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Since the outbreak at the end of 2019, SARS‐CoV‐2 has been spreading around the world for more than one
year. Scientists have been intensely conducting research on this newly emerged coronavirus and the disease
caused by it. Angiotensin‐converting enzyme 2 (ACE2), as a receptor mediating the cellular entry of SARS‐
CoV‐2, has become a hot spot for researchers. Here, we summarized the recent progresses on the function,
expression and distribution characteristics of ACE2 in human body and among populations. We further dis-
cussed the interaction mechanism of ACE2 and SARS‐CoV‐2 S protein, focusing on key residues that effect
interaction and binding ability of SARS‐CoV‐2 variants. This will facilitate researchers to better understand
SARS‐CoV‐2 infection and transmission route, adaptation mechanism, and designing treatment strategies.
© 2021 Chinese Medical Association Publishing House. Published by Elsevier BV. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Angiotensin‐converting enzyme 2 (ACE2) gene belongs to the
angiotensin converting enzyme family of dipeptidyl carboxypeptidase
and has considerable homology with human angiotensin converting
enzyme1. The ACE2 protein catalyzes the cleavage of angiotensin I
into angiotensin 1–9, and cleavage of angiotensin II into the vasodila-
tor angiotensin 1–7. Angiotensin 1–7 acts as a beneficial vasodilator
and anti‐proliferation agent, counterbalancing the actions of the vaso-
constrictor angiotensin II [1–5]. rhACE2 (recombinant human ACE2)
as the negative regulator of the renin‐angiotensin system, has com-
pleted clinical trials and efficiently lowered or increased plasma angio-
tensin II and angiotensin 1–7 levels, respectively [6].

In 2004, scientists identified ACE2 protein as a functional receptor
for the S protein of human coronavirus SARS‐CoV [7]. A human coro-
navirus HCoV‐NL63 that causes mild respiratory tract illness also
employs ACE2 for cellular entry [8]. Due to the sequence similarity
between SARS‐CoV‐2 and SARS‐CoV, when SARS‐COV‐2 broke out,
the researchers deduced that ACE2 may be a potential receptor for
SARS‐COV‐2 [9,10]. Zhou et al. conducted virus infectivity studies
and found that exogenously expressed ACE2 is essential for SARS‐
CoV‐2 to enter HeLa cells [11]. Later, scientists completed the con-
struction of the crystal structure of SARS‐CoV‐2 S protein and
receptor‐binding domain (RBD) of the S protein and found that
ACE2 binds to the SARS‐CoV2 S protein extracellular domain/RBD
with an affinity higher than the affinity of ACE2 for SARS‐CoV S pro-
tein [12,13]. Moreover, other than ACE2, SARS‐CoV‐20s entry into tar-
get cell employs the cellular serine protease TMPRSS2 for S protein
priming, which entails S protein cleavage at the S1/S2 and the S20 site
and allows fusion of viral and cellular membranes, a process driven by
the S2 subunit [10].

2. Human tissue and Single-cell expression pattern of ACE2

The expression pattern of receptors determines the route of virus
infection and transmission and is of great significance for understand-
ing the pathogenesis and designing treatment strategies. Typical man-
ifestations of coronavirus disease 2019 (COVID‐19) are fever, fatigue,
dry cough, pneumonia, and acute respiratory distress syndrome
(ARDS) in severe cases [14,15]. Other symptoms including sputum
production, headache, diarrhea, anorexia, sore throat, chest pain,
chills, and olfactory/taste disorders were also reported [16–18].

Through qRT‐PCR research on 72 tissues of the human body, a
study found that ACE2 mRNA is highly expressed in the kidney, heart,
and gastrointestinal system [19]. This result is in line with what we
learned from the human RNASeq database (Fig. 1). TMPRSS2 were
dominantly expressed in the prostate, stomach and small intestine
(Fig. 1). After the SARS‐CoV outbreak, there were studies on the
expression and distribution of ACE2 protein in humans. Through
immunostaining of multiple tissues and organs of the human body,
the researchers found that ACE2 protein is expressed in large amounts
in type I (AT1) and type II alveolar epithelial cells (AT2), small intesti-
nal epithelial cells [20].
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Since the SARS‐CoV‐2 outbreak, many studies have used public
single‐cell RNASeq databases to analyze the expression and distribu-
tion of ACE2 at the cell level in different organs of human. In lungs,
studies found that ACE2 mainly expressed in AT2 and ciliated cells.
While TMPRSS2 are mainly expressed in AT2, AT1 and club cells,
and the expression level is higher than ACE2 [21–23]. In the nasal
region/upper airway, ACE2 were found predominantly expressed in
nasal epithelial cells and the motile cilia of airway epithelial cells,
which likely represents the initial site of SARS‐CoV‐2 viral entry
[22,24,25]. In the gastrointestinal system, ACE2 and TMPRSS2 were
both highly expressed in enterocytes of ileum, colon and rectum
[22,26]. In the liver, ACE2 were specifically expressed in cholangio-
cytes [22,27]. In the kidney, ACE2 is abundantly expressed in all sub-
types of renal proximal tubule cells [22,28]. Moreover, in the
pancreas, by scRNA‐Seq and ex vivo analyses, Kusmartseva and col-
leagues demonstrated prominent expression of ACE2 in ductal epithe-
lium and microvasculature [29]. Based on data from above references
and data from single cell transcriptomic datasets (https://www.pro-
teinatlas.org/about/assays+annotation#normalization_rna), we con-
cluded major cell types from different organs that expressing ACE2
and TMPRSS2 (Fig. 2). The tissue expression pattern of ACE2 and
TMPRSS2 in non‐human primates (NHP) are similar with that in
human. In NHP, ACE2 was found expressing in Type II Pneumocytes
(AT2) of lungs, and ACE2/TMPRSS2 were found co‐expressing in
absorptive enterocytes of ileum [21].
Fig. 1. Dotplot deciphering tissue expression pattern of ACE2 and TMPRSS2. RNA H
mapped reads) represent transcript expression levels summarized per gene in 36 t
3. ACE2 expression divergence among different populations and
during virus infection

Due to the different infection rates of SARS‐CoV‐2 in different
populations, the researchers suspect that the human ACE2 (hACE2)
has different expression patterns in different populations. Old age
and male sex are significant risk factors for severe SARS‐CoV‐2 infec-
tions [14,30]. Cigarette smoking is also strongly associated with
adverse outcomes from COVID‐19 [31,32]. By analyzing RNA data
from different databases, Smith et al. found hACE2 expression was
equivalent between men and women and between age groups
(>70 years old versus <29 years old). Using single‐cell sequencing
data, they demonstrated that hACE2 was expressed in a subset of
secretory cells in the respiratory tract. Chronic smoke exposure trig-
gers the expansion of this cell population and a concomitant increase
in hACE2 expression. In contrast, quitting smoking decreases the
abundance of these secretory cells and reduces hACE2 levels [33].
Another study also found that significantly higher hACE2 gene
expression in former smoker’s lung compared to non‐smoker’s lung,
while proved no significant difference in ACE2 gene expression
between ethnic groups (Asian and Caucasian), age groups (>60 years
old versus <60 years old), or gender groups (male versus female)
[34]. Moreover, prior research has proved that hACE2 was upregu-
lated in the population that suffered failing heart or myocardial
infarction [35,36].
PA tissue gene data, TPM (Transcripts Per Kilobase of exon model per Million
issues based on RNA-Seq, https://www.proteinatlas.org/about/download.
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Fig. 2. Major cell types from different organs/tissues that expressing ACE2 and TMPRSS2. Cell types expressing ACE2 were marked in purple. Cell types
expressing TMPRSS2 were marked in green. This figure is created with Biorender.com.
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Other than cigarette smoking, researchers found hACE2 expression
in airway epithelial cells could be upregulated by various viral infec-
tions including influenza, respiratory syncytial virus, SARS‐CoV, and
MERS‐CoV. They further proved that dsRNA mimic poly(I:C) and inter-
ferons could both induce upregulation of hACE2. Therefore, research-
ers conclude that hACE2 is an interferon‐stimulated gene (ISG), and
inflammation stimulation leads to its up‐regulation and further pro-
motes SARS‐CoV‐2 infection [34]. Another study found that in cells
expressing hACE2, the expression of ISGs was often upregulated. By
treating primary human upper airway basal cells with IFN‐a, they also
found upregulation of hACE2 expression [21]. However, recent
research identified a novel, transcriptionally independent truncated
isoform of ACE2 (dACE2), but not hACE2, as an ISG. dACE2, which
lacks 356 amino‐terminal amino acids, was non‐functional in binding
the SARS‐CoV‐2 spike protein and as a carboxypeptidase [37]. There-
fore, whether hACE2 could act as an ISG needs to be further verified.
4. ACE2 interaction with SARS-CoV-2 S protein

SARS‐CoV‐2 RBD (amino acids 319–541 of S protein) is the key
region in SARS‐CoV‐2 S protein that interacts with the hACE2 receptor
[38–40]. The structures of the hACE2 receptor in complex with the
SARS‐CoV‐2 RBD/ the C‐terminal domain of the spike protein have
been constructed to reveal the mechanisms of binding of SARS‐CoV‐
2. The major RBD interaction regions in ACE2 include helix H1
(Q24–Q42), a loop in a beta‐sheet (K353–R357), and the end of helix
H2 (L79–Y83). A series of hydrophilic residues located along the inter-
face was found to form a solid network of H‐bond and salt bridge inter-
actions (Fig. 3). These strong polar contacts include the SARS‐CoV‐2‐
RBD residue A475 interacting with hACE2 residue S19, N487 with
Q24, and Y453 with H34. Residue K417 was shown to contribute ionic
interactions with hACE2 D30. G446, Y449, G496, Q498, T500, and
G502 are in close proximity with hACE2 amino acids D38, Y41,
Q42, K353, and D355. SARS‐CoV‐2‐RBD Y489 and F486 pack against
hACE2 residues F28, L79, M82, and Y83, forming a small patch of
hydrophobic interactions at the interface. Overall, the virus‐receptor
engagement is dominated by polar contacts mediated by the hydrophi-
lic residues [41,42]. Moreover, scientists found that the glycosylation
of the hACE2 contributes substantially to the binding of the virus. Both
the ACE2 receptor and the spike protein are heavily glycosylated,
including at sites near their binding interface [43,44]. Atomistic
molecular dynamics simulations showed contrasting effects of ACE2
glycosylation, weakening the binding of SARS‐ CoV‐2 spike in the case
of the N90 glycan, strengthening the binding in case of the N322 gly-
can, and being neutral in case of other sites [45].

Sequence differences of ACE2 among host animals may determine
the adaptability of SARS‐CoV‐2 to different hosts. Bats are considered
as the reservoir host animals of SARS‐CoV‐2 [11,46]. Liu and col-
leagues determined the complex structure of SARS‐CoV‐2 RBD and
bat ACE2 from Rhinolophus macrotis (bACE2‐Rm). SARS‐CoV‐2 RBD
binds to bACE2‐Rm with a lower affinity than that to hACE2. Muta-
tional analysis revealed that the Y41 and E42 of bACE2‐Rm (Y41
and Q42 in hACE2), which contains variations in many bat species,
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play central roles in the interaction with SARS‐CoV‐2 RBD [47]. Two
recent studies show that New World monkey, koala, and mouse
ACE2 cannot serve as functional receptors to support SARS‐CoV‐2
entry. They verified residues H41/E42 in New World monkey ACE2,
T31 in koala ACE2, H353 in mouse ACE2 restrict SARS‐CoV‐20s entry.
K353 in human ACE2 can hydrogen bond with G502 of the SARS‐CoV‐
2 spike protein, stabilizing the ACE2‐spike complex [48,49].

Since sequence variants of ACE2 among populations may influence
the spreading of SARS‐CoV‐2, several studies focused on the binding of
the proteins encoded by different human ACE2 allelic variants
[38,50–54]. A study compared the structural and functional conse-
quences of 17 ACE2 allelic variants and found rs73635825 (S19P)
and rs143936283 (E329G) showed noticeable variations in their inter-
molecular interactions with the SARS‐CoV‐2 protein [51]. Another
study found putative missense ACE2 variants including rs147311723
(L731F, AF (allele frequency) = 0.01 in African), rs372272603
(R219C, AF = 7 × 10−4 in European), rs373025684 (S547C, AF =
4 × 10−4 in European) and rs142984500 (H378R, AF = 2 × 10−4

in European). They also found rs142984500 (H378R, AF = 2× 10−4-
in European) could directly weaken the binding of catalytic metal
atoms to decrease ACE2 catalytic activity, and rs73635825 (S19P,
AF = 3 × 10−3 in African) could distort the most important helix
to interact with the S protein [52].
Table 1
SARS-CoV-2 variants with amino acid substitutions on RBD.

WHO
label

Pango
lineage

RBD substitutions Earliest documented samples

Alpha B.1.1.7 N501Y United Kingdom, Sep-2020
Beta B.1.351 K417N E484K

N501Y
South Africa, May-2020

Gamma P.1 K417T E484K
N501Y

Brazil, Nov-2020

Delta B.1.617.2 L452R T478K India, Oct-2020
Eta B.1.525 E484K Multiple countries, Dec-2020
Lota B.1.526 E484K United States of America, Nov-

2020
Kappa B.1.617.1 L452R E484Q India, Oct-2020
Lambda C.37 L452Q F490S Peru, Dec-2020
5. ACE2 interaction with SARS-CoV-2 variants

With the global pandemic of SARS‐CoV‐2, many variants have
emerged. Variants including B.1.1.7 (Alpha), B.1.351 (Beta), P.1
(Gamma), and B.1.617.2 (Delta) have become the main strains cur-
rently circulating. Studies have proved B.1.1.7, B.1.351, P.1, and
B.1.617.2 showed significantly increased transmission [55,56]. Com-
pared with the original epidemic strains, they all have amino acid
mutations at the RBD region. All RBD substitutions of these variants
are concentrated at 417, 452, 478, 484, 490, and 501 (Table 1).
Changes in these sites that affect interaction with hACE2 will greatly
affect the spread of the virus. N501Y that shared by B.1.1.7,
B.1.351, and P.1 enhances the binding affinity to hACE2 [57–59]. A
single K417N substantially reduced hACE2 binding, while E484K
slightly reduced binding affinity to hACE2, but this reduction will be
Fig. 3. Segments where hACE2 interacts with SARS-COV-2 S protein, and sequenc
marked in red indicate they have H-bond or salt bridge interactions with hACE2.
norveicus (rat), Rhinologhus macrotis (bat),Macaca mulatta (monkey), Pan trolodytes (
(dog) and Bos taurus (cow).
restored when combined with N501Y. The triple mutant K417N/
E484K/N501Y (as in B.1.351) had a similar binding ability to wild
type [60]. L452R mutation (in B.1.617 and C.37) reinforces affinity
toward hACE2 [61]. Interestingly, B.1.351 and P.1 acquired much
higher binding ability to mouse and mink ACE2 receptors [62]. Muta-
tions in the SARS‐CoV‐2 protein can lead to the cross‐species transmis-
sion of the virus. A mouse‐adapted SARS‐CoV‐2 virus MASCp36 which
bears N501Y, Q493H, and K417N mutations at RBD of S protein
showed increased infectivity in mouse lungs. The structure of mouse
ACE2 and MASCp36 RBD complex showed these mutations con-
tributed to the tight binding of the MASCp36 to mouse ACE2
[63,64]. A recent study found T372A which is present in all human
SARS‐CoV‐2 RBD sequences but not in closely related viruses from bats
and pangolins bound hACE2 with higher affinity in experimental bind-
ing assays. This mutation likely contributed to SARS‐CoV‐20s emer-
gence from animal reservoirs to humans [65].
6. Conclusion and perspectives

Here, we reviewed the function, expression pattern in the human
body and population, interaction with SARS‐CoV‐2 S protein of
ACE2. In the human body, ACE2 is abundantly expressed in the gas-
trointestinal system, kidney, testis, and heart. In most of the detectable
e alignment of these segments in other putative host animals. The amino acids
The listed animals are Homo sapiens (human), Mus musculus (mouse), Rattus
orangutan),Mustela putorius furo (ferret), Felis catus (cat), Canius lupus familiaris
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tissues, ACE2 tends to express in epidermal cells. In the lungs, ACE2 is
mainly expressed in AT2 and ciliated cells. In the nasal region/upper
airway, ACE2 was found predominantly expressed in nasal epithelial
cells and the motile cilia of airway epithelial cells. The expression level
of ACE2 is upregulated in smokers, but there is no significant differ-
ence between different ages and genders. ACE2 interacts with SARS‐
CoV‐2 RBD, and some of the residues including Y41, Q42, K353 that
form polar contacts with RBD are essential for binding. Sequence dif-
ferences of ACE2 in these residues among host animals determine the
adaptability of SARS‐CoV‐2 to different hosts. Moreover, sequence
variants of ACE2 among populations may influence the spreading of
SARS‐CoV‐2. An ACE2 allelic variant rs73635825 (S19P) whose allele
frequency is 3 × 10−3 in African could distort the most important
helix to interact with the S protein. Other than sequence and expres-
sion pattern, glycosylation on ACE2 amino acids can also affect virus
entry. On the other hand, mutations in the SARS‐CoV‐2 protein can
lead to the cross‐species transmission of the virus. Newly emerged
SARS‐CoV‐2 variants with mutations like N501Y on RBD have stronger
interaction with hACE2, some gained the ability to infect mice. The
study of ACE2 is of great significance for finding the intermediate host
and potential host of SARS‐CoV‐2 and predicting the transmission abil-
ity of the mutant virus.

There are some questions that need to be answered in the future.
Although some studies have proved that SARS‐CoV‐2 can use corecep-
tors like NRP1 for host cell entry, other ACE2‐independent receptors
need to be further studied [66,67,68]. Moreover, whether the high
expression of ACE2 in certain organs is related to the sequelae of
COVID‐19 needs to be further followed up and studied. It is still con-
troversial that whether ACE2 could act as an ISG to facilitate infection.
Will other newly emerged SARS‐CoV‐2 with mutations on RBD have
stronger interaction with ACE2? Except for glycosylation, whether
other post‐translational modifications on ACE2 amino acids could
affect virus entry. Moreover, soluble ACE2 as a promising therapeutic
candidate that neutralizes SARS‐CoV‐2 infection needs to be further
studied.
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