LUAD compared with 
normal lung tissue, and higher ROS1 expression was associated with better overall survival (OS) and higher immune 
scores in LUAD patients. We then established and validated a ROS1-related prognostic risk model. The model had an 
excellent predictive effect on the ROS1 high-expression group.

In addition, we examined the association between risk scores and immune cell infiltration levels using algorithms and 
found that risk scores were largely negatively correlated with immune cell infiltration, which may be related to the 
expression of specific cytokines. The tumor microenvironment (TME) of high-risk score LUAD patients promoted the 
occurrence of immune escape. These genes downregulated in the high-risk group were significantly associated with 
immune system function. These findings suggest the potential functional role of the risk score in LUAD and highlight the 
mechanistic basis for a risk score to influence immune cell infiltration in the TME. Finally, we investigated the regulation 
role of the model key intercellular adhesion molecule 5 (ICAM5) in LUAD cells using in vitro experiments. These results 
showed that ICAM5 significantly inhibited the proliferation, invasion and migration of LUAD cells, which suggested that 
the downregulation of ICAM5 may be one of the mechanisms of the higher malignant degree of ROS1 high-expression 
patients.

Materials and Methods
Data Download and Preprocessing
We downloaded LUAD gene expression profiles from The Cancer Genome Atlas (TCGA) public gene expression 
database (https://cancergenome.nih.gov/), screening 501 tumors and 59 normal samples for our study. Clinical pheno-
types and prognostic information for these samples were extracted from the University of California Santa Cruz (UCSC) 
Xena database (https://xena.ucsc.edu/). Additionally, we acquired LUAD microarray data from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/), including GSE26939, GSE72094, and GSE42127. 
Aggregated pan-cancer data, encompassing transcripts per kilobase million and clinical information for 33 cancer 
types and normal tissues, were downloaded from the UCSC Xena database, obtained from TCGA database and the 
Genotype-Tissue Expression project (https://gtexportal.org/home/). Immunohistochemistry (IHC) staining images of 
ICAM5 from LUAD and healthy lung tissue were obtained from the Human Protein Atlas database (https://www. 
proteinatlas.org/).

Prognostic Risk Model Establishment
We used the R package “estimate” (version 1.0.13) to calculate the immune score of tumor samples divided into different 
groups according to different ROS1 expressions and found that the P value of the immune score between the two groups 
was the smallest when there were 200 samples in the low-expression group, so based on the difference in immune scores, 
the samples were divided into control groups according to ROS1 expression: ROS1 high-expression group (H group) and 
ROS1 low-expression group (L group). 301 patients in the H group provided available prognostic information to develop 
prognostic characteristics. Differential expression analysis was performed using the R package “limma” (version 3.52.4). 
To screen for differentially expressed genes, logfoldchangej j> 1 and adjusted p value< 0:05 were defined, and the same 
criteria were used to obtain differential genes between high-risk and low-risk groups. Univariate Cox regression analysis 
was used to determine the genes associated with survival, the LASSO algorithm was used for variable selection, and 
tenfold cross-validation determined the penalty parameter (λ) for the model according to the minimum criteria. The 
multivariate Cox regression was then performed to obtain candidate genes. The candidate genes that satisfied the 
proportional hazards assumption and collinearity test were used to form the final prognostic risk model. The risk score 
based on the candidate genes was formulated as follows: riskscore ¼ ∑ expXi � coef Xið Þ, where coef Xi represents the 
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synergistic coefficient, and expXi represents the relative expression of RNA. The median of the risk score is used as 
a cut-off value to distinguish between high- and low-risk groups. We also group data from GEO database sources similar 
to the criteria for grouping data from TCGA database sources.

Survival and Prognostic Analysis
Survival differences between high-risk and low-risk groups were estimated by Kaplan-Meier (KM) analysis. TCGA data 
were divided into different clinical subtypes, and KM survival curves were analyzed separately to verify the model’s 
reliability. Curves of subject operating characteristics over time were plotted, the area under the curve (AUC) was 
calculated, and the predictive accuracy of survival time was estimated and compared by risk score and different 
clinicopathologic factors. Univariate and multivariate Cox regression analyses were performed to search for independent 
prognostic factors. The relationship between clinicopathologic features and risk score was determined by correlation 
analysis. Nomograms are used to clinically predict patients’ 1-, 3-, and 5-year survival rates using clinical information 
and risk score, as both factors may impact survival. Survival probability calibration curves, KM survival curves, and 
Receiver Operating Characteristic (ROC) curves are used to determine the predictive performance of the nomograms. 
The dataset in the GEO database is used as the external validation dataset, and the H group obtained by the grouping 
standard is used as the verification group.

Pathway Dysregulation Analysis
To investigate which biological processes are associated with poor outcomes in patients in the high-risk score group, we 
performed transcriptome-based pathway dysregulation analysis using the R package “pathifier” (version 1.34.0). We used 
Spearman correlation analysis to determine the correlation coefficient and significance between pathway dysregulation 
score (PDS) and risk score. Normal samples were used as a control group. The gene set used (H collection: hallmark 
gene sets) was obtained from the MSigDB database (https://www.gsea-MSigDB.org/gsea/index.jsp).

Feature Enrichment Analysis
To explore the relationship between immunity and risk score, the relevant immune-related gene set was obtained based 
on the R package “msigdbr” (version 7.5.1), and the parameter category was set to “C5”. In addition, the functions 
“gseGO” and “gseKEGG” were used to analyze the pathway enrichment analysis of the differential genes between the 
high and low ICAM5 expression groups in LUAD. The R package “fgsea” (version 1.22.0) was used to analyze the 
enrichment of immune-related pathways in different risk score groups.

Immunological Analysis of the Prognostic Risk Model
To investigate the relationship between immune status and risk score, gene signatures of tumor-infiltrating lymphocytes 
were obtained from the TISIDB database. The ssGSEA analysis based on the R package “GSVA” (version 1.44.5) was 
used to calculate tumor-infiltrating lymphocytes, the MCP-counter algorithm analyzed the gene expression data, and the 
infiltration of immune cells was compared. Human leukocyte antigen (HLA) was also used to analyze the differences 
between the two groups. In addition, a list of immune-relevant genes was downloaded from the ImmPort database 
(https://www.immport.org/home) to check the expression of immune checkpoints in different risk groups. We aim to 
explore the model’s ability to differentiate LUAD patients.

Chemotherapy, Radiotherapy, and Immune Response Susceptibility Analysis for 
Prognostic Risk Model
To assess the relationship between chemotherapy response and risk score, we analyzed drug susceptibility using 
a “pRRophetic” R package (version 0.5) based on gene expression data.4,5 The parameter “tissueType” was set to the 
“lung”. The pRRophetic algorithm has been widely used in medical research.6–9 We calculated fractions for X-ray 
response, ultraviolet radiation (UV) response, and DNA damage repair using ssGSEA. The corresponding gene set was 
obtained from the MSigDB database (http://www.gsea-MSigDB.org/gsea/index.jsp). To explore the relationship between 

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S475088                                                                                                                                                                                                                       

DovePress                                                                                                                       
6585

Dovepress                                                                                                                                                               Liu et al

Powered by TCPDF (www.tcpdf.org)

https://www.gsea-MSigDB.org/gsea/index.jsp
https://www.immport.org/home
http://www.gsea-MSigDB.org/gsea/index.jsp
https://www.dovepress.com
https://www.dovepress.com


risk score and immunotherapy efficacy, we used the Tumor Immune Dysfunction and Exclusion (TIDE) score to infer 
immunotherapy responses in patients with low- and high-risk scores. We downloaded official scoring data from the TIDE 
database (http://tide.dfci.harvard.edu) to assess their response to anti-PD1 and anti-CTLA4 immunotherapy based on 
differences in TIDE scores between the two groups.

Model-Specific Analysis of Prognostic Risk Model
We established a prognostic model using defined ROS1 high-expression groups. Survival-related analysis was performed 
on patients in the ROS1 low-expression group in the TCGA and GEO cohorts, respectively, to determine whether the 
prognostic risk model had the specificity of the ROS1 high-expression group.

Pan-Cancer Analysis
Correlation plot between pan-cancer levels of ROS1 expression and patient survival obtained from the TIMER database 
(https://timer.cistrome.org/). Using the R package “easyTCGA”, we integrated pan-cancer data from TCGA database and 
the Genotype-Tissue Expression project to reveal differences in gene expression between pan-cancer and normal tissues. 
This data was then combined with pan-cancer survival information for analysis. The R package “TCGAplot” was 
employed to visualize disparities in HLA genes, immunostimulatory factors, chemokines, and chemokine receptors, 
ESTIMATE scores, and MSI in pan-cancer, comparing the ICAM5 high- and low-expression groups.

RNA Extracting and Quantitative Real-Time PCR
Total RNA was extracted from cells using AG RNAex Pro Reagent (Accurate Biotechnology (Hunan) Co., Ltd China) 
following the manufacturer’s protocol. Then, cDNA was synthesized with a reverse transcription kit (Accurate 
Biotechnology (Hunan) Co., Ltd China) and Quantitative Real-time PCR (qRT-PCR) was performed using the SYBR 
Premix Ex Tap Kit (Accurate Biotechnology (Hunan) Co., Ltd China). The primer sequences used are listed in 
Supplementary Table S1.

Cell Culture
A549 and PC9 cell lines were acquired from Procell Life Science & Technology Co., Ltd. A549 cells were grown in 
F12K medium (Gibco) enriched with 10% FBS, while PC9 cells were maintained in RPMI 1640 medium (Gibco). Both 
cell lines were incubated at 37 °C in a humidified atmosphere with 5% CO2. 1% penicillin/streptomycin was added to the 
medium.

Cell Transfection and Treatment
For ICAM5 overexpression, full-length human ICAM5 was cloned into pcDNA 3.1 vector. The empty pcDNA 3.1 vector 
was used for the negative control of ICAM5. These vectors were purchased from Keyybio (Shandong, China). A549 and 
PC9 cell lines were transfected with the expression vectors according to the grouping design. Transfection was conducted 
using jetPRIME® transfection reagent (PolyPlus transfection, Illkirch, France).

Proliferation Assay
Cells were fixed in 10% cold trichloroacetic acid for at least 24 hours, then stained with Sulforhodamine B sodium salt 
(SRB) (Sigma, USA) for 20 minutes, followed by washing with 1% acetic acid. After drying, 150µL of 10 mmol/L Tris 
was added, and the absorbance was measured at 562 nm using a microplate reader (Thermo Fisher, USA). For the 
proliferation assay, cells were seeded in 96-well plates at 2000 cells/well and fixed every 12 hours. Data were normalized 
to day 1 and presented as mean ± SD, with six replicates for each experiment.

EdU Incorporation Assay
Cells were seeded in 12-well plates and, upon achieving 50% confluence, EdU incorporation rates were assayed using the 
BeyoClick™ EdU Cell Proliferation Kit labeled with Alexa Fluor 488 (Beyotime, Shanghai, China), following the 
manufacturer’s guidelines.
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Wound Healing Assay
Cells were seeded in 12-well plates and, upon achieving 95% confluence, a scratch was made in the monolayer using 
a pipette tip. Photographs were taken after 48 hours, and changes to the scratched area were quantified using the ImageJ 
software.

Transwell Assay
The Transwell assay was carried out using a Transwell plate, where the upper chamber was loaded with 200 µL of cell 
suspension containing 4×104 cells without the addition of fetal bovine serum (FBS). Concurrently, the lower chamber 
was filled with 600 µL of medium containing 20% FBS. Following a 36-hour incubation period, the cells present in the 
lower chamber were fixed and stained using crystal violet. Post-staining, the cells were photographed and subsequently 
counted using the ImageJ software.

Statistical Analysis
All statistical analyses were performed in R version 4.2.2 and GraphPad Prism 8.0 software. The Wilcoxon test was used 
to compare the differences between continuous data sets. The Kruskal–Wallis test was used to compare differences 
between multiple groups. The Shapiro–Wilk test was used to determine the normality of the data; if the data were normal, 
Pearson correlation analysis was used; otherwise, Spearman correlation analysis was used to determine the correlation 
between the two data sets. p < 0.05 was considered statistically significant.

Results
This study’s overall design and flow chart are shown in Figure 1. This study encompassed 560 samples of patients with 
LUAD from TCGA database and 618 LUAD patients from the GEO database. The dataset’s primary demographic and 
patient characteristics are summarized below: Figure 1.

Transcription Levels and Immune Correlation of ROS1 in LUAD Patients
ROS1 expression differs significantly between various cancers and their corresponding normal tissues, and ROS1 
expression is significantly downregulated in LUAD compared to normal tissues (Figure 2A). Its expression was 
significantly correlated with patient outcome, and LUAD patients with high ROS1 expression have more prolonged 
survival (Figure 2B). We found that there was a significant positive correlation between ROS1 expression and the 
immune score calculated by the ESTIMATE algorithm (Figure 2C; Supplementary Figure S1A), so we continuously 
grouped according to ROS1 expression and compared the immune scores between the two groups to obtain the smallest 
p value between the two groups and the corresponding ROS1 expression (Supplementary Figure S1B). In this way, we 
distinguished between the high ROS1 expression group (H group) and the low ROS1 expression group (L group). The 
results of the ssGSEA analysis indicated that multiple anti-tumor immune cells were significantly different between the 
two groups (Figure 2D). The ESTIMATE analysis showed that the H group had better immunity (Figure 2E).

Development and Accuracy Verification of 17 Gene Models
Differential analysis in the H and L groups revealed 316 differentially expressed genes (adjusted P value< 0.05, 
log fold changej j> 1) (Figure 3A), of which 276 genes were upregulated, and 40 genes were downregulated. A total 

of 96 genes were further identified by univariate Cox regression analysis, and 18 candidate genes were obtained by lasso 
regression analysis to reduce dimensionality further (Supplementary Figure S2A-B). Seventeen genes passed collinearity 
and time-dependent tests for multivariate Cox regression analysis and forest map (Supplementary Figure S2D). 
A concordance index of 0.73 indicated good predictive performance for the model. We also obtained the risk score 
correlation coefficient (Supplementary Table S2). We found a significant negative correlation between ROS1 gene 
expression and risk score (Supplementary Figure S2C) and a significant correlation between prognostic gene expression 
and ROS1 expression (Supplementary Figure S2E).
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The risk score-based patient distribution of the TCGA cohort and the heat map of the associated genes for the 
corresponding patients are plotted (Figure 3B). Analysis of the KM curves of both cohorts clearly showed that patients 
in the high-risk group had significantly shorter OS than those in the low-risk group (Figure 3C; Supplementary Figure S3A). 
By plotting ROC curves for 1-, 3-, and 5-year, the AUC maximums for the high ROS1 expression group in the TCGA cohort 
were 3-year, and the AUC value for 3-year survival was 0.75 (Figure 3D). In addition, the predicted performance of the risk 
score (AUC = 0.75, 3-year) outperformed the version of the stage, T stage, N stage, M stage, gender, and age (AUC = 0.68, 
0.60, 0.62, 0.56, 0.45, and 0.55) (Figure 3E). We performed uni-Cox and multi-Cox regression analyses using risk scores 
and clinical features to make the model more clinically significant. The results showed that risk scores, T stage, N stage, 

Figure 1 The overall study design and workflow.
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Figure 2 From the TIMER database, (A) differential expression of ROS1 gene, (B) relationship between ROS1 expression in different tumors and patient prognosis (blue 
indicates decreased risk and red indicates increased risk). In the TCGA cohort, (C) correlation between ROS1 expression and immune score, (D) ssGSEA analysis result, 
and (E) ESTIMATE analysis results of H and L groups. *0.01<p<0.05; **0.001<p<0.01; ***0.0001<p<0.001; ****p<0.0001; ns, not significant.
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M stage, and the stage all harmed patient outcomes. In contrast, risk scores and the stage were independent prognostic 
factors for OS in LUAD patients (Figure 3F). The Nomogram is constructed using risk scores and the stage to facilitate 
clinical work (Figure 3G). The calibration curves fitting for 1-year, 3-year, and 5-year OS show good agreement 
(Supplementary Figure S3B). ROC curves predicted with a risk score and stage showed improved predictive performance 
(Supplementary Figure S3C). These results indicate that risk scores and Nomograms have good predictive power.

To further evaluate the prognostic ability of the model, we grouped LUAD patients in the TCGA cohort by age, 
gender, stage, T stage, N stage, and M stage to study the relationship between the risk score and OS of LUAD patients in 
general clinicopathological variables. For different classifications, patients in the low-risk group had significantly longer 
OS (Supplementary Figure S4A–S4E, Figure S4G, Figure S4I, Figure S4K-S4L) than those in the high-risk group except 
for T 3–4 stages, N 3–4 stages, and M1 stage (Supplementary Figure S4F, S4H, S4J). This result may be explained by the 
limited number of patients with advanced non-small cell lung cancer, the considerable heterogeneity within the tumor, the 
patient’s OS being greatly affected by factors such as tumor metastasis, and the patient’s short survival. Therefore, these 
results suggest that prognostic models can also predict the prognosis of LUAD patients with different age groups, 
genders, all stages, T 1–2 stages, N 0–1 stages, and M0 stage.

Risk Score-Related Pathway Dysregulation Analysis and Biological Processes 
Identification
We obtained a PDS that showed the extent of dysregulation of specific biological processes by transcriptome-based 
pathifier analysis and sorted patients in the H group by the size of their risk score, resulting in a pathway dysregulation- 
risk score heatmap (Figure 4A). According to the correlation analysis between PDS and risk score, biological processes 
with positive correlation coefficients are thought to correlate with poor prognosis in patients in the high-risk score group. 
The results showed that dysregulated unfolded protein responses were most correlated with risk scores, which could be 

Figure 3 (A) Differentially expressed mRNA between the H and L groups. In the H group: (B) The risk score distribution, OS status, and heat map of the 17 gene-based 
prognostic risk model. (C) KM survival curves grouped by the median risk score. (D) The ROC curve analysis of the prognostic risk model for predicting OS. (E) ROC 
curves of the risk score and clinical-pathological factors with OS. (F) Uni-Cox and multi-Cox regression analyses of clinical characteristics and risk score with OS. (G) 
Nomogram of patients with LUAD.
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used by cancer cells to relieve endoplasmic reticulum stress and promote proliferation and metastasis.10 At the same 
time, the mTORC1 signaling pathway, which promotes multiple anabolic pathways, promotes cell growth.11 The 
ssGSEA analysis of the two dysregulated pathways showed significant differences between the high and low risk groups 
in unfolded protein responses and mTORC1 signaling pathway, and this difference might be one of the reasons why the 
tumors in the high-risk group had a higher malignancy (Supplementary Figure S5A). Other dysregulated pathways such 
as proliferative-related processes (eg, E2F targets, G2M checkpoint, Myc targets v1, Myc targets v2), metabolism-related 
processes (eg, glycolysis, fatty acid metabolism, and bile acid metabolism), and homeostasis-related pathways (eg, 
hypoxia, interferon alpha response, inflammatory response, UV response) were highly correlated with the risk scores, 
which may also be a potential mechanism for the poor prognosis of the patients in the high-risk group. Through GO 
analysis, we found that GO analysis of biological processes showed that up-regulated differential genes between high and 
low risk groups were concentrated in proliferation-related pathways (eg, mitotic nuclear division and chromosome 
segregation); GO analysis of cellular components showed that spindle, chromosome, centromeric region, and midbody 
were predominantly enriched; and GO analysis of molecular function showed upregulated gene enrichment in terms of 
microtubule binding as well as extracellular matrix structural constituents (Figure 4B); In contrast, GO analysis of 
biological processes showed that downregulated genes were significantly concentrated in immune-related pathways (eg, 
humoral immune response and leukotriene biosynthetic process), GO analysis of cellular components showed that 
clathrin-coated endocytic vesicle, multivesicular body, etc. were significantly enriched, and GO analysis of molecular 
function showed that cargo receptor activity significant enrichment (Figure 4C). The results of the GSEA analysis clearly 
showed differences in proliferative and metabolic-related processes in the two risk groups (Figure 4D). We conclude that 
dysproliferation, metabolic dysregulation, and immunosuppression are why the high-risk group has a lower survival rate 
than the low-risk group.

Immunological Analysis of Prognostic Risk Models
According to ssGSEA (Figure 5A), the enrichment scores of multiple immune cells varied significantly across different 
risk score groups. ESTIMATE analyses of both groups showed lower immune and stromal scores in the high-risk score 
group (Supplementary Figure S5B), indicating higher tumor purity. The MCP-Counter results showed that the absolute 

Figure 4 (A) An overview of the association between risk score and PDS (the correlation coefficient and significance are determined using Spearman correlation.) and the 
distribution of clinical phenotypes in different risk groups. (B and C) Go enrichment analysis showed the BP (biological processes) and CC (cellular components) of 
upregulated genes and downregulated genes between the high-risk score group and the low-risk score group. (D) Differences in pathway activities scored by GSEA between 
high- and low-risk patients. *0.01<p<0.05; ***0.0001<p<0.001; ****p<0.0001.

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S475088                                                                                                                                                                                                                       

DovePress                                                                                                                       
6591

Dovepress                                                                                                                                                               Liu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=475088.pdf
https://www.dovepress.com/get_supplementary_file.php?f=475088.pdf
https://www.dovepress.com
https://www.dovepress.com


abundance of multiple immune cells varied significantly in different risk score groups (Figure 5B). HLA is the main 
histocompatibility complex in humans, which is closely related to the function of the human immune system and is also 
an essential genetic genome of the human immune system. We further explored the differences in the expression of HLA- 
related genes between high-risk and low-risk patients. We found that except for HLA-A, HLA-G, and HLA-F-AS1, there 
were significant differences in the expression levels of other HLA-related genes between high-risk and low-risk groups 
and that these genes were expressed more in low-risk patients (Figure 5C). These findings suggest that differences in 
HLA genes may be one of the reasons for differences in antitumor immunity between high and low risk groups. At the 
same time, we found significant differences between some immune checkpoints and cytokines or their ligands 
(Figure 5D). Previous articles have reported on their function.12–19 CXCR6 is critical for CD8+ cytotoxic T cell- 

Figure 5 (A) Boxplots of ssGSEA. (B) Boxplots of MCP-counter. (C) HLA-related gene expression level in high- and low-risk score group patients. (D) Boxplots of immune 
checkpoints and cytokines or their ligands. (E) Spearman correlation analysis between risk score and CD8+ T cells; risk score and CXCR6 expression; and CXCR6 and 
CD8+ T cells. *0.01<p<0.05; **0.001<p<0.01; ***0.0001<p<0.001; ****p<0.0001; ns, not significant.

https://doi.org/10.2147/JIR.S475088                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 6592

Liu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


mediated tumor control and is the strongest indicator of all chemokine receptor genes for a good quality of the immune 
infiltrate that prolongs patient survival in several immunogenic human cancer types.13 Spearman correlation analysis 
showed that risk score was significantly correlated with CD8+ T cell infiltration and CXCR6 expression, and CXCR6 
was significantly correlated with CD8+ T cells (Figure 5E).

Comparison of Radiotherapy, Chemotherapy, and Immune Response Between the 
Two Risk Groups
We validated seven DNA damage response (DDR) pathways and found they were upregulated in the high-risk group 
(Figure 6A). The high-risk group was more responsive to ultraviolet, gamma, and X-rays (Figure 6B), indicating that 
patients in the high-risk group had more excellent radiation resistance. This result was consistent with better DNA 
damage repair ability in the high-risk score group.

A total of 138 chemotherapy drugs were analyzed using the “pRRophetic” R package, and 87 drugs showed 
a statistically significant difference (P<0.05) between the two groups (Supplementary Table S3). The sensitivity of 
four commonly used chemotherapy drugs for LUAD (cisplatin, paclitaxel, gefitinib, and docetaxel) and six other 
oncology chemotherapy drugs (PLX4720, EHT.1864, doxorubicin, vinblastine, cytarabine, and sorafenib) was statisti-
cally significant in both risk groups (Figure 6C). The abnormalities in the proliferation of tumor cells in high-risk patients 
provide a basis for their sensitivity to cisplatin, paclitaxel, docetaxel, and other drugs that inhibit tumor cell proliferation. 
PLX4720 and EHT.1864 were the two drugs with the greatest difference in sensitivity between the two risk groups.

Figure 6 Boxplot of ssGSEA scores for (A) injury repair responses and (B) radiation responses between the high- and low-risk score groups. (C) A box plot of 
susceptibility scores for ten chemotherapy drugs in two groups. (D) Boxplot of TIDE score between high- and low-risk score groups. *0.01<p<0.05; ****p<0.0001.
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To explore the role of prognostic risk models in predicting immunotherapy response in the future, we compared the 
TIDE score (Figure 6D) between the two risk groups. The results showed that the low-risk score group had a lower risk 
of immune evasion and appeared more sensitive to immunotherapy. We also correlated ROS1 expression with TIDE 
scores in the TCGA cohort. The results (Supplementary Figure S5C) showed that ROS1 expression significantly 
correlated negatively with the TIDE score.

Model-Specific Analysis of Prognostic Risk Models
The KM analysis plot (Figure 7A) of patients in the L group in the TCGA cohort shows that the risk score does not 
significantly distinguish OS from all LUAD patients. The same conclusion was validated in the GEO cohort (Figure 7C). 
The AUCs for 1-year, 3-year, and 5-year in the TCGA cohort were 0.69, 0.62, and 0.51, respectively (Figure 7B). 
Univariate cox analysis (Figure 7D) and multivariate cox analysis (Figure 7E) of patients in the L group in the TCGA 
cohort showed that risk scores had no significant effect on survival and that the N stage was an independent risk factor 
for prognosis. In addition, we found that the risk score of the L group of the TCGA cohort did not outperform the 

Figure 7 (A) KM survival curves in the L group in the TCGA cohort and (C) in the L group in the GEO cohort. (B) The ROC curve analysis of the prognostic risk model 
for predicting OS in the L group in the TCGA cohort. (D) Uni-Cox, and (E) multi-Cox regression analyses of clinical characteristics and risk score with OS in the L group in 
the TCGA cohort. (F) ROC curves of the risk score and clinical-pathological factors with OS.
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prediction of the stage, N stage (3-year, AUC = 0.61, 0.69, 0.67) (Figure 7F). Therefore, risk scores are not applied to 
patients in the L group.

ICAM5 Affects the Biological Behaviors of LUAD Cells in vitro
By pan-cancer analysis, we found significant differences in ICAM5 gene expression in a variety of tumors (Figure 8A). 
IHC-stained images of ICAM5 in normal lung tissue and LUAD showed that protein expression of ICAM5 was lower in 
LUAD (Figure 8B). The ESTIMATE algorithm showed that in LUAD, the ESTIMATE scores were significantly higher 
in the ICAM5 high-expression group (Figure 8E). By calculating the correlation of gene expression with immune-related 
genes and the differences in HLA gene expression in different ICAM5 expression groups, we found that ICAM5 gene 
expression was significantly correlated with the expression of HLA genes, immunostimulatory factors, chemokines, and 
chemokine receptors in a variety of tumors (Figure 8C and D and Supplementary Figure S6A-B). In LUAD, the 
expression of ICAM5 gene was significantly reduced compared with normal tissues, meanwhile, the expression level 
of this gene had a significant positive effect on OS, disease-specific survival (DSS) and progression-free interval (PFI) 
(Figure 8F). KM survival analysis showed a significant difference in OS, DSS and PFI between the two groups 

Figure 8 (A) Expression of ICAM5 in normal and tumor tissues of pan-cancer cohorts. (B) IHC staining images of ICAM5 in normal lung tissue and LUAD. (C) Differences 
in HLA genes expression in LUAD cohort. (D) Differences in immunostimulatory factors expression in LUAD cohort. (E) Differences in the results of the ESTIMATE 
algorithm in pan-cancer cohort. (F) Forest plot demonstrating the effect of ICAM5 expression in LUAD on OS, DSS, PFI and DFI. (G) KM survival analysis of OS in LUAD. 
(H, I) Enrichment plots from GSEA in the high-ICAM5 expression group and low-ICAM5 expression group. *0.01<p<0.05; **0.001<p<0.01; ***0.0001<p<0.001; 
****p<0.0001; ns, not significant.
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(Figure 8G and Supplementary Figure S6C-D). In addition, the radargram showed that ICAM5 gene expression was 
significantly positively correlated with MSI in LUAD (Supplementary Figure S6G). We investigated the KEGG, GO 
pathway enriched between the two groups using GSEA (Figure 8H and I and Supplementary Figure S6E-F). We found 
that the low-expression ICAM5 group was associated with tumor malignant phenotypes such as cell cycle, DNA 
replication, and sister chromatid segregation, while the high-expression ICAM5 group was associated with MHC class 
II protein complex assembly, antigen processing and presentation of exogenous antigen. Thus, we recognized that ICAM5 
gene has an important impact on tumor survival and immunity, especially in LUAD, which is of high research value. 
Next, we performed a series of in vitro experiments to elucidate the effect of ICAM5 gene on the biological behavior of 
LUAD.

We transfected pcDNA3.1 into A549 and PC9 cells. The overexpression effect was detected using qRT-PCR 
(Supplementary Figure S7A-B). We performed the SRB assay to test cell proliferation, and the overexpression of 
ICAM5 significantly inhibited the proliferation of A549 and PC9 cells (Figure 9A and B). In addition, the overexpression 
of ICAM5 reduced the rate of EdU-positive cells in LUAD cells compared to the control group (Figure 9C–F). To study 
cell invasion, we performed the Transwell assay (Figure 10A–D) and found that the overexpression of ICAM5 
significantly reduced the invasion of A549 and PC9 cells. The overexpression of ICAM5 also impaired the migration 
of A549 and PC9 cells by wound healing assays (Figure 10E and F). In conclusion, the overexpression of ICAM5 
significantly inhibited the proliferation, migration and invasion of LUAD cells.

Discussion
Developing individualized treatment strategies and accurately predicting patient outcomes is exceptionally challenging 
due to the tumor heterogeneity and complex carcinogenic mechanisms in LUAD.20 The prognosis of cancer patients is 
closely related to the TME. The immune response in the TME is also an important determinant of tumor aggressiveness 
and progression. Notably, we found that ROS1 is a gene closely associated with immune cell infiltration in TME. In 
addition, abnormal expression of ROS1 in various cancers has been reported in the literature,21 and ROS1 expression 
identified by IHC has been found to be a stage-independent predictor of OS improvement.22 Therefore, we conducted this 
study to explore the immune landscape based on ROS1 expression, construct an immune-related prognostic risk model, 
and predict individualized treatment methods for patients with high ROS1 expression. Tumor purity and immune score 
are considered essential factors influencing the prognosis of cancer patients.23,24 In this study, we investigated the 
relationship between ROS1 expression and immune score and used this as a grouping criterion. A novel 17-gene 
prognostic risk model with good immune-related robustness was identified and constructed using the TCGA dataset. 
Its reliability was validated using the clinical subset and the GEO dataset to accurately discriminate between high- and 
low-risk patients. The AUC value of the ROC curve indicates that our risk model has a better prognostic value than other 
clinicopathological features, including age, gender, T stage, N stage, M stage, and stage. Based on univariate and 
multivariate Cox regression analysis, our prognostic risk model is an independent prognostic factor for patients with 
LUAD in the H group.

Based on this, this study examined the tumor immune microenvironment of high-risk and low-risk patients, revealing 
that high-risk patients have higher tumor purity and lower immune score. In our study, high-risk patients with high tumor 
purity had a poor prognosis. The difference in survival between high- and low-risk patients may be due to the higher 
frequency of mutations in critical pathways and changes in the TME associated with the risk score. Therefore, we 
calculated the pathway abnormalities of different risk groups and found that the high-risk group was significantly related 
to abnormalities in proliferation, metabolism, immunity, and other pathways. The immune landscape of the tumors also 
illustrates the poor degree of immune cell infiltration in patients in the high-risk group, especially CD8+ T cells, which 
play an essential role in tumor immunity. We have further explored the molecular mechanisms underlying immune 
microenvironmental differences.

Various immune cells interacting with tumor cells in the TME play an essential role in fighting tumors. The immune 
score can help us quantify the immune environment in tumors. Several studies25–27 have shown that high immune scores 
are associated with better prognosis. Similarly, in our study, high-risk patients with poor prognoses had lower immune 
scores. At the same time, we found significant differences in cell types between high-risk and low-risk patients, such as 
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CD8+ T cells, B lineage, and so on. This further demonstrates the effectiveness and accuracy of the features constructed 
in this study in identifying high-risk patients.

It has been shown that there is a class of immune checkpoints that help the immune system determine which antigens 
it needs to respond to14 and that co-stimulatory pathways play a crucial role in regulating effector T cell function and 
responses to anti-PD-L1/PD-1 therapy.28 For example, CD28 is a co-stimulatory molecule that binds to ligands to induce 
T cell activation and differentiation, and ICOS promotes follicular helper T cell differentiation.14 Their high expression in 
the low-risk group may be one of the reasons why immunity to tumors is enhanced in the low-risk score group. The 

Figure 9 (A, B) SRB and (C-F) EDU assay detected the proliferative capacity of A549 and PC9 LUAD cells. *0.01<p<0.05; **0.001<p<0.01; ***p<0.001.
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TIDE score results suggest that the low-risk group is more likely to benefit from immunotherapy. However, we found that 
patients in the low-risk group had higher TIGIT and no significant difference in CD274 between the two groups, which 
also underscores that the regulation of tumor immunity results from a multifaceted combination.

Chemokines regulate immune cell trafficking in tumors and are involved in tumor initiation, progression, and 
angiogenesis.29 IL-7 has various immune effects, including inducing the proliferation of naive and memory T cells 
without causing Treg cells,18 and CCL19 exerts tumor suppressive function by inducing an anti-tumor immune response 
and inhibiting angiogenesis.16 Studies30 have shown that the simultaneous production of IL-7 and CCL19 by genetically 
engineered tumor-responsive T cells can work synergistically with PD-1 blockade therapy to produce effective and long- 
lasting anti-tumor immunity. CCL5 exerts a chemotactic effect on T cells via CCR5,15,31 and the high expression level of 
CCL5 may be one of the reasons why CD8+ T cells are enriched in high-risk groups.

The radiation tolerance of cancer cells remains a significant limitation of radiotherapy. Ionizing radiation can cause 
DNA double-strand breaks, a lethal injury. When damage occurs, it triggers the DDR, which helps cells recover from 
radiation damage.32 These DDRs confer radiation resistance on tumors, leading to a poor prognosis.33 Our results 
indicate that both the DDR pathway and radiation response are upregulated in the high-risk group, suggesting that high 

Figure 10 Migration and invasion of cells were detected employing the (A-D) Transwell assay and (E, F) wound healing assay in A549 and PC9 LUAD cells. *0.01<p<0.05; 
**0.001<p<0.01; ***p<0.001.
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radiation resistance may contribute to insufficient benefit from radiotherapy in patients in the high-risk group. It also 
shows that our prognostic risk model can predict radiotherapy response in LUAD patients.

We used drug susceptibility analysis to compare predicted IC50 values in high- and low-risk groups to confirm the 
ability of risk scores as treatment-guided biomarkers. For the four standard LUAD chemotherapy drugs cisplatin, 
paclitaxel, gefitinib, and docetaxel, there were statistically significant differences in the high-risk group compared to 
the low-risk group, except for gefitinib, which was more effective in the low-risk group. Our pathway analysis showed 
a significant dysregulation in proliferation in the high-risk group. This may be why high-risk groups are more sensitive to 
cisplatin, paclitaxel, and docetaxel. Based on the value of IC50, the correlation between drug target and risk score, the 
drug EHT.1864, which targets RAC, is a suitable treatment for patients in the low-risk group compared with the high-risk 
group. At the same time, we found that the IC50 of the high-risk group was often lower than that of the low-risk group, 
meaning that patients in the high-risk group were more sensitive to certain drugs despite having more malignant features. 
This finding highlights the importance of identifying high-risk patients using risk scores to identify practical pharma-
cotherapeutic approaches highly targeted to different patients.

Currently, the best-known biomarkers (eg, PD-1, CTLA4, etc). do not reliably guide the use of immune checkpoint 
blockades, resulting in minimal therapeutic benefit for cancer patients.34,35 The TIDE algorithm is a computational 
method developed by Jiang et al36 to predict the effect of immunotherapy by integrating immune dysfunction and tumor 
rejection, which is considered an alternative to a single biomarker. TIDE is superior to other biomarkers or indicators in 
predicting immune checkpoint inhibitor response.35,36 In this study, we evaluated the response of high- and low-risk 
patients to immunotherapy in terms of the TIDE score, and we found that the TIDE score was significantly higher in the 
high-risk group than in the low-risk group. Thus, low-risk patients may benefit more from immunotherapy. It is worth 
noting that although immunotherapy can benefit some lung cancer patients, there are still some patients who do not 
achieve the expected results after the use of immune checkpoint inhibitors.37–39 We also found that the expression of 
ICAM5 gene in the model was significantly different between normal and tumor tissues. Higher ICAM5 expression was 
associated with better prognosis, and ICAM5 was significantly associated with the immune microenvironment. As 
a member of the ICAM adhesion protein family, ICAM5 plays a role in both the immune system and the nervous 
system, and it is mainly expressed in the mammalian telencephalon.40 In previous understanding, DNMT1 and DNMT3a 
promote thyroid cancer development by promoting hypermethylation and transcriptional activation of ICAM5;41 and the 
overexpression of UCHL5 enhances bladder cancer cell proliferation and migration through the AKT/mTOR pathway via 
c-Myc, SLC25A19, and ICAM5 transformation.42 However, studies on the role of ICAM5 in LUAD are still lacking, 
although published Mendelian randomization studies43,44 have confirmed that genetically predicted levels of the ICAM5 
gene, as well as plasma ICAM5 protein levels, are significantly associated with a reduced risk of LUAD. Our study 
showed that LUAD patients with high-expression ICAM5 had higher immune scores, more expression of immune- 
stimulation-related molecules, and significantly higher expression of most chemokines and their receptors. Meanwhile, in 
this study, we demonstrated by in vitro experiments that overexpression of ICAM5 was found to inhibit the malignant 
progression of LUAD, including proliferation, invasion, and migration. GSEA showed that the ICAM5 high-expression 
group was not significantly enriched in pathways related to tumor malignant phenotypes as compared to the ICAM5 low- 
expression group, which may explain the above phenomenon.

Our study has several limitations and drawbacks. Our study of the role of ICAM5 in tumor development was limited 
to in vitro experiments and lacked animal experiments for further exploration. Also, studies addressing the differences in 
sensitivity to chemotherapeutic agents between high and low risk groups were not supported by conducting relevant 
experiments. Finally, our study has inherent limitations in terms of retrospective study design, and we need more clinical 
databases for external validation. Therefore, large-scale prospective studies as well as additional in vivo and in vitro 
experimental studies are needed to confirm our findings.

Conclusion
The prognostic risk model we constructed provides an accurate clinical application for the prognosis of LUAD patients 
with high ROS1 expression, predicts the survival, immunotherapy, and chemoradiotherapy response of LUAD patients, 

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S475088                                                                                                                                                                                                                       

DovePress                                                                                                                       
6599

Dovepress                                                                                                                                                               Liu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


and provides some guidance for the treatment and prognosis evaluation of LUAD. Finally, ICAM5, the key model gene, 
was shown to inhibit the malignant development of LUAD cells.
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